next up previous contents
Next: Audio-based music classification with Up: Summary of References Related Previous: Face Recognition in Unconstrained   Contents

Subsections

Are sparse representations really relevant for image classification? [78]

Original Abstract

Recent years have seen an increasing interest in sparse representations for image classification and object recognition, probably motivated by evidence from the analysis of the primate visual cortex. It is still unclear, however, whether or not sparsity helps classification. In this paper we evaluate its impact on the recognition rate using a shallow modular architecture, adopting both standard filter banks and filter banks learned in an unsupervised way. In our experiments on the CIFAR-10 and on the Caltech-101 datasets, enforcing sparsity constraints actually does not improve recognition performance. This has an important practical impact in image descriptor design, as enforcing these constraints can have a heavy computational cost.

Main points

cited: 88


Miquel Perello Nieto 2014-11-28