Next: Some Changes in the
Up: No Title
Previous: Acknowledgements
- 1
-
D. Barber and C. M. Bishop.
Ensemble learning in Bayesian neural networks.
In M. Jordan, M. Kearns, and S. Solla, editors, Neural Networks
and Machine Learning, pages 215-237. Springer, Berlin, 1998.
- 2
-
C.L. Blake and C.J. Merz.
UCI repository of machine learning databases, 1998.
- 3
-
A. Gelman, J. Garlin, H. Stern, and D. Rubin.
Bayesian Data Analysis.
Chapman & Hall/CRC, 1995.
- 4
-
G.E. Hinton and D. van Camp.
Keeping neural networks simple by minimizing the description length
of the weights.
In Proceedings of the COLT'93, pages 5-13, Santa Cruz,
California, USA, July 26-28, 1993.
- 5
-
T. Kohonen.
Self-Organizing Maps.
Springer, 3rd, extended edition, 2001.
- 6
-
H. Lappalainen and A. Honkela.
Bayesian nonlinear independent component analysis by multi-layer
perceptrons.
In M. Girolami, editor, Advances in Independent Component
Analysis, pages 93-121. Springer, Berlin, 2000.
- 7
-
H. Lappalainen and J. Miskin.
Ensemble learning.
In M. Girolami, editor, Advances in Independent Component
Analysis, pages 75-92. Springer, Berlin, 2000.
- 8
-
R.J.A. Little and D.B.Rubin.
Statistical Analysis With Missing Data.
J. Wiley & Sons, 1987.
- 9
-
R.M. Neal and G.E. Hinton.
A view of the EM algorithm that justifies incremental, sparse, and
other variants.
In M.I. Jordan, editor, Learning in Graphical Models, pages
355-368. The MIT Press, Cambridge, Massachusetts, 1999.
- 10
-
D.B. Rubin.
Multiple Imputation for Nonresponse in Surveys.
J. Wiley & Sons, 1987.
- 11
-
J.L. Schafer.
Analysis of Incomplete Multivariate Data.
Chapman & Hall/CRC, 1997.
- 12
-
H. Valpola.
Unsupervised learning of nonlinear dynamic state-space models.
Technical Report A59, Helsinki University of Technology, Espoo,
Finland, 2000.
Tapani Raiko
2001-09-26