next up previous contents
Next: Update Rule of the Up: Hierarchical Nonlinear Factor Analysis Previous: Bibliography

   
Cost Function of the Gaussian Variable

A node called the Gaussian variable was presented in Section [*]. The part of the cost function C defined in ([*]) that corresponds to the variable is derived here. The posterior approximations of s, m and v are mutually independent

q(s,m, v) = q(s)q(m)q(v) (10.1)

and they are of the form

\begin{displaymath}q(s)= \operatorname{N}\left(s;\overline{s},\widetilde{s}\right).
\end{displaymath} (10.2)

The first part Cp defined in ([*]) is addressed first.

 
Cs,p = $\displaystyle - \left< \ln p\left(s \mid m,v\right) \right>$ (10.3)
  = $\displaystyle -\left< \ln \operatorname{N}\left(s;m,\exp(-v)\right) \right>$ (10.4)
  = $\displaystyle -\left< \ln \left[\left(2\pi \exp(-v)\right)^{-1/2} \exp \frac{-(s-m)^2}{2\exp(-v)}\right] \right>$ (10.5)
  = $\displaystyle -\left< \ln \left[2\pi \exp(-v)\right]^{-1/2} \right>
-\left< \ln \exp \left[-\frac{1}{2}(s-m)^2\exp v\right] \right>$ (10.6)
  = $\displaystyle \frac{1}{2}\ln 2\pi - \frac{1}{2}\left< v \right> + \frac{1}{2}\left< (s-m)^2 \right>\left< \exp v \right>.$ (10.7)

We still need to compute the expectation of (s-m)2

 
$\displaystyle \left< (s-m)^2 \right>$ = $\displaystyle \left< s^2-2sm+m^2 \right>$ (10.8)
  = $\displaystyle \left< s^2 \right> -2\left< sm \right>+\left< m^2 \right>$ (10.9)
  = $\displaystyle \overline{s}^2 + \widetilde{s} -2\overline{s}\left< m \right>+\left< m \right>^2+\mathrm{Var}\left\{m\right\}$ (10.10)
  = $\displaystyle \left(\overline{s}-\left< m \right>\right)^2+\widetilde{s}+\mathrm{Var}\left\{m\right\}.$ (10.11)

Substituting $\left< (s-m)^2 \right>$ in ([*]) by ([*]) yields ([*]):

\begin{displaymath}C_{s,p} = \frac{1}{2}\left\{ \left< \exp v \right>
\left[\le...
...\widetilde{s} \right] -
\left< v \right> + \ln 2\pi\right\} .
\end{displaymath} (10.12)

The second part of the cost function Cq defined in ([*]) is

Cs,q = $\displaystyle \left< \ln q(s) \right>$ (10.13)
  = $\displaystyle \left< \ln \operatorname{N}\left(s;\overline{s},\widetilde{s}\right) \right>$ (10.14)
  = $\displaystyle \left< \ln \left[(2\pi \widetilde{s})^{-1/2}\exp \frac{-(s-\overline{s})^2}{2\widetilde{s}}\right] \right>$ (10.15)
  = $\displaystyle -\frac{1}{2} \ln 2\pi \widetilde{s} + \frac{-\left< (s-\overline{s})^2 \right>}{2\widetilde{s}}$ (10.16)
  = $\displaystyle -\frac{1}{2} \ln 2\pi \widetilde{s} + \frac{-\widetilde{s}}{2\widetilde{s}}$ (10.17)
  = $\displaystyle -\frac{1}{2} \ln 2\pi e \widetilde{s},$ (10.18)

which is the form used in Equation ([*]).
next up previous contents
Next: Update Rule of the Up: Hierarchical Nonlinear Factor Analysis Previous: Bibliography
Tapani Raiko
2001-12-10