**1**-
D. Barber and C. M. Bishop.

Ensemble learning in Bayesian neural networks.

In M. Jordan, M. Kearns, and S. Solla, editors,*Neural Networks and Machine Learning*, pages 215-237. Springer, Berlin, 1998. **2**-
C.L. Blake and C.J. Merz.

UCI repository of machine learning databases, 1998. **3**-
A. Gelman, J. Garlin, H. Stern, and D. Rubin.
*Bayesian Data Analysis*.

Chapman & Hall/CRC, 1995. **4**-
G.E. Hinton and D. van Camp.

Keeping neural networks simple by minimizing the description length of the weights.

In*Proceedings of the COLT'93*, pages 5-13, Santa Cruz, California, USA, July 26-28, 1993. **5**-
T. Kohonen.
*Self-Organizing Maps*.

Springer, 3rd, extended edition, 2001. **6**-
H. Lappalainen and A. Honkela.

Bayesian nonlinear independent component analysis by multi-layer perceptrons.

In M. Girolami, editor,*Advances in Independent Component Analysis*, pages 93-121. Springer, Berlin, 2000. **7**-
H. Lappalainen and J. Miskin.

Ensemble learning.

In M. Girolami, editor,*Advances in Independent Component Analysis*, pages 75-92. Springer, Berlin, 2000. **8**-
R.J.A. Little and D.B.Rubin.
*Statistical Analysis With Missing Data*.

J. Wiley & Sons, 1987. **9**-
R.M. Neal and G.E. Hinton.

A view of the EM algorithm that justifies incremental, sparse, and other variants.

In M.I. Jordan, editor,*Learning in Graphical Models*, pages 355-368. The MIT Press, Cambridge, Massachusetts, 1999. **10**-
D.B. Rubin.
*Multiple Imputation for Nonresponse in Surveys*.

J. Wiley & Sons, 1987. **11**-
J.L. Schafer.
*Analysis of Incomplete Multivariate Data*.

Chapman & Hall/CRC, 1997. **12**-
H. Valpola.

Unsupervised learning of nonlinear dynamic state-space models.

Technical Report A59, Helsinki University of Technology, Espoo, Finland, 2000.