In the Bayesian probability theory, the probability of an event describes the observer's degree of belief on the occurrence of the event [36]. This allows evaluating, for instance, the probability that a certain parameter in a complex model lies on a certain fixed interval.
The Bayesian way of estimating the parameters of a given model focuses
around the Bayes theorem. Given some data
and a model (or
hypothesis)
for it that depends on a set of parameters
,
the Bayes theorem gives the posterior probability of the parameters
In Equation (3.1), the term
is
called the posterior probability of the parameters. It gives
the probability of the parameters, when the data and the model are
given. Therefore it contains all the information about the values of
the parameters that can be extracted from the data. The term
is called the likelihood of the data. It is the
probability of the data, when the model and its parameters are given
and therefore it can usually be evaluated rather easily from the
definition of the model. The term
is the prior
probability of the parameters. It must be chosen beforehand to
reflect one's prior belief of the possible values of the parameters.
The last term
is called the evidence of the
model
. It can be written as
The key idea in Bayesian statistics is to work with full distributions of parameters instead of single values. In calculations that require a value for a certain parameter, instead of choosing a single ``best'' value, one must use all the values and weight the results according to the posterior probabilities of the parameter values. This is called marginalising over the parameter.