next up previous contents
Next: Comparison of the Notation Up: Formulation of the Model Previous: Hierarchical Prior for the

Hierarchical Prior for the Sources

The hierarchical structure of the parameters concerning the sources s and u is somewhat similar to that of the weights. The parameters are

$\displaystyle p(\mu_{s,i,k}\mid m_{i,k}^{ms}, v_{i,k}^{ms})$ = $\displaystyle \operatorname{N}\left(\mu_{s,i,k}; m_{i,k}^{ms}, \exp(-v_{i,k}^{ms})\right)$ (5.11)
$\displaystyle p(\mu_{u,i,k}\mid m_{i,k}^{mu}, v_{i,k}^{mu})$ = $\displaystyle \operatorname{N}\left(\mu_{u,i,k}; m_{i,k}^{mu}, \exp(-v_{i,k}^{mu})\right)$ (5.12)
$\displaystyle p(\sigma_{u,i,k}\mid m_{i,k}^{vu}, v_{i,k}^{vu})$ = $\displaystyle \operatorname{N}\left(\sigma_{u,i,k}; m_{i,k}^{vu}, \exp(-v_{i,k}^{vu})\right).$ (5.13)

The hyperparameters have priors that are common to different components k of a parameter vector

\begin{displaymath}p(m_{i,k}^{ms}\mid m_{i}^{mms}, v_{i}^{mms}) = \operatorname{N}\left(m_{i,k}^{ms}; m_{i}^{mms}, \exp(-v_{i}^{mms})\right)
\end{displaymath} (5.14)

and similarly for vi,kms, mi,kmu, vi,kmu, mi,kvu and vi,kvu. The priors for the hyperparameters are again flat and fixed
$\displaystyle p(m_{i}^{mms}) = \operatorname{N}\left(m_{i}^{mms}; 0, 100^{2}\right)$     (5.15)
$\displaystyle p(v_{i}^{mms}) = \operatorname{N}\left(v_{i}^{mms}; 0, 100^{2}\right)$     (5.16)

and so forth. The scale of the data should be made small enough as a preprocessing step.


next up previous contents
Next: Comparison of the Notation Up: Formulation of the Model Previous: Hierarchical Prior for the
Tapani Raiko
2001-12-10