next up previous contents
Next: The probabilistic model Up: Bayesian nonlinear state-space model Previous: Bayesian nonlinear state-space model   Contents

The generative model

The Bayesian model follows the standard NSSM defined in Equation (4.13):

\begin{displaymath}\begin{split}\mathbf{s}(t+1) &= \mathbf{g}(\mathbf{s}(t)) + \...
...{x}(t)&= \mathbf{f}(\mathbf{s}(t)) + \mathbf{n}(t). \end{split}\end{displaymath} (5.18)

The basic structure of the model can be seen in Figure 5.1.

Figure 5.1: The nonlinear state-space model.
\includegraphics[width=.6\textwidth]{pics/nlssm_model}

The nonlinear functions $ \mathbf{f}$ and $ \mathbf{g}$ of the NSSM are modelled by MLP networks. The networks have one hidden layer and can thus be written as in Equation (4.15):

$\displaystyle \mathbf{f}(\mathbf{s}(t))$ $\displaystyle = \mathbf{B}\tanh [ \mathbf{A}\mathbf{s}(t)+ \mathbf{a} ] + \mathbf{b}$ (5.19)
$\displaystyle \mathbf{g}(\mathbf{s}(t))$ $\displaystyle = \mathbf{s}(t)+ \mathbf{D}\tanh [ \mathbf{C}\mathbf{s}(t)+ \mathbf{c} ] + \mathbf{d}$ (5.20)

where $ \mathbf{A}, \mathbf{B}, \mathbf{C}$ and $ \mathbf{D}$ are the weight matrices of the networks and $ \mathbf{a}, \mathbf{b}, \mathbf{c}$ and $ \mathbf{d}$ are the bias vectors.

Because the data are assumed to be generated by a continuous dynamical system, it is reasonable to assume that the values of the hidden states $ \mathbf{s}(t)$ do not change very much from one time index to the next one. Therefore the MLP network representing the function $ \mathbf{g}$ is used to model only the change.


next up previous contents
Next: The probabilistic model Up: Bayesian nonlinear state-space model Previous: Bayesian nonlinear state-space model   Contents
Antti Honkela 2001-05-30