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Abstract. Model checking is an established technique to get con�dence
in the correctness of a system when testing is not su�cient. Validating
safety-critical systems is one of the use cases for model checking. As
model checkers themselves are quite complicated pieces of software, there
is room for doubt about the correctness of the model checking result.
The model checker might contain programming errors that in�uence the
result of the analysis.
When a model checker �nds a counter-example, it is straightforward to
simulate the model and check that the counter-example is valid. Some
model checking algorithms are also capable of providing proofs of validity.
In this paper we describe a way to get proofs of correctness for liveness
properties. This works by transforming the liveness property into a safety
property using a reduction, and then getting a proof for that safety
property. This changes the need to trust the model checker into the
need to trust our reduction and a proof checker, which are much simpler
programs than model checkers. Our method is intended to be usable in
practice, and we provide experimental data to support this. We only
handle properties that hold: counter-examples should be detected with
other methods.

1 Introduction

Safety-critical automation systems, such as those deployed in e.g. nuclear fa-
cilities, need to be inspected for design errors. They tend to be complicated
systems, because they often need to react to multiple measurements as well as
inputs from the plant operators. It is therefore tedious and error-prone to anal-
yse them manually. Model checking has proven to be a valuable tool in becoming
more con�dent in the correctness of these designs. The use of model checking in
the nuclear context is described in e.g. [17].

Unlike testing and simulation, model checking goes through every possible
behaviour of the design, making sure that it conforms to its speci�cations. In
theory, if the model checker reports no errors, then all possible behaviours of the
design conform to their speci�cations. Because testing for all possible scenar-
ios is impossible in practice, model checking a design can signi�cantly increase
con�dence in it.

Since the model checker must verify that all behaviours of the design conform
to speci�cations, and since the number of behaviours is exponentially large, a



model checker must use advanced optimisations to keep computing time and
memory usage within acceptable limits. Because of this, model checkers can
be quite complicated pieces of software. Therefore, they inevitably contain pro-
gramming errors, which could even a�ect the veri�cation result. Especially when
checking safety-critical designs, one would like to alleviate this concern. We pro-
pose a practical solution for getting independently veri�able proofs for liveness
properties from the model checker.

1.1 System models

In the context of this paper, models of systems are assumed to be �nite logi-
cal circuits. The circuits may contain inputs from the environment and memory
(latches). They operate synchronously, i.e. all latches get their new value simul-
taneously based on the inputs and on the previous values of latches. Cycles in the
logical circuit are permitted only if they contain a latch. Inputs are considered
to be non-deterministic, i.e. they can take any value at any time-point.

A state of the system is a mapping that gives a boolean value for each latch. In
the initial state all latches have the value false. The transition relation determines
the successors of a state, i.e. which states are possible after one time step.

Our tool works with the AIGER [1] format, which is used in the Hardware
Model Checking Competition (HWMCC) [7]. It has good tool support because
of the competition, and many benchmark sets are available from the AIGER
and HWMCC web pages.

1.2 Liveness and safety properties

The formal properties in model checking can be divided into two main categories:
safety properties and liveness properties. Intuitively, a safety property states
that the system must not perform some bad action. A counter-example to such
a property is a �nite sequence of system states. It begins with the system in its
initial state, and contains a sequence of states that corresponds to a bad action.
To prove that a safety property holds, it is necessary to prove that a bad action
can not be reached from the initial state.

Intuitively, a liveness property states that some event needs to take place.
An example of this would be that all requests must be answered eventually. A
counter-example to a liveness property is an in�nite sequence of system states,
where the system starts in its initial state, but fails to produce the required
event. Verifying liveness properties is harder in general than verifying safety
properties. To prove that a liveness property holds, it is necessary to prove that
a bad cycle can not be reached from the initial state. A bad cycle is a sequence
of states that the system can repeat inde�nitely without producing the required
event. Because systems can only have �nitely many states, a bad cycle is needed
to form a counter-example. In the context of this paper, liveness properties are
represented as a set of justice signals that should not become true in�nitely
often. If all of the signals do become true in�nitely often, i.e. in a cycle, a
counter-example to the speci�cation has been found.



A liveness to safety reduction is a way to transform a liveness checking prob-
lem into a safety checking problem. The �rst such reduction was introduced
in [5]. Reducing liveness checking to safety checking entails changing the model
to include some form of book-keeping. The burden of cycle detection is shifted
from the model checker to the book-keeping part in the resulting model.

1.3 Symbolic model checking and SAT-based model checking

Model checking a design is hindered by the state explosion problem: a system
usually has exponentially many states with respect to its size. Representing each
of them separately in memory is likely to exhaust the available memory. To deal
with this problem, di�erent symbolic model checking [10] techniques have been
developed. They use a compact way to represent a set of states in memory.

In addition to the method in [10], another way to represent a set of states
compactly is to use a propositional logic formula. A state belongs to the set i� the
formula becomes true when assigning the values of the state variables (latches).
Model checkers that use this technique usually make queries to propositional
satis�ability (SAT) solvers, i.e. tools that decide whether a given propositional
logic formula can be satis�ed (made true). SAT-based model checking was �rst
suggested in [6]. Our implementation works with SAT-based model checking, but
the general idea does not depend on it.

1.4 Related work

The IC3 [8] algorithm by Bradley, also known as property-directed reachability
(PDR), is a complete1, SAT-based algorithm for checking safety properties. One
of its advantages is that it can provide a proof of correctness when the system
meets the speci�cation. The proof is an inductive invariant, i.e. a propositional
formula that must hold in the initial state, and that will not be changed from
true to false by the transition relation. If the model checker �nds an inductive
invariant that implies the speci�cation, the system necessarily meets the speci-
�cation.

Biere et al. introduced a liveness to safety reduction in [5]. That reduction
changes the model to force a loop, and then checks whether a bad trace can be
found. Compared to that, ours makes for a simpler implementation, which we
consider to be important.

Claessen et al. describe an algorithm [11] for liveness checking that is based
on bounding the number of times a justice signal becomes true. Gan et al. inde-
pendently discovered this method in [15], where it is applied to model checking
software designs. We also use this idea, but [11] implements it in their own
specialised model checker, and they do not discuss proof generation. Moreover,
their implementation uses pre-processing, which they state is important for per-
formance. Using pre-processing adds more code to be trusted, which we try to

1 In the sense that given su�cient time and memory, it will always terminate with the
correct result.



avoid. Our implementation also di�ers from [11] in that they search for a bound
by incrementing it by one, whereas we, like [15], double the bound at each step.

Others have also studied the issue of trusting the model checker when it
claims correctness of a liveness property. Namjoshi takes a similar approach
to ours in [18], in that the paper also describes a way to get proofs from the
model checker. It does not make an implementation available, however, and
makes no experimental evaluation. The proofs in that paper explicitly enumerate
the states of the model, making them too big to verify in practice. Sprenger
describes in [20] a model checker for µ-calculus that is proven to be correct. The
model checker in that paper is veri�ed using a theorem prover. Benchmarks or
applicability to real world models is not discussed. Esparza et al. also describe a
veri�ed model checker in [13]. They �rst prove a simple model checking algorithm
to be correct, and then make provably correct re�nements to make it faster.
Their implementation is not comparable to the state-of-the-art tools in e�ciency,
however. They describe it as a reference implementation against which optimised
tools can be tested.

Compared to the model checkers above, our tool is designed to work with
the same models that can be checked with the state-of-the-art tools. Our ap-
proach can work together with any PDR-based model checker that supports the
AIGER-format, which includes many state-of-the-art model checkers thanks to
the HWMCC. Moreover, improvements to those model checkers also bene�t our
tool.

2 Liveness to safety reduction

The key to getting better con�dence in the result of the model checking algorithm
is the liveness to safety reduction. Our reduction is as simple as possible, which
makes it easy to understand and thoroughly test. This is crucial because the
bene�ts of proof checking are lost if our implementation is suspected to be faulty.
Because of the safety-critical context, we wish to get a high degree of certainty in
the correctness of the model checking result. One key concern is the possibility of
programming errors in model checkers. Requiring a proof from the model checker
and validating it will increase con�dence in the model checker, but it does not
exclude the possibility of an error in our implementation. Therefore there is a
great burden on our implementation to demonstrate reliability. We believe that
a very simple algorithm is necessary for that.

Algorithm 1 shows the pseudo-code for our liveness to safety reduction.
It expects as input a boolean circuit and a liveness property, expressed as
a set of justice signals. The variable count_latches is an array of latches,
and we use count_latchesi to denote the ith element of the array. The vari-
able wait_latches is a mapping from bits in the justice-set to latches, and
we use wait_latchesbit to denote the element that corresponds to bit, where
bit ∈ justice. We use the latch itself, e.g. count_latchesi, to denote the the
value of the latch, and add .input to it, e.g. count_latchesi.input, to denote the
wire that gives the next value of the latch.



The property is violated i� the circuit gives a true value for each of the justice
signals in�nitely often. In other words the property holds if there is a point in
time after which at least one of the justice signals will stay false forever. Our
algorithm assumes that the property is true, and tries to prove that. It should
therefore be used when the system design is likely to be correct, and a proof of
correctness is desired.

To deal with multiple justice signals, we �rst condense them into a single
signal. Each signal in the original justice set will be assigned a latch that waits
for it to become true. When all of these latches have been set to true, they will
all be reset, and will start waiting again. The conjunction of all these latches
will be true in�nitely often i� all of the signals in the original justice set are true
in�nitely often. Lines 5�7 in the algorithm handle this part. An example of two
latches waiting for two justice signals is shown in Figure 1.

Algorithm 1 Algorithm for getting a proof of a liveness property

1: function live2safe-check(circuit, justice)
2: count_latches . n-bit counter
3: wait_latches . each latch waits for a bit in the justice-set
4: increment←

∧
b

wait_latchesb . when to increment the counter

5: for all bit ∈ justice do
6: wait_latchesbit.input← ¬increment ∧ (bit ∨ wait_latchesbit)
7: end for

8: for n = 1→∞ do

9: carry ← increment
10: for i = 0→ n− 1 do

11: count_latchesi.input← carry ⊕ count_latchesi
12: carry ← carry ∧ count_latchesi
13: end for

14: bad← count_latchesn−1

15: if model-safe?(circuit ∪ count_latches ∪ wait_latches, bad) then
16: return proof
17: end if

18: end for

19: end function

If the increment-signal will be true only �nitely many times, the liveness
property holds. To get proof of this, the algorithm uses a binary counter to keep
track of the number of times it has become true. Lines 10�13 in the algorithm
build the counter, line 14 de�nes the signal that denotes a bad state, and line
15 calls the safety property model checker. Figure 2 shows an example of a
two-bit counter. If the counter never over�ows, the increment-signal does not
become true in�nitely often, and the property must hold. On the other hand,
if an over�ow of the counter is detected, we assume that a larger counter is
required, and restart the proof search with one more latch in the counter. The
for-loop on line 8 of the algorithm implements this.
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If the circuit meets the speci�cation, the algorithm will eventually generate
a counter that is large enough to contain all the times the justice signals become
true, after which the safety property checker will provide a proof of correctness.
On the other hand, if the speci�cation is not met, larger and larger counters are
generated, and the algorithm will not terminate. It is therefore advisable to run
a counter-example �nding tool in parallel with our algorithm.

2.1 Implementation

We have implemented the algorithm in Racket [3], which is a dialect of the
Scheme programming language family. Manipulating the AIGER �le is done
through the C API of the o�cial AIGER distribution [1]. Veri�cation of the
transformed models is done by calling the ABC/ZZ-tool by Niklas Eén [14],
which contains an implementation of PDR [8]. More speci�cally, we run the
ABC/ZZ command bip ,pdr2 on the modi�ed AIGER model. Our implemen-
tation is available as a binary package and as source code at [16].

3 Verifying the proof

If our algorithm is successful in �nding a proof for a property, the next step is
to verify it. The proof given by the model checker is an inductive invariant, i.e.
it satis�es all of the following conditions:

� it is true in the initial state of the system,
� if it is true in a state, it will also be true in every successor (according to
the transition relation), and

� it can not be true in a bad state.

The conditions above imply that no bad state can be reached from the initial
state, and therefore the system meets its speci�cation. The bad state in this case
is the one our algorithm produces, i.e. the over�ow of the counter we generate
(see Algorithm 1).

The three conditions can be veri�ed with a SAT solver2. Suppose that I is
the invariant given by the model checking algorithm, S0 is the boolean formula
encoding of the initial state of the system, and B is the boolean formula encoding
of the bad states of the system. Recall that a boolean formula encodes a set of
states whose latch values make the formula true. Suppose further that R is the
boolean formula encoding of the transition relation, where a plain variable (e.g.
v) denotes a latch value in the current state, and the corresponding primed
variable (e.g. v′) denotes the latch value in a successor state. We generalise this
notation to boolean formulae: adding a prime to a formula means adding a prime
to every latch variable in it. We can now encode the conditions for the inductive
invariant as boolean formulae, respectively:

2 This is not limited to SAT-based techniques: any model checking method that can
provide an inductive invariant as above could be used.



� S0 ⇒ I
� (I ∧R) ⇒ I ′

� I ⇒ ¬B

The validity of the above formulae can be checked with the SAT solver by negat-
ing it. If the solver reports that the negation of the formula is unsatis�able, the
formula itself must hold.

To get further proof that no error has been made, even the SAT solver may
be requested to give a proof of unsatis�ability. The SAT solver competition [4]
features a track for solvers that provide such proofs. Many of the solvers are
freely available for download, and many also provide their source code.

4 Experiments

We have evaluated the practicality of our tool by testing it on models with
liveness properties available from the AIGER [1] and the HWMCC [7] web sites.
We dropped out models for which a counter-example was found, as our tool
would not terminate on those. We compared our implementation against three
other model checkers: ABC/ZZ [14], which to the best of our knowledge uses [5]
combined with PDR, IImc [2], whose liveness algorithm is described in [9], and
tip [12], which to the best of our knowledge uses [11] combined with PDR. The
latter two placed �rst and second in the liveness track of the HWMCC [7]. All
the tests were run on a Linux machine with an Intel 2.83GHz processor and
8GiB memory. A time-out of 10 minutes was used.

The run-time of our algorithm includes the transformation of the model and
all of the model checking work. Verifying the proof is not included. We anticipate
that the proof veri�cation time is small compared to the actual model checking.

The run-times are plotted against our algorithm in Figures 3, 4, and 5. Each
�gure plots the run-times of one algorithm against the run-times of another
algorithm. A data point in the south-east half of the �gure means our algorithm
was faster, and a data point in the north-west half means our algorithm was
slower. A data point on the inner border means a time-out occurred, and a data
point on the outer border means that memory was exhausted.

Figure 3 shows the run-times of our algorithm compared against ABC/ZZ.
We used a version that was retrieved from the code repository on June 24 2013.
ABC/ZZ was run with the command bip ,live -k=l2s -eng=treb, which also
employs a liveness to safety reduction. There are quite many data points on both
sides of the �gure, meaning that neither algorithm is consistently better than
the other.

Figure 4 shows the run-times of our algorithm compared against IImc. We
used version 1.2 of IImc with the default options. The �gure shows that our
algorithm is faster in many cases, but also runs out of time in many cases where
IImc does not. Again, neither algorithm seems to be a clear winner.

Figure 5 shows the run-times of our algorithm compared against tip. We
used a version that was retrieved from the code repository on July 17 2013, with
the default options. The �gure shows that tip is faster than our algorithm is the
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Fig. 3. Run-times (in seconds) of our algorithm and ABC/ZZ
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Fig. 5. Run-times (in seconds) of our algorithm and tip

majority of cases, although our algorithm wins in a few cases, even proving two
where tip ran out of time.

While it is clear that our algorithm does not beat the state of the art ones
in speed, it still manages to prove many of the benchmarks. We argue that the
simplicity combined with the proofs from PDR make it a practical way to become
more con�dent in the correctness of models with liveness properties.

5 Conclusion and discussion

Our approach to getting more con�dence in model checking results relies �rstly
on a simple liveness to safety reduction, and secondly on getting an indepen-
dently veri�able proof from the safety model checker. Our main contribution is
the use of the simple reduction algorithm in a way that gives good performance
and still results in proofs of correctness.

Model checkers are very complex pieces of software, and therefore are liable
to contain programming errors. It is conceivable that they might claim to have
proven a property that in reality does not hold. When applying model check-
ing to safety-critical systems, it is desirable to alleviate this concern. We argue
that our approach increases con�dence in the model checking result, because our
algorithm is very simple. It is therefore relatively simple to inspect our imple-
mentation and become convinced that it does not contain errors.

Our approach can not eliminate all concerns of whether the model check-
ing result actually applies to the real system. Even if the model corresponds



to the physical system, it is likely that the AIGER-�le that we analyse is pro-
grammatically converted from a more human-friendly form.3 When checking the
proof from the model checker, it is also necessary to extract information from
the AIGER-�le. Both of the above steps might include errors. The actual model
checking algorithm is much more complicated than these tasks, however, and
typically going through changes more often. It is therefore more likely to contain
errors, which is why we focus on the correctness of that part.

Our experiments show that our approach can be used in practice. While
it is not faster than the state-of-the-art liveness model checkers, many of the
properties that were proven with ABC/ZZ, IImc and tip were also proven with
our tool. The tool is available under a liberal license at [16].
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