**1**-
S. Amari,
*Differential-Geometrical Methods in Statistics*.

Springer-Verlag, 2nd ed., 1990. **2**-
S. Amari, ``Natural gradient works efficiently in learning,''
*Neural Computation*, vol. 10, no. 2, pp. 251-276, 1998. **3**-
H. Attias, ``Independent factor analysis,''
*Neural Computation*, vol. 11, no. 4, pp. 803-851, 1999. **4**-
H. B. Barlow, ``Cerebral cortex as model builder,'' in
*Models of the visual cortex*(D. Rose and V. G. Dobson, eds.), pp. 37-46, John Wiley & Sons, 1985. **5**-
A. Basilevsky,
*Statistical Factor Analysis and Related Methods: Theory and Applications*.

John Wiley & Sons, 1994. **6**- R. A. Baxter and J. J. Oliver, ``MDL and MML: Similarities and differences,'' Tech. Rep. TR 207, Department of Computer Science, Monash University, Australia, 1994.
**7**-
J. M. Bernardo and A. F. M. Smith,
*Bayesian Theory*.

Wiley, 1994. **8**-
C. M. Bishop,
*Neural Networks for Pattern Recognition*.

Clarendon Press, 1995. **9**-
C. M. Bishop, ``Bayesian PCA,'' in
*Advances in Neural Information Processing Systems 11, NIPS*98*, (Denver, Colorado, USA, Nov. 30-Dec. 5, 1998), pp. 382-388, The MIT Press, 1999. **10**-
C. M. Bishop, M. Svensén, and C. K. I. Williams, ``GTM: The generative
topographic mapping,''
*Neural Computation*, vol. 10, no. 1, pp. 215-234, 1998. **11**-
G. Boole,
*An Investigation of the Laws of Thought*.

Walton and Maberley, 1854. **12**-
T. Briegel and V. Tresp, ``Fisher scoring and a mixture of modes approach for
approximate inference and learning in nonlinear state space models,'' in
*Advances in Neural Information Processing Systems 11, NIPS*98*, (Denver, Colorado, USA, Nov. 30-Dec. 5, 1998), pp. 403-409, The MIT Press, 1999. **13**-
G. Burel, ``Blind separation of sources: A nonlinear neural algorithm,''
*Neural Networks*, vol. 5, no. 6, pp. 937-947, 1992. **14**-
J.-F. Cardoso, ``Multidimensional independent component analysis,'' in
*Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP'98*, (Seattle, Washington, USA, May 12-15), pp. 1941-1944, 1998. **15**-
G. J. Chaitin, ``On the length of programs for computing finite binary
sequences,''
*Journal of the ACM*, vol. 13, no. 4, pp. 547-569, 1966. **16**-
A. Cichocki, L. Zhang, S. Choi, and S. Amari, ``Nonlinear dynamic independent
component analysis using state-space and neural network models,'' in
*Proceedings of the First International Workshop on Independent Component Analysis and Signal Separation, ICA'99*, (Aussois, France, Jan. 11-15), pp. 99-104, 1999. **17**-
P. Comon, ``Independent component analysis -- a new concept?,''
*Signal Processing*, vol. 36, pp. 287-314, 1994. **18**-
T. M. Cover and J. A. Thomas,
*Elements of Information Theory*.

Wiley & Sons, 1991. **19**-
R. T. Cox, ``Probability, frequency and reasonable expectation,''
*American Journal of Physics*, vol. 14, no. 1, pp. 1-13, 1946. **20**-
G. Deco and W. Brauer, ``Nonlinear higher-order statistical decorrelation by
volume-conserving neural architecture,''
*Neural Networks*, vol. 8, no. 4, pp. 525-535, 1995. **21**-
A. P. Dempster, N. M. Laird, and D. B. Rubin, ``Maximum likelihood from
incomplete data via the EM algorithm,''
*Journal of the Royal Statistical Society (Series B)*, vol. 39, pp. 1-38, 1977. **22**-
D. C. Dennet,
*Consciousness Explained*.

Little, Brown and Co., 1991. **23**-
H. Dürer and T. Waschulzik, ``ESyNN -- a model to abstractly emulate
synchronization in neural networks,'' in
*Proceedings of the Ninth International Conference on Artificial Neural Networks, ICANN'99*, (Edinburgh, UK, Sep. 7-10), pp. 791-796, 1999. **24**-
R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H. J.
Reitboeck, ``Coherent oscillations: A mechanism of feature linking in the
visual cortex? Multiple electrode and correlation analyses in the cat,''
*Biological Cybernetics*, vol. 60, pp. 121-130, 1989. **25**-
B. Everitt, ed.,
*An Introduction to Latent Variable Models*.

Chapman and Hall, 1984. **26**-
D. J. Felleman and D. C. V. Essen, ``Distributed hierarchical processing in the
primate cerebral cortex,''
*Cerebral Cortex*, vol. 1, no. 1, pp. 1-47, 1991. **27**- W. T. Freeman, ``The generic viewpoint assumption in a Bayesian framework,'' in Knill and Richards [64], pp. 365-389, 1996.
**28**-
A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin,
*Bayesian Data Analysis*.

Chapman & Hall, 1995. **29**-
Z. Ghahramani and G. E. Hinton, ``Hierarchical non-linear factor analysis and
topographic maps,'' in
*Advances in Neural Information Processing Systems 10, NIPS*97*, (Denver, Colorado, USA, Dec. 1-6, 1997), pp. 486-492, The MIT Press, 1998. **30**-
Z. Ghahramani and G. E. Hinton, ``Variational learning for switching
state-space models,''
*Neural Computation*, vol. 12, no. 4, pp. 963-996, 2000. **31**-
Z. Ghahramani and S. T. Roweis, ``Learning nonlinear dynamical systems using an
EM algorithm,'' in
*Advances in Neural Information Processing Systems 11, NIPS*98*, (Denver, Colorado, USA, Nov. 30-Dec. 5, 1998), pp. 599-605, The MIT Press, 1999. **32**-
D. C. Gilbert, ``Circuitry, architecture, and functional dynamics of visual
cortex,''
*Cerebral Cortex*, vol. 3, no. 5, pp. 373-386, 1993. **33**-
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, eds.,
*Markov Chain Monte Carlo in Practice*.

Chapman & Hall, 1996. **34**-
M. Girolami,
*Self-Organising Neural Networks -- Independent Component Analysis and Blind Source Separation*.

Springer-Verlag, 1999. **35**-
R. L. Gorsuch,
*Factor Analysis*.

Lawrence Earlbaum Associates, 2nd ed., 1983. **36**-
C. M. Gray, ``Synchronous oscillations in neuronal systems, mechanisms and
functions,''
*Journal of Computational Neuroscience*, vol. 1, pp. 11-39, 1994. **37**-
C. M. Gray and W. Singer, ``Stimulus-specific neuronal oscillations in
orientation columns of cat visual cortex,''
*Proc. Natl. Acad. Sci*, vol. 86, pp. 1698-1702, 1989. **38**-
M. S. Grewal and A. P. Andrews,
*Kalman Filtering*.

Prentice-Hall, 1993. **39**-
S. Haykin,
*Neural Networks -- A Comprehensive Foundation*.

Prentice Hall, 2nd ed., 1998. **40**-
R. Hecht-Nielsen, ``Replicator neural networks for universal optimal source
coding,''
*Science*, vol. 269, pp. 1860-1863, 1995. **41**-
R. Herken, ed.,
*The Universal Turing Machine: a Half-Century Survey*.

Oxford University Press, 1988. **42**-
M. Herrmann and H. H. Yang, ``Perspectives and limitations of self-organising
maps in blind separation of source signals,'' in
*Progress in Neural Information Processing, Proc. ICONIP'96*, (Wan Chai, Hong Kong, Sep. 24-27), pp. 1211-1216, Springer-Verlag, 1996. **43**-
G. E. Hinton and T. J. Sejnowski, eds.,
*Unsupervised Learning: Foundations of Neural Computation*.

Computational Neuroscience Series, The MIT Press, 1999. **44**-
G. E. Hinton and D. van Camp, ``Keeping neural networks simple by minimizing
the description length of the weights,'' in
*Proceedings of the COLT'93*, (Santa Cruz, California, USA, July 26-28), pp. 5-13, 1993. **45**-
S. Hochreiter and M. C. Mozer, ``An electric field approach to independent
component analysis,'' in
*Proceedings of the Second International Workshop on Independent Component Analysis and Blind Signal Separation, ICA 2000*, (Helsinki, Finland, June 19-22), pp. 45-50, 2000. **46**-
S. Hochreiter and J. Schmidhuber, ``Flat minima,''
*Neural Computation*, vol. 9, no. 1, pp. 1-42, 1997. **47**-
S. Hochreiter and J. Schmidhuber, ``Feature extraction through LOCOCODE,''
*Neural Computation*, vol. 11, no. 3, pp. 679-714, 1999. **48**-
S. Hochreiter and J. Schmidhuber, ``LOCOCODE performs nonlinear ICA without
knowing the number of sources,'' in
*Proceedings of the First International Workshop on Independent Component Analysis and Signal Separation, ICA'99*, (Aussois, France, Jan. 11-15), pp. 149-154, 1999. **49**-
K. Hornik, M. Stinchcombe, and H. White, ``Multilayer feedforward networks are
universal approximators,''
*Neural Networks*, vol. 2, no. 5, pp. 359-366, 1989. **50**-
J.-M. Hupé, A. C. J. B. R. Payne, , S. G. Lomber, P. Girard, and J. Bullier,
``Cortical feedback improves discrimination between figure and background by
v1, v2 and v3 neurons,''
*Nature*, vol. 394, pp. 784-787, 1998. **51**-
A. Hyvärinen, ``Fast and robust fixed-point algorithms for independent
component analysis,''
*IEEE Transactions on Neural Networks*, vol. 10, no. 3, pp. 626-634, 1999. **52**-
A. Hyvärinen, ``Survey on independent component analysis,''
*Neural Computing Surveys*, vol. 2, pp. 94-128, 1999. **53**-
A. Hyvärinen and P. O. Hoyer, ``Emergence of phase and shift invariant features
by decomposition of natural images into independent feature subspaces,''
*Neural Computation*, vol. 12, no. 7, pp. 1705-1720, 2000. **54**-
A. Hyvärinen and P. O. Hoyer, ``Emergence of topography and complex cell
properties from natural images using extensions of ICA,'' in
*Advances in Neural Information Processing Systems 12, NIPS*99*, (Denver, Colorado, USA, Nov. 29 - Dec. 4, 1999), pp. 827-833, The MIT Press, 2000. **55**-
A. Hyvärinen and E. Oja, ``A fast fixed-point algorithm for independent
component analysis,''
*Neural Computation*, vol. 9, no. 7, pp. 1483-1492, 1997. **56**-
A. Hyvärinen, J. Särelä, and R. Vigário, ``Bumps and spikes: Artifacts
generated by independent component analysis with insufficient sample size,''
in
*Proceedings of the First International Workshop on Independent Component Analysis and Signal Separation, ICA'99*, (Aussois, France, Jan. 11-15), pp. 425-429, 1999. **57**-
E. T. Jaynes, ``Probability theory: The logic of science.'' Available from
`http://bayes.wustl.edu/etj/prob.html`, 1996. **58**-
I. T. Jolliffe,
*Principal Component Analysis*.

Springer-Verlag, 1986. **59**-
M. I. Jordan, ed.,
*Learning in Graphical Models*.

The MIT Press, 1999. **60**- M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, ``An introduction to variational methods for graphical models,'' in Jordan [59], pp. 105-161, 1999.
**61**-
C. Jutten and J. Herault, ``Blind separation of sources, part I: An
adaptive algorithm based on neuromimetic architecture,''
*Signal Processing*, vol. 24, pp. 1-10, 1991. **62**-
E. R. Kandel, J. H. Schwartz, and T. M. Jessell, eds.,
*Principles of Neural Science*.

Elsevier, 3rd ed., 1991. **63**-
M. Kendall,
*Multivariate Analysis*.

Charles Griffin & Co., 1975. **64**-
D. C. Knill and W. Richards, eds.,
*Perception as Bayesian Inference*.

Cambridge University Press, 1996. **65**-
T. Kohonen,
*Self-Organizing Maps*.

Springer-Verlag, 2nd, extended ed., 1997. **66**-
T. Kohonen, S. Kaski, and H. Lappalainen, ``Self-organized formation of various
invariant-feature filters in the Adaptive-Subspace SOM,''
*Neural Computation*, vol. 9, no. 6, pp. 1321-1344, 1997. **67**-
A. N. Kolmogorov, ``Three approaches to the quantitative definition of
information,''
*Problems of Information Transmission*, vol. 1, pp. 1-17, 1965.

Translated from Problemy Peredachi Informatsii (in Russian). **68**-
S. M. Kosslyn, W. L. Thompson, I. J. Kim, and N. M. Alpert, ``Topographical
representations of mental images in primary visual cortex,''
*Nature*, vol. 378, pp. 496-498, 1995. **69**-
S. W. Kuffler, J. G. Nicholls, and A. R. Martin,
*From Neuron to Brain*.

Sinauer Associates Inc. Publishers, 2nd ed., 1984. **70**-
S. Kullback and R. A. Leibler, ``On information and sufficiency,''
*The Annals of Mathematical Statistics*, vol. 22, pp. 79-86, 1951. **71**-
P. S. Laplace, ``Mémoire sur la probabilité des causes par les événements,''
*Mémoires de l'Académie Royale des Sciences*, vol. 6, pp. 621-656, 1774.

English translation in [123]. **72**- H. Lappalainen, ``Fast fixed-point algorithms for Bayesian blind source separation,'' Publications in Computer and Information Science A56, Helsinki University of Technology, Espoo, Finland, 1999.
**73**-
S. Lauritzen, ed.,
*Graphical Models*.

Oxford University Press, 1996. **74**-
D. D. Lee and H. S. Seung, ``Unsupervised learning by convex and conic
coding,'' in
*Advances in Neural Information Processing Systems 9, NIPS*96*, (Denver, Colorado, USA, Nov. 2-5, 1996), pp. 515-521, The MIT Press, 1997. **75**-
P. M. Lee,
*Bayesian Statistics: An Introduction*.

Oxford University Press, 1989. **76**-
T.-W. Lee,
*Independent Component Analysis -- Theory and Applications*.

Kluwer, 1998. **77**-
L. A. Levin, ``Universal sequential search problems,''
*Problems of Information Transmission*, vol. 9, no. 3, pp. 256-266, 1973. **78**-
M. Li and P. M. B. Vitányi,
*An Introduction to Kolmogorov Complexity and its Applications*.

Springer-Verlag, 2nd, extended ed., 1997. **79**-
J. K. Lin, D. Grier, and J. D. Cowan, ``Faithful representation of separable
input distribution,''
*Neural Computation*, vol. 9, no. 6, pp. 1305-1320, 1997. **80**-
W. Maass and C. M. Bishop, eds.,
*Pulsed Neural Networks*.

The MIT Press, 1999. **81**-
D. J. C. MacKay, ``A practical Bayesian framework for backpropagation
networks,''
*Neural Computation*, vol. 4, no. 3, pp. 448-472, 1992. **82**-
D. J. C. MacKay, ``Developments in probabilistic modelling with neural
networks--ensemble learning,'' in
*Neural Networks: Artificial Intelligence and Industrial Applications. Proceedings of the 3rd Annual Symposium on Neural Networks*, (Nijmegen, Netherlands, Sep. 14-15), pp. 191-198, Springer-Verlag, 1995. **83**-
D. J. C. MacKay, ``Ensemble learning for hidden Markov models.'' Available
from
`http://wol.ra.phy.cam.ac.uk/`, 1997. **84**-
D. J. C. MacKay, ``Choice of basis for laplace approximation,''
*Machine Learning*, vol. 33, no. 1, pp. 77-86, 1998. **85**-
D. J. C. MacKay and M. N. Gibbs, ``Density networks,'' in
*Proceedings of Society for General Microbiology Edinburgh Meeting*, 1997. **86**-
G. C. Marques and L. B. Almeida, ``An objective function for independence,'' in
*Proceedings of the International Conference on Neural Networks, ICNN'96*, (Washington, DC, USA, June 3-6), pp. 453-457, 1996. **87**-
G. C. Marques and L. B. Almeida, ``Separation of nonlinear mixtures using
pattern repulsion,'' in
**88**-
P. S. Maybeck,
*Stochastic Models, Estimation, and Control*, vol. 1.

Academic Press, 1979. **89**-
G. J. McLachlan and K. E. Basford,
*Mixture Models. Inference and Applications to Clustering*.

Marcel Dekker, 1988. **90**-
J. Moody and C. Darken, ``Fast learning in networks of locally-tuned processing
units,''
*Neural Computation*, vol. 1, no. 2, pp. 281-294, 1989. **91**-
R. M. Neal, ``Connectionist learning of belief networks,''
*Artificial Intelligence*, vol. 56, no. 1, pp. 71-113, 1992. **92**-
R. M. Neal,
*Bayesian Learning for Neural Networks*.

No. 118 in Lecture Notes in Statistics, Springer-Verlag, 1996. **93**- R. M. Neal and G. E. Hinton, ``A view of the EM algorithm that justifies incremental, sparse, and other variants,'' in Jordan [59], pp. 355-368, 1999.
**94**-
J.-H. Oh and H. S. Seung, ``Learning generative models with the up-propagation
algorithm,'' in
*Advances in Neural Information Processing Systems 10, NIPS*97*, (Denver, Colorado, USA, Dec. 1-6, 1997), pp. 605-611, The MIT Press, 1998. **95**-
E. Oja, ``The nonlinear PCA learning rule in independent component
analysis,''
*Neurocomputing*, vol. 17, no. 1, pp. 25-46, 1997. **96**- J. J. Oliver and R. A. Baxter, ``MML and Bayesianism: Similarities and differences,'' Tech. Rep. TR 206, Department of Computer Science, Monash University, Australia, 1994.
**97**- J. J. Oliver and D. J. Hand, ``Introduction to minimum encoding inference,'' Tech. Rep. TR 205, Department of Computer Science, Monash University, Australia, 1994.
**98**-
P. Pajunen, ``Nonlinear independent component analysis by self-organizing
maps,'' in
*Proceedings of the Sixth International Conference on Artificial Neural Networks, ICANN'96*, (Bochum, Germany, July 16-19), pp. 815-819, 1996. **99**-
P. Pajunen, ``Blind source separation using algorithmic information theory,''
*Neurocomputing*, vol. 22, pp. 35-48, 1998. **100**-
P. Pajunen and J. Karhunen, ``A maximum likelihood approach to nonlinear blind
source separation,'' in
*Proceedings of the Seventh International Conference on Artificial Neural Networks, ICANN'97*, (Lausanne, Switzerland, Oct. 8-10), pp. 541-546, 1997. **101**-
J. Pearl,
*Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference*.

Morgan-Kaufman, 1988. **102**-
J. W. Pratt, H. Raiffa, and R. O. Schlaifer,
*Introduction to Statistical Decision Theory*.

The MIT Press, 1995. **103**-
S. J. Press,
*Bayesian Statistics: Principles, Models, and Applications*.

Wiley, 1989. **104**-
P. Rakic and W. Singer, eds.,
*Neurobiology of Neocortex*.

John Wiley & Sons, 1988. **105**-
R. P. N. Rao and D. H. Ballard, ``Kalman filter model of the visual cortex,''
*Neural Computation*, vol. 9, no. 4, pp. 721-763, 1997. **106**-
J. Rissanen, ``Modeling by shortest data description,''
*Automatica*, vol. 14, no. 5, pp. 465-471, 1978. **107**-
J. Rissanen, ``Fisher information and stochastic complexity,''
*IEEE Transactions on Information Theory*, vol. 42, no. 1, pp. 40-47, 1996. **108**-
J. Rissanen and G. G. Langdon, Jr., ``Arithmetic coding,''
*IBM Journal of Research and Development*, vol. 23, no. 2, pp. 149-162, 1979. **109**-
J. Rissanen and G. G. Langdon, Jr., ``Universal modeling and coding,''
*IEEE Transactions on Information Theory*, vol. 27, pp. 12-23, 1981. **110**-
D. Rubin and D. Thayer, ``EM algorithms for factor analysis,''
*Psychometrika*, vol. 47, pp. 69-76, 1982. **111**-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ``Learning internal
representations by error backpropagation,'' in
*Parallel distributed processing*(D. E. Rumelhart and J. L. McClelland, eds.), vol. 1, pp. 318-362, The MIT Press, 1986. **112**-
S. Russell and P. Norvig,
*Artificial Intelligence: A Modern Approach*.

Prentice-Hall, 1995. **113**-
L. K. Saul, T. Jaakkola, and M. I. Jordan, ``Mean field theory for sigmoid
belief networks,''
*Journal of Artificial Intelligence Research*, vol. 4, pp. 61-76, 1996. **114**-
L. J. Savage,
*The Foundations of Statistics*.

Dover Publications, 1954. **115**-
M. J. Schervish,
*Theory of Statistics*.

Springer-Verlag, 1995. **116**-
J. Schmidhuber, ``Discovering neural nets with low Kolmogorov complexity and
high generalization capability,''
*Neural Networks*, vol. 10, no. 5, pp. 857-873, 1997. **117**-
C. E. Shannon, ``A mathematical theory of communication,''
*Bell System Technical Journal*, vol. 27, pp. 379-423 and 623-656, 1948. **118**-
R. H. Shumway and D. S. Stoffer, ``An approach to time series smoothing and
forecasting using the EM algorithm,''
*Journal of Time Series Analysis*, vol. 3, no. 4, pp. 253-264, 1982. **119**-
R. J. Solomonoff, ``A formal theory of inductive inference. Part I,''
*Information and Control*, vol. 7, no. 1, pp. 1-22, 1964. **120**-
R. J. Solomonoff, ``A formal theory of inductive inference. Part II,''
*Information and Control*, vol. 7, no. 2, pp. 224-254, 1964. **121**-
H. W. Sorenson, ed.,
*Kalman Filtering: Theory and Application*.

IEEE Press, 1985. **122**-
C. Spearman, ````General intelligence,'' objectively determined and
measured,''
*American Journal of Psychology*, vol. 15, pp. 201-293, 1904. **123**-
S. M. Stigler, ``Translation of Laplace's 1774 memoir on ``Probability of
causes'',''
*Statistical Science*, vol. 1, no. 3, pp. 359-378, 1986. **124**-
R. S. Sutton and A. G. Barto,
*Reinforcement Learning: An Introduction*.

The MIT Press, 1998. **125**-
A. Taleb and C. Jutten, ``Nonlinear source separation: The post-nonlinear
mixtures,'' in
*Proceedings of the European Symposium on Artificial Neural Networks, ESANN'97*, (Bruges, Belgium, Apr. 16-18), pp. 279-284, 1997. **126**-
A. Taleb and C. Jutten, ``Source separation in post-nonlinear mixtures,''
*IEEE Transactions on Signal Processing*, vol. 47, no. 10, pp. 2807-2820, 1999. **127**-
K. Tanaka, ``Inferotemporal cortex and object vision,''
*Annual Reviews in Neuroscience*, vol. 10, pp. 109-139, 1996. **128**-
H. Valpola, X. Giannakopoulos, A. Honkela, and J. Karhunen, ``Nonlinear
independent component analysis using ensemble learning: Experiments and
discussion,'' in
*Proceedings of the Second International Workshop on Independent Component Analysis and Blind Signal Separation, ICA 2000*, (Helsinki, Finland, June 19-22), pp. 351-356, 2000. **129**-
A. Wald,
*Statistical Decision Functions*.

Wiley, 1950. **130**-
C. S. Wallace and D. M. Boulton, ``An information measure for classification,''
*Computer Journal*, vol. 11, no. 2, pp. 185-194, 1968. **131**-
C. S. Wallace and P. R. Freeman, ``Estimation and inference by compact
coding,''
*Journal of the Royal Statistical Society (Series B)*, vol. 49, no. 3, pp. 240-265, 1987. **132**-
J. E. Whitesitt,
*Boolean Algebra and Its Applications*.

Dover Publications, 1995. **133**-
R. R. Yager and L. A. Zadeh,
*An Introduction to Fuzzy Logic Applications in Intelligent Systems*.

Kluwer Academic Publishers, 1992. **134**-
H. H. Yang, S. Amari, and A. Cichocki, ``Information back-propagation for blind
separation of sources from non-linear mixtures,'' in
*Proceedings of the International Conference on Neural Networks, ICNN'97*, (Houston, Texas, USA, June 9-12), 1997. **135**-
H. H. Yang, S. Amari, and A. Cichocki, ``Information-theoretic approach to
blind separation of sources in non-linear mixture,''
*Signal Processing*, vol. 64, pp. 291-300, 1998. **136**-
L. Zadeh, ``Fuzzy sets,''
*Information and Control*, vol. 8, pp. 338-353, 1965.