next up previous contents
Next: Gaussian Variable with Nonlinearity Up: Building Blocks for Hierarchical Previous: Addition

Multiplication

Multiplication node has inputs sk and the output is their product $\prod_k s_{k}$. The excepted exponential of the output cannot be evaluated without knowing the exact distribution of the inputs. Assuming independence between sk, the mean and the variance of the output are

   
$\displaystyle \left< s_{1} s_{2} \right>$ = $\displaystyle \left< s_{1} \right> \left< s_{2} \right>$ (4.30)
$\displaystyle \mathrm{Var}\left\{s_{1} s_{2}\right\}$ = $\displaystyle \left< s_1^2 s_2^2 \right>-\left< s_1 s_2 \right>^2$  
  = $\displaystyle \left< s_1^2 \right>\left< s_2^2 \right>-\left< s_1 \right>^2\left< s_2 \right>^2$ (4.31)
  = $\displaystyle (\left< s_1 \right>^2+\mathrm{Var}\left\{s_1\right\})(\left< s_2 \right>^2+\mathrm{Var}\left\{s_2\right\})-\left< s_1 \right>^2\left< s_2 \right>^2$  
  = $\displaystyle \left< s_{1} \right>^{2} \mathrm{Var}\left\{s_{2}\right\}
+ \math...
...\} \left( \left< s_{2} \right>^{2} + \mathrm{Var}\left\{s_{2}\right\} \right) .$ (4.32)

The propagated derivatives are obtained like with addition and they are

 
$\displaystyle \frac{\partial C}{\partial \left< s_1 \right>}$ = $\displaystyle \frac{\partial C}{\partial \left< s_1 s_2 \right>} \frac{\partial...
...\frac{\partial \mathrm{Var}\left\{s_1 s_2\right\}}{\partial \left< s_1 \right>}$ (4.33)
  = $\displaystyle \left< s_2 \right>\frac{\partial C}{\partial \left< s_1 s_2 \righ...
...rac{\partial C}{\partial \mathrm{Var}\left\{s_1 s_2\right\}} \left< s_1 \right>$  
$\displaystyle \frac{\partial C}{\partial \mathrm{Var}\left\{s_1\right\}}$ = $\displaystyle \frac{\partial C}{\partial \left< s_1 s_2 \right>} \frac{\partial...
...al \mathrm{Var}\left\{s_1 s_2\right\}}{\partial \mathrm{Var}\left\{s_1\right\}}$ (4.34)
  = $\displaystyle \left(\left< s_2 \right>^2 + \mathrm{Var}\left\{s_2\right\}\right)\frac{\partial C}{\partial \mathrm{Var}\left\{s_1 s_2\right\}}.$  

The equations for larger products are again obtained by induction, e.g. s1s2s3=(s1s2)s3.


next up previous contents
Next: Gaussian Variable with Nonlinearity Up: Building Blocks for Hierarchical Previous: Addition
Tapani Raiko
2001-12-10