next up previous contents
Next: Some Changes in the Up: No Title Previous: Acknowledgements

Bibliography

1
D. Barber and C. M. Bishop.
Ensemble learning in Bayesian neural networks.
In M. Jordan, M. Kearns, and S. Solla, editors, Neural Networks and Machine Learning, pages 215-237. Springer, Berlin, 1998.

2
C.L. Blake and C.J. Merz.
UCI repository of machine learning databases, 1998.

3
A. Gelman, J. Garlin, H. Stern, and D. Rubin.
Bayesian Data Analysis.
Chapman & Hall/CRC, 1995.

4
G.E. Hinton and D. van Camp.
Keeping neural networks simple by minimizing the description length of the weights.
In Proceedings of the COLT'93, pages 5-13, Santa Cruz, California, USA, July 26-28, 1993.

5
T. Kohonen.
Self-Organizing Maps.
Springer, 3rd, extended edition, 2001.

6
H. Lappalainen and A. Honkela.
Bayesian nonlinear independent component analysis by multi-layer perceptrons.
In M. Girolami, editor, Advances in Independent Component Analysis, pages 93-121. Springer, Berlin, 2000.

7
H. Lappalainen and J. Miskin.
Ensemble learning.
In M. Girolami, editor, Advances in Independent Component Analysis, pages 75-92. Springer, Berlin, 2000.

8
R.J.A. Little and D.B.Rubin.
Statistical Analysis With Missing Data.
J. Wiley & Sons, 1987.

9
R.M. Neal and G.E. Hinton.
A view of the EM algorithm that justifies incremental, sparse, and other variants.
In M.I. Jordan, editor, Learning in Graphical Models, pages 355-368. The MIT Press, Cambridge, Massachusetts, 1999.

10
D.B. Rubin.
Multiple Imputation for Nonresponse in Surveys.
J. Wiley & Sons, 1987.

11
J.L. Schafer.
Analysis of Incomplete Multivariate Data.
Chapman & Hall/CRC, 1997.

12
H. Valpola.
Unsupervised learning of nonlinear dynamic state-space models.
Technical Report A59, Helsinki University of Technology, Espoo, Finland, 2000.



Tapani Raiko
2001-09-26