Next: About this document ...
Up: Nonlinear Independent Component Analysis
Previous: Discussion
- 1
-
S. Hochreiter and J. Schmidhuber.
Feature extraction through LOCOCODE.
Neural Computation, 11(3):679-714, 1999.
- 2
-
H. Lappalainen.
Nonlinear independent component analysis using ensemble learning:
Theory.
In Proc. ICA'2000.
Submitted.
- 3
-
H. Lappalainen and A. Honkela.
Bayesian nonlinear independent component analysis by multi-layer
perceptrons.
In M. Girolami, ed., Advances in Independent Component
Analysis. Springer, Berlin, 2000.
In Press.
- 4
-
D. J. C. MacKay and M. N. Gibbs.
Density networks.
In J. Kay, ed., Proceedings of Society for General Microbiology
Edinburgh meeting, 1997.
- 5
-
G. C. Marques and L. B. Almeida.
Separation of nonlinear mixtures using pattern repulsion.
In Proc. ICA'99, pp. 277-282, Aussois, France, 1999.
- 6
-
J.-H. Oh and H. S. Seung.
Learning generative models with the up-propagation algorithm.
In M. I. Jordan, M. J. Kearns, and S. A. Solla, eds., Advances
in Neural Information Processing Systems 10, pp. 605-611. MIT Press, 1998.
- 7
-
P. Pajunen and J. Karhunen.
A maximum likelihood approach to nonlinear blind source separation.
In Proceedings of the 1997 Int. Conf. on Artificial Neural
Networks (ICANN'97), pp. 541-546, Lausanne, Switzerland, 1997.
- 8
-
A. Taleb and C. Jutten.
Source separation in post-nonlinear mixtures.
IEEE Transactions on Signal Processing, 47(10):2807-2820,
October 1999.
- 9
-
H. H. Yang, S. Amari, and A. Cichocki.
Information-theoretic approach to blind separation of sources in
non-linear mixture.
Signal Processing, 64:291-300, 1998.
Harri Lappalainen
2000-03-03