Next: About this document ...
Up: Bayesian Ensemble Learning for
Previous: Future trends
- 1
-
S. Amari, Differential-Geometrical Methods in Statistics.
Springer-Verlag, 2nd ed., 1990.
- 2
-
S. Amari, ``Natural gradient works efficiently in learning,'' Neural
Computation, vol. 10, no. 2, pp. 251-276, 1998.
- 3
-
H. Attias, ``Independent factor analysis,'' Neural Computation, vol. 11,
no. 4, pp. 803-851, 1999.
- 4
-
H. B. Barlow, ``Cerebral cortex as model builder,'' in Models of the
visual cortex (D. Rose and V. G. Dobson, eds.), pp. 37-46, John Wiley &
Sons, 1985.
- 5
-
A. Basilevsky, Statistical Factor Analysis and Related Methods: Theory and
Applications.
John Wiley & Sons, 1994.
- 6
-
R. A. Baxter and J. J. Oliver, ``MDL and MML: Similarities and
differences,'' Tech. Rep. TR 207, Department of Computer Science, Monash
University, Australia, 1994.
- 7
-
J. M. Bernardo and A. F. M. Smith, Bayesian Theory.
Wiley, 1994.
- 8
-
C. M. Bishop, Neural Networks for Pattern Recognition.
Clarendon Press, 1995.
- 9
-
C. M. Bishop, ``Bayesian PCA,'' in Advances in Neural Information
Processing Systems 11, NIPS*98, (Denver, Colorado, USA, Nov. 30-Dec. 5,
1998), pp. 382-388, The MIT Press, 1999.
- 10
-
C. M. Bishop, M. Svensén, and C. K. I. Williams, ``GTM: The generative
topographic mapping,'' Neural Computation, vol. 10, no. 1,
pp. 215-234, 1998.
- 11
-
G. Boole, An Investigation of the Laws of Thought.
Walton and Maberley, 1854.
- 12
-
T. Briegel and V. Tresp, ``Fisher scoring and a mixture of modes approach for
approximate inference and learning in nonlinear state space models,'' in Advances in Neural Information Processing Systems 11, NIPS*98, (Denver,
Colorado, USA, Nov. 30-Dec. 5, 1998), pp. 403-409, The MIT Press, 1999.
- 13
-
G. Burel, ``Blind separation of sources: A nonlinear neural algorithm,'' Neural Networks, vol. 5, no. 6, pp. 937-947, 1992.
- 14
-
J.-F. Cardoso, ``Multidimensional independent component analysis,'' in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP'98,
(Seattle, Washington, USA, May 12-15), pp. 1941-1944, 1998.
- 15
-
G. J. Chaitin, ``On the length of programs for computing finite binary
sequences,'' Journal of the ACM, vol. 13, no. 4, pp. 547-569, 1966.
- 16
-
A. Cichocki, L. Zhang, S. Choi, and S. Amari, ``Nonlinear dynamic independent
component analysis using state-space and neural network models,'' in Proceedings of the First International Workshop on Independent Component
Analysis and Signal Separation, ICA'99, (Aussois, France, Jan. 11-15),
pp. 99-104, 1999.
- 17
-
P. Comon, ``Independent component analysis -- a new concept?,'' Signal
Processing, vol. 36, pp. 287-314, 1994.
- 18
-
T. M. Cover and J. A. Thomas, Elements of Information Theory.
Wiley & Sons, 1991.
- 19
-
R. T. Cox, ``Probability, frequency and reasonable expectation,'' American
Journal of Physics, vol. 14, no. 1, pp. 1-13, 1946.
- 20
-
G. Deco and W. Brauer, ``Nonlinear higher-order statistical decorrelation by
volume-conserving neural architecture,'' Neural Networks, vol. 8,
no. 4, pp. 525-535, 1995.
- 21
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, ``Maximum likelihood from
incomplete data via the EM algorithm,'' Journal of the Royal
Statistical Society (Series B), vol. 39, pp. 1-38, 1977.
- 22
-
D. C. Dennet, Consciousness Explained.
Little, Brown and Co., 1991.
- 23
-
H. Dürer and T. Waschulzik, ``ESyNN -- a model to abstractly emulate
synchronization in neural networks,'' in Proceedings of the Ninth
International Conference on Artificial Neural Networks, ICANN'99,
(Edinburgh, UK, Sep. 7-10), pp. 791-796, 1999.
- 24
-
R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H. J.
Reitboeck, ``Coherent oscillations: A mechanism of feature linking in the
visual cortex? Multiple electrode and correlation analyses in the cat,''
Biological Cybernetics, vol. 60, pp. 121-130, 1989.
- 25
-
B. Everitt, ed., An Introduction to Latent Variable Models.
Chapman and Hall, 1984.
- 26
-
D. J. Felleman and D. C. V. Essen, ``Distributed hierarchical processing in the
primate cerebral cortex,'' Cerebral Cortex, vol. 1, no. 1, pp. 1-47,
1991.
- 27
-
W. T. Freeman, ``The generic viewpoint assumption in a Bayesian framework,''
in Knill and Richards [64], pp. 365-389, 1996.
- 28
-
A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data
Analysis.
Chapman & Hall, 1995.
- 29
-
Z. Ghahramani and G. E. Hinton, ``Hierarchical non-linear factor analysis and
topographic maps,'' in Advances in Neural Information Processing
Systems 10, NIPS*97, (Denver, Colorado, USA, Dec. 1-6, 1997), pp. 486-492,
The MIT Press, 1998.
- 30
-
Z. Ghahramani and G. E. Hinton, ``Variational learning for switching
state-space models,'' Neural Computation, vol. 12, no. 4, pp. 963-996,
2000.
- 31
-
Z. Ghahramani and S. T. Roweis, ``Learning nonlinear dynamical systems using an
EM algorithm,'' in Advances in Neural Information Processing
Systems 11, NIPS*98, (Denver, Colorado, USA, Nov. 30-Dec. 5, 1998),
pp. 599-605, The MIT Press, 1999.
- 32
-
D. C. Gilbert, ``Circuitry, architecture, and functional dynamics of visual
cortex,'' Cerebral Cortex, vol. 3, no. 5, pp. 373-386, 1993.
- 33
-
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, eds., Markov Chain
Monte Carlo in Practice.
Chapman & Hall, 1996.
- 34
-
M. Girolami, Self-Organising Neural Networks -- Independent Component
Analysis and Blind Source Separation.
Springer-Verlag, 1999.
- 35
-
R. L. Gorsuch, Factor Analysis.
Lawrence Earlbaum Associates, 2nd ed., 1983.
- 36
-
C. M. Gray, ``Synchronous oscillations in neuronal systems, mechanisms and
functions,'' Journal of Computational Neuroscience, vol. 1, pp. 11-39,
1994.
- 37
-
C. M. Gray and W. Singer, ``Stimulus-specific neuronal oscillations in
orientation columns of cat visual cortex,'' Proc. Natl. Acad. Sci,
vol. 86, pp. 1698-1702, 1989.
- 38
-
M. S. Grewal and A. P. Andrews, Kalman Filtering.
Prentice-Hall, 1993.
- 39
-
S. Haykin, Neural Networks -- A Comprehensive Foundation.
Prentice Hall, 2nd ed., 1998.
- 40
-
R. Hecht-Nielsen, ``Replicator neural networks for universal optimal source
coding,'' Science, vol. 269, pp. 1860-1863, 1995.
- 41
-
R. Herken, ed., The Universal Turing Machine: a Half-Century Survey.
Oxford University Press, 1988.
- 42
-
M. Herrmann and H. H. Yang, ``Perspectives and limitations of self-organising
maps in blind separation of source signals,'' in Progress in Neural
Information Processing, Proc. ICONIP'96, (Wan Chai, Hong Kong, Sep. 24-27),
pp. 1211-1216, Springer-Verlag, 1996.
- 43
-
G. E. Hinton and T. J. Sejnowski, eds., Unsupervised Learning: Foundations
of Neural Computation.
Computational Neuroscience Series, The MIT Press, 1999.
- 44
-
G. E. Hinton and D. van Camp, ``Keeping neural networks simple by minimizing
the description length of the weights,'' in Proceedings of the COLT'93,
(Santa Cruz, California, USA, July 26-28), pp. 5-13, 1993.
- 45
-
S. Hochreiter and M. C. Mozer, ``An electric field approach to independent
component analysis,'' in Proceedings of the Second International
Workshop on Independent Component Analysis and Blind Signal Separation, ICA
2000, (Helsinki, Finland, June 19-22), pp. 45-50, 2000.
- 46
-
S. Hochreiter and J. Schmidhuber, ``Flat minima,'' Neural Computation,
vol. 9, no. 1, pp. 1-42, 1997.
- 47
-
S. Hochreiter and J. Schmidhuber, ``Feature extraction through LOCOCODE,''
Neural Computation, vol. 11, no. 3, pp. 679-714, 1999.
- 48
-
S. Hochreiter and J. Schmidhuber, ``LOCOCODE performs nonlinear ICA without
knowing the number of sources,'' in Proceedings of the First
International Workshop on Independent Component Analysis and Signal
Separation, ICA'99, (Aussois, France, Jan. 11-15), pp. 149-154, 1999.
- 49
-
K. Hornik, M. Stinchcombe, and H. White, ``Multilayer feedforward networks are
universal approximators,'' Neural Networks, vol. 2, no. 5,
pp. 359-366, 1989.
- 50
-
J.-M. Hupé, A. C. J. B. R. Payne, , S. G. Lomber, P. Girard, and J. Bullier,
``Cortical feedback improves discrimination between figure and background by
v1, v2 and v3 neurons,'' Nature, vol. 394, pp. 784-787, 1998.
- 51
-
A. Hyvärinen, ``Fast and robust fixed-point algorithms for independent
component analysis,'' IEEE Transactions on Neural Networks, vol. 10,
no. 3, pp. 626-634, 1999.
- 52
-
A. Hyvärinen, ``Survey on independent component analysis,'' Neural
Computing Surveys, vol. 2, pp. 94-128, 1999.
- 53
-
A. Hyvärinen and P. O. Hoyer, ``Emergence of phase and shift invariant features
by decomposition of natural images into independent feature subspaces,'' Neural Computation, vol. 12, no. 7, pp. 1705-1720, 2000.
- 54
-
A. Hyvärinen and P. O. Hoyer, ``Emergence of topography and complex cell
properties from natural images using extensions of ICA,'' in Advances
in Neural Information Processing Systems 12, NIPS*99, (Denver, Colorado,
USA, Nov. 29 - Dec. 4, 1999), pp. 827-833, The MIT Press, 2000.
- 55
-
A. Hyvärinen and E. Oja, ``A fast fixed-point algorithm for independent
component analysis,'' Neural Computation, vol. 9, no. 7,
pp. 1483-1492, 1997.
- 56
-
A. Hyvärinen, J. Särelä, and R. Vigário, ``Bumps and spikes: Artifacts
generated by independent component analysis with insufficient sample size,''
in Proceedings of the First International Workshop on Independent
Component Analysis and Signal Separation, ICA'99, (Aussois, France,
Jan. 11-15), pp. 425-429, 1999.
- 57
-
E. T. Jaynes, ``Probability theory: The logic of science.'' Available from http://bayes.wustl.edu/etj/prob.html, 1996.
- 58
-
I. T. Jolliffe, Principal Component Analysis.
Springer-Verlag, 1986.
- 59
-
M. I. Jordan, ed., Learning in Graphical Models.
The MIT Press, 1999.
- 60
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, ``An introduction
to variational methods for graphical models,'' in Jordan [59],
pp. 105-161, 1999.
- 61
-
C. Jutten and J. Herault, ``Blind separation of sources, part I: An
adaptive algorithm based on neuromimetic architecture,'' Signal
Processing, vol. 24, pp. 1-10, 1991.
- 62
-
E. R. Kandel, J. H. Schwartz, and T. M. Jessell, eds., Principles of
Neural Science.
Elsevier, 3rd ed., 1991.
- 63
-
M. Kendall, Multivariate Analysis.
Charles Griffin & Co., 1975.
- 64
-
D. C. Knill and W. Richards, eds., Perception as Bayesian Inference.
Cambridge University Press, 1996.
- 65
-
T. Kohonen, Self-Organizing Maps.
Springer-Verlag, 2nd, extended ed., 1997.
- 66
-
T. Kohonen, S. Kaski, and H. Lappalainen, ``Self-organized formation of various
invariant-feature filters in the Adaptive-Subspace SOM,'' Neural
Computation, vol. 9, no. 6, pp. 1321-1344, 1997.
- 67
-
A. N. Kolmogorov, ``Three approaches to the quantitative definition of
information,'' Problems of Information Transmission, vol. 1, pp. 1-17,
1965.
Translated from Problemy Peredachi Informatsii (in Russian).
- 68
-
S. M. Kosslyn, W. L. Thompson, I. J. Kim, and N. M. Alpert, ``Topographical
representations of mental images in primary visual cortex,'' Nature,
vol. 378, pp. 496-498, 1995.
- 69
-
S. W. Kuffler, J. G. Nicholls, and A. R. Martin, From Neuron to Brain.
Sinauer Associates Inc. Publishers, 2nd ed., 1984.
- 70
-
S. Kullback and R. A. Leibler, ``On information and sufficiency,'' The
Annals of Mathematical Statistics, vol. 22, pp. 79-86, 1951.
- 71
-
P. S. Laplace, ``Mémoire sur la probabilité des causes par les événements,''
Mémoires de l'Académie Royale des Sciences, vol. 6, pp. 621-656, 1774.
English translation in [123].
- 72
-
H. Lappalainen, ``Fast fixed-point algorithms for Bayesian blind source
separation,'' Publications in Computer and Information Science A56, Helsinki
University of Technology, Espoo, Finland, 1999.
- 73
-
S. Lauritzen, ed., Graphical Models.
Oxford University Press, 1996.
- 74
-
D. D. Lee and H. S. Seung, ``Unsupervised learning by convex and conic
coding,'' in Advances in Neural Information Processing Systems 9,
NIPS*96, (Denver, Colorado, USA, Nov. 2-5, 1996), pp. 515-521, The MIT
Press, 1997.
- 75
-
P. M. Lee, Bayesian Statistics: An Introduction.
Oxford University Press, 1989.
- 76
-
T.-W. Lee, Independent Component Analysis -- Theory and Applications.
Kluwer, 1998.
- 77
-
L. A. Levin, ``Universal sequential search problems,'' Problems of
Information Transmission, vol. 9, no. 3, pp. 256-266, 1973.
- 78
-
M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and
its Applications.
Springer-Verlag, 2nd, extended ed., 1997.
- 79
-
J. K. Lin, D. Grier, and J. D. Cowan, ``Faithful representation of separable
input distribution,'' Neural Computation, vol. 9, no. 6,
pp. 1305-1320, 1997.
- 80
-
W. Maass and C. M. Bishop, eds., Pulsed Neural Networks.
The MIT Press, 1999.
- 81
-
D. J. C. MacKay, ``A practical Bayesian framework for backpropagation
networks,'' Neural Computation, vol. 4, no. 3, pp. 448-472, 1992.
- 82
-
D. J. C. MacKay, ``Developments in probabilistic modelling with neural
networks--ensemble learning,'' in Neural Networks: Artificial
Intelligence and Industrial Applications. Proceedings of the 3rd Annual
Symposium on Neural Networks, (Nijmegen, Netherlands, Sep. 14-15),
pp. 191-198, Springer-Verlag, 1995.
- 83
-
D. J. C. MacKay, ``Ensemble learning for hidden Markov models.'' Available
from http://wol.ra.phy.cam.ac.uk/, 1997.
- 84
-
D. J. C. MacKay, ``Choice of basis for laplace approximation,'' Machine
Learning, vol. 33, no. 1, pp. 77-86, 1998.
- 85
-
D. J. C. MacKay and M. N. Gibbs, ``Density networks,'' in Proceedings of
Society for General Microbiology Edinburgh Meeting, 1997.
- 86
-
G. C. Marques and L. B. Almeida, ``An objective function for independence,'' in
Proceedings of the International Conference on Neural Networks,
ICNN'96, (Washington, DC, USA, June 3-6), pp. 453-457, 1996.
- 87
-
G. C. Marques and L. B. Almeida, ``Separation of nonlinear mixtures using
pattern repulsion,'' in Proceedings of the First International Workshop
on Independent Component Analysis and Signal Separation, ICA'99, (Aussois,
France, Jan. 11-15), pp. 277-282, 1999.
- 88
-
P. S. Maybeck, Stochastic Models, Estimation, and Control, vol. 1.
Academic Press, 1979.
- 89
-
G. J. McLachlan and K. E. Basford, Mixture Models. Inference and
Applications to Clustering.
Marcel Dekker, 1988.
- 90
-
J. Moody and C. Darken, ``Fast learning in networks of locally-tuned processing
units,'' Neural Computation, vol. 1, no. 2, pp. 281-294, 1989.
- 91
-
R. M. Neal, ``Connectionist learning of belief networks,'' Artificial
Intelligence, vol. 56, no. 1, pp. 71-113, 1992.
- 92
-
R. M. Neal, Bayesian Learning for Neural Networks.
No. 118 in Lecture Notes in Statistics, Springer-Verlag, 1996.
- 93
-
R. M. Neal and G. E. Hinton, ``A view of the EM algorithm that justifies
incremental, sparse, and other variants,'' in Jordan [59],
pp. 355-368, 1999.
- 94
-
J.-H. Oh and H. S. Seung, ``Learning generative models with the up-propagation
algorithm,'' in Advances in Neural Information Processing Systems 10,
NIPS*97, (Denver, Colorado, USA, Dec. 1-6, 1997), pp. 605-611, The MIT
Press, 1998.
- 95
-
E. Oja, ``The nonlinear PCA learning rule in independent component
analysis,'' Neurocomputing, vol. 17, no. 1, pp. 25-46, 1997.
- 96
-
J. J. Oliver and R. A. Baxter, ``MML and Bayesianism: Similarities and
differences,'' Tech. Rep. TR 206, Department of Computer Science, Monash
University, Australia, 1994.
- 97
-
J. J. Oliver and D. J. Hand, ``Introduction to minimum encoding inference,''
Tech. Rep. TR 205, Department of Computer Science, Monash University,
Australia, 1994.
- 98
-
P. Pajunen, ``Nonlinear independent component analysis by self-organizing
maps,'' in Proceedings of the Sixth International Conference on
Artificial Neural Networks, ICANN'96, (Bochum, Germany, July 16-19),
pp. 815-819, 1996.
- 99
-
P. Pajunen, ``Blind source separation using algorithmic information theory,''
Neurocomputing, vol. 22, pp. 35-48, 1998.
- 100
-
P. Pajunen and J. Karhunen, ``A maximum likelihood approach to nonlinear blind
source separation,'' in Proceedings of the Seventh International
Conference on Artificial Neural Networks, ICANN'97, (Lausanne, Switzerland,
Oct. 8-10), pp. 541-546, 1997.
- 101
-
J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.
Morgan-Kaufman, 1988.
- 102
-
J. W. Pratt, H. Raiffa, and R. O. Schlaifer, Introduction to Statistical
Decision Theory.
The MIT Press, 1995.
- 103
-
S. J. Press, Bayesian Statistics: Principles, Models, and Applications.
Wiley, 1989.
- 104
-
P. Rakic and W. Singer, eds., Neurobiology of Neocortex.
John Wiley & Sons, 1988.
- 105
-
R. P. N. Rao and D. H. Ballard, ``Kalman filter model of the visual cortex,''
Neural Computation, vol. 9, no. 4, pp. 721-763, 1997.
- 106
-
J. Rissanen, ``Modeling by shortest data description,'' Automatica,
vol. 14, no. 5, pp. 465-471, 1978.
- 107
-
J. Rissanen, ``Fisher information and stochastic complexity,'' IEEE
Transactions on Information Theory, vol. 42, no. 1, pp. 40-47, 1996.
- 108
-
J. Rissanen and G. G. Langdon, Jr., ``Arithmetic coding,'' IBM Journal
of Research and Development, vol. 23, no. 2, pp. 149-162, 1979.
- 109
-
J. Rissanen and G. G. Langdon, Jr., ``Universal modeling and coding,'' IEEE Transactions on Information Theory, vol. 27, pp. 12-23, 1981.
- 110
-
D. Rubin and D. Thayer, ``EM algorithms for factor analysis,'' Psychometrika, vol. 47, pp. 69-76, 1982.
- 111
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ``Learning internal
representations by error backpropagation,'' in Parallel distributed
processing (D. E. Rumelhart and J. L. McClelland, eds.), vol. 1,
pp. 318-362, The MIT Press, 1986.
- 112
-
S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice-Hall, 1995.
- 113
-
L. K. Saul, T. Jaakkola, and M. I. Jordan, ``Mean field theory for sigmoid
belief networks,'' Journal of Artificial Intelligence Research, vol. 4,
pp. 61-76, 1996.
- 114
-
L. J. Savage, The Foundations of Statistics.
Dover Publications, 1954.
- 115
-
M. J. Schervish, Theory of Statistics.
Springer-Verlag, 1995.
- 116
-
J. Schmidhuber, ``Discovering neural nets with low Kolmogorov complexity and
high generalization capability,'' Neural Networks, vol. 10, no. 5,
pp. 857-873, 1997.
- 117
-
C. E. Shannon, ``A mathematical theory of communication,'' Bell System
Technical Journal, vol. 27, pp. 379-423 and 623-656, 1948.
- 118
-
R. H. Shumway and D. S. Stoffer, ``An approach to time series smoothing and
forecasting using the EM algorithm,'' Journal of Time Series
Analysis, vol. 3, no. 4, pp. 253-264, 1982.
- 119
-
R. J. Solomonoff, ``A formal theory of inductive inference. Part I,'' Information and Control, vol. 7, no. 1, pp. 1-22, 1964.
- 120
-
R. J. Solomonoff, ``A formal theory of inductive inference. Part II,'' Information and Control, vol. 7, no. 2, pp. 224-254, 1964.
- 121
-
H. W. Sorenson, ed., Kalman Filtering: Theory and Application.
IEEE Press, 1985.
- 122
-
C. Spearman, ````General intelligence,'' objectively determined and
measured,'' American Journal of Psychology, vol. 15, pp. 201-293,
1904.
- 123
-
S. M. Stigler, ``Translation of Laplace's 1774 memoir on ``Probability of
causes'','' Statistical Science, vol. 1, no. 3, pp. 359-378, 1986.
- 124
-
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.
- 125
-
A. Taleb and C. Jutten, ``Nonlinear source separation: The post-nonlinear
mixtures,'' in Proceedings of the European Symposium on Artificial
Neural Networks, ESANN'97, (Bruges, Belgium, Apr. 16-18), pp. 279-284,
1997.
- 126
-
A. Taleb and C. Jutten, ``Source separation in post-nonlinear mixtures,'' IEEE Transactions on Signal Processing, vol. 47, no. 10, pp. 2807-2820,
1999.
- 127
-
K. Tanaka, ``Inferotemporal cortex and object vision,'' Annual Reviews in
Neuroscience, vol. 10, pp. 109-139, 1996.
- 128
-
H. Valpola, X. Giannakopoulos, A. Honkela, and J. Karhunen, ``Nonlinear
independent component analysis using ensemble learning: Experiments and
discussion,'' in Proceedings of the Second International Workshop on
Independent Component Analysis and Blind Signal Separation, ICA 2000,
(Helsinki, Finland, June 19-22), pp. 351-356, 2000.
- 129
-
A. Wald, Statistical Decision Functions.
Wiley, 1950.
- 130
-
C. S. Wallace and D. M. Boulton, ``An information measure for classification,''
Computer Journal, vol. 11, no. 2, pp. 185-194, 1968.
- 131
-
C. S. Wallace and P. R. Freeman, ``Estimation and inference by compact
coding,'' Journal of the Royal Statistical Society (Series B), vol. 49,
no. 3, pp. 240-265, 1987.
- 132
-
J. E. Whitesitt, Boolean Algebra and Its Applications.
Dover Publications, 1995.
- 133
-
R. R. Yager and L. A. Zadeh, An Introduction to Fuzzy Logic Applications
in Intelligent Systems.
Kluwer Academic Publishers, 1992.
- 134
-
H. H. Yang, S. Amari, and A. Cichocki, ``Information back-propagation for blind
separation of sources from non-linear mixtures,'' in Proceedings of the
International Conference on Neural Networks, ICNN'97, (Houston, Texas, USA,
June 9-12), 1997.
- 135
-
H. H. Yang, S. Amari, and A. Cichocki, ``Information-theoretic approach to
blind separation of sources in non-linear mixture,'' Signal Processing,
vol. 64, pp. 291-300, 1998.
- 136
-
L. Zadeh, ``Fuzzy sets,'' Information and Control, vol. 8, pp. 338-353,
1965.
Harri Valpola
2000-10-31