next up previous contents
Next: Receptive fields and functional Up: Summary of References Related Previous: DeepFace: Closing the Gap   Contents

Subsections

Receptive fields, binocular interaction and functional architecture in the cat's visual cortex [40]

Original Abstract

What chiefly distinguishes cerebral cortex from other parts of the central nervous system is the great diversity of its cell types and interconnexions. It would be astonishing if such a structure did not profoundly modify the response patterns of fibres coming into it. In the cat's visual cortex, the receptive field arrangements of single cells suggest that there is indeed a degree of complexity far exceeding anything yet seen at lower levels in the visual system. In a previous paper we described receptive fields of single cortical cells, observing responses to spots of light shone on one or both retinas (Hubel & Wiesel, 1959). In the present work this method is used to examine receptive fields of a more complex type (Part I) and to make additional observations on binocular interaction (Part II). This approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours. In the past, the technique of recording evoked slow waves has been used with great success in studies of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours. In the past, the technique of recording evoked slow waves has been used with great success in studies of functional anatomy. It was employed by Talbot & Marshall (1941) and by Thompson, Woolsey & Talbot (1950) for mapping out the visual cortex in the rabbit, cat, and monkey. Daniel & Whitteiidge (1959) have recently extended this work in the primate. Most of our present knowledge of retinotopic projections, binocular overlap, and the second visual area is based on these investigations. Yet the method of evoked potentials is valuable mainly for detecting behaviour common to large populations of neighbouring cells; it cannot differentiate functionally between areas of cortex smaller than about 1 mm 2. To overcome this difficulty a method has in recent years been developed for studying cells separately or in small groups during long micro-electrode penetrations through nervous tissue. Responses are correlated with cell location by reconstructing the electrode tracks from histological material. These techniques have been applied to the somatic sensory cortex of the cat and monkey in a remarkable series of studies by Mountcastle (1957) and Powell & Mountcastle (1959). Their results show that the approach is a powerful one, capable of revealing systems of organization not hinted at by the known morphology. In Part III of the present paper we use this method in studying the functional architecture of the visual cortex. It helped us attempt to explain on anatomical grounds how cortical receptive fields are built up.


next up previous contents
Next: Receptive fields and functional Up: Summary of References Related Previous: DeepFace: Closing the Gap   Contents
Miquel Perello Nieto 2014-11-28