next up previous
Next: About this document ... Up: Nonlinear Independent Component Analysis Previous: Discussion

Bibliography

1
S. Hochreiter and J. Schmidhuber.
Feature extraction through LOCOCODE.
Neural Computation, 11(3):679-714, 1999.

2
H. Lappalainen.
Nonlinear independent component analysis using ensemble learning: Theory.
In Proc. ICA'2000.
Submitted.

3
H. Lappalainen and A. Honkela.
Bayesian nonlinear independent component analysis by multi-layer perceptrons.
In M. Girolami, ed., Advances in Independent Component Analysis. Springer, Berlin, 2000.
In Press.

4
D. J. C. MacKay and M. N. Gibbs.
Density networks.
In J. Kay, ed., Proceedings of Society for General Microbiology Edinburgh meeting, 1997.

5
G. C. Marques and L. B. Almeida.
Separation of nonlinear mixtures using pattern repulsion.
In Proc. ICA'99, pp. 277-282, Aussois, France, 1999.

6
J.-H. Oh and H. S. Seung.
Learning generative models with the up-propagation algorithm.
In M. I. Jordan, M. J. Kearns, and S. A. Solla, eds., Advances in Neural Information Processing Systems 10, pp. 605-611. MIT Press, 1998.

7
P. Pajunen and J. Karhunen.
A maximum likelihood approach to nonlinear blind source separation.
In Proceedings of the 1997 Int. Conf. on Artificial Neural Networks (ICANN'97), pp. 541-546, Lausanne, Switzerland, 1997.

8
A. Taleb and C. Jutten.
Source separation in post-nonlinear mixtures.
IEEE Transactions on Signal Processing, 47(10):2807-2820, October 1999.

9
H. H. Yang, S. Amari, and A. Cichocki.
Information-theoretic approach to blind separation of sources in non-linear mixture.
Signal Processing, 64:291-300, 1998.



Harri Lappalainen
2000-03-03