Locality lower bounds through round elimination

Jukka Suomela
Aalto University, Finland
Joint work with

• Alkida Balliu
• Sebastian Brandt
• Orr Fischer
• Juho Hirvonen
• Barbara Keller
• Tuomo Lempiäinen
• Dennis Olivetti
• Mikaël Rabie
• Joel Rybicki
• Jara Uitto
Joint work with

• Alkida Balliu
• Sebastian Brandt
• Orr Fischer
• Juho Hirvonen
• Barbara Keller
• Tuomo Lempiäinen
• Dennis Olivetti
• Mikaël Rabie
• Joel Rybicki
• Jara Uitto
Locality = how far do I need to see to produce my own part of the solution?
Locality = how far do I need to see to produce my own part of the solution?
Locality = how far do I need to see to produce my own part of the solution?

- I will output **blue**
- I will output **black**
- I will output **orange**
Locality = how far do I need to see to produce my own part of the solution?

Local outputs form a globally consistent solution
Locality: formalization

• “LOCAL” model of distributed computing:
 • **graph** = communication network
 • **node** = processor
 • **edge** = communication link
 • all nodes have unique identifiers
 • **time** = number of communication rounds
 • **round** = nodes exchange messages with all neighbors
 • 1 communication round: all nodes can learn everything within distance 1
 • **T** communication rounds: all nodes can learn everything within distance **T**

• **Time = distance**
Locality: examples

• Setting: graph with n nodes, maximum degree $\Delta = O(1)$

• Maximal independent set:
 $\Theta(\log^* n)$ randomized, $\Theta(\log^* n)$ deterministic

• Sinkless orientation:
 $\Theta(\log \log n)$ randomized, $\Theta(\log n)$ deterministic
 • orient edges such that all nodes of degree ≥ 3 have outdegree ≥ 1
How to study locality?

Proving locality upper & lower bounds
Locality: proving upper bounds

• Find a function that maps local neighborhoods to local outputs
• Design a fast distributed message-passing algorithm
• Design a slow distributed algorithm and apply “speedup” arguments to turn it into a fast distributed algorithm
 • e.g. \(o(n) \rightarrow O(\log^* n) \) for “LCL problems” in cycles
• Design a fast centralized sequential algorithm model and turn it into a fast distributed algorithm
 • e.g. greedy strategy \(\rightarrow \) SLOCAL algorithm \(\rightarrow \) LOCAL algorithm
Locality: proving lower bounds

- **Indistinguishability**
 - same local view \rightarrow same output

- **Adaptive constructions**
 - inductively construct a bad input for this specific algorithm

- **Ramsey-type arguments**
 - “monochromatic set” \approx bad choice of identifiers

- **Speedup & derandomization arguments and reductions**
 - locality $R \rightarrow$ locality $R' \rightarrow$ not possible
Locality: proving lower bounds

- **Indistinguishability**
 - same local view \rightarrow same output

- **Adaptive constructions**
 - inductively construct a bad input for this specific algorithm

- **Ramsey-type arguments**
 - “monochromatic set” \approx bad choice of identifiers

- **Speedup & derandomization arguments and reductions**
 - locality $R \rightarrow$ locality R' \rightarrow not possible

Today’s focus: “round elimination” technique for proving locality lower bounds
Round elimination
Round elimination technique

• **Given:**
 - algorithm A_0 solves problem P_0 in T rounds

• **We construct:**
 - algorithm A_1 solves problem P_1 in $T - 1$ rounds
 - algorithm A_2 solves problem P_2 in $T - 2$ rounds
 - algorithm A_3 solves problem P_3 in $T - 3$ rounds
 ...
 - algorithm A_T solves problem P_T in 0 rounds

• But P_T is nontrivial, so A_0 cannot exist

- **Given:**
 - algorithm A_0 solves 3-coloring in $T = o(\log^* n)$ rounds

- **We construct:**
 - algorithm A_1 solves 2^3-coloring in $T - 1$ rounds
 - algorithm A_2 solves 2^{2^3}-coloring in $T - 2$ rounds
 - algorithm A_3 solves $2^{2^{2^3}}$-coloring in $T - 3$ rounds
 ...
 - algorithm A_T solves $o(n)$-coloring in 0 rounds

- But $o(n)$-coloring is nontrivial, so A_0 cannot exist
Brandt et al. (2016): sinkless orientation

• Given:
 • algorithm A_0 solves **sinkless orientation** in $T = o(\log n)$ rounds

• We construct:
 • algorithm A_1 solves **sinkless coloring** in $T - 1$ rounds
 • algorithm A_2 solves **sinkless orientation** in $T - 2$ rounds
 • algorithm A_3 solves **sinkless coloring** in $T - 3$ rounds
 ...
 • algorithm A_T solves **sinkless orientation** in 0 rounds

• But **sinkless orientation** is nontrivial, so A_0 cannot exist
Round elimination can be automated

• **Good news**: always possible for any graph problem P_0 that is “locally checkable”
 • if problem P_0 has complexity T, we can always find in a mechanical manner problem P_1 that has complexity $T - 1$
 • holds for tree-like neighborhoods (e.g. high-girth graphs)

• **Bad news**: this does not directly give a lower bound
 • P_1 is not necessarily any natural graph problem
 • P_1 does not necessarily have a small description
 • how do we prove that P_1, P_2, P_3, etc. are nontrivial problems?
Round elimination and fixed points

• Sometimes we are very lucky:
 • $P_0 = \text{sinkless orientation}$
 • $P_1 = \text{something (no need to understand it)}$
 • $P_2 = \text{sinkless orientation}$

• If you are feeling optimistic: just apply round elimination in a mechanical manner for a small number of steps and see if you reach a fixed point or cycle
 • or you reach a well-known hard problem

• Open question: exactly when does this happen?
Round elimination and “rounding down”

- Sometimes some amount of creativity is needed:
 - $P_0 = k$-coloring cycles
 - P_1 = something complicated with 2^k possible output labels
 - define: $Q_1 = 2^k$-coloring cycles
 - observation: solution to P_1 implies a solution to Q_1

P_0 takes exactly T rounds
$\rightarrow P_1$ takes exactly $T - 1$ rounds
$\rightarrow Q_1$ takes at most $T - 1$ rounds
$\rightarrow \ldots$
$\rightarrow Q_T$ takes at most 0 rounds
How does it work?
Correct formalism

• We will need the *right formalism* for the graph problems that we study

• It will look seemingly arbitrary and very restrictive at first

• No worries, you can *encode* a broad range of *locally checkable problems* in this formalism with some effort
 • maximal matching, maximal independent set, vertex coloring, edge coloring, sinkless orientation …
Correct formalism: edge labeling in bipartite graphs

- Assumption: input graph properly 2-colored ("white" / "black")
- Finite set of possible edge labels

- **White** constraint:
 - feasible multiset of labels on edges adjacent to a white node

- **Black** constraint:
 - feasible multiset of labels on edges adjacent to a black node
Example 1: sinkless orientation

• Setting: bipartite 3-regular graphs

• Encoding: use original graph
 • “0” = orient from white to black
 • “1” = orient from black to white

• **White** constraint:
 • \{0, 0, 0\}, \{0, 0, 1\} or \{0, 1, 1\}

• **Black** constraint:
 • \{0, 0, 1\}, \{0, 1, 1\} or \{1, 1, 1\}
Example 2: sinkless orientation

- Setting: 3-regular graphs
- Encoding: subdivide edges
 - *white* = edge, *black* = node
 - “H” = head, “T” = tail
- **White** constraint:
 - \{H, T\}
- **Black** constraint:
 - \{H, H, T\}, \{H, T, T\} or \{T, T, T\}
Example 3: vertex coloring

• Setting: 3-regular graphs

• Encoding: subdivide edges
 • white = edge, black = node
 • “1”, “2”, “3” = color of incident black node

• White constraint:
 • \{1, 2\} or \{1, 3\} or \{2, 3\}

• Black constraint:
 • \{1, 1, 1\}, \{2, 2, 2\} or \{3, 3, 3\}
Correct formalism: white and black algorithms

- **White** algorithm:
 - each *white* node produces labels on its incident edges
 - *black* nodes do nothing
 - satisfies white and black constraints

- **Black** algorithm:
 - each *black* node produces labels on its incident edges
 - *white* nodes do nothing
 - satisfies white and black constraints

- White and black complexity within ± 1 round of each other
Round elimination

Given: white algorithm A that runs in $T = 2$ rounds

- v_1 in A sees U and D_1

Construct: black algorithm A' that runs in $T - 1 = 1$ rounds

- u in A' only sees U

A': what is the set of possible outputs of A for edge (u, v_1) over all possible inputs in D_1?
Given: white algorithm A that runs in $T = 2$ rounds

- v_1 in A sees U and D_1

Construct: black algorithm A' that runs in $T - 1 = 1$ rounds

- u in A' only sees U

A': what is the set of possible outputs of A for edge $\{u, v_1\}$ over all possible inputs in D_1?
Example: edge coloring

Independence!

• Assume there is some extension D_1 such that v_1 labels $\{u, v_1\}$ green

• Assume there is some extension D_2 such that v_2 labels $\{u, v_2\}$ green

• Then we can construct an input in which both $\{u, v_1\}$ and $\{u, v_2\}$ are green
Example: edge coloring

Independence!

- Assume there is some extension D_1 such that v_1 labels $\{u, v_1\}$ green

- Assume there is some extension D_2 such that v_2 labels $\{u, v_2\}$ green

- Then we can construct an input in which both $\{u, v_1\}$ and $\{u, v_2\}$ are green

Algorithm A’ has to do something nontrivial

Here: sets incident to black nodes have to be non-empty and disjoint

They contain enough information so that we could recover a proper edge coloring in 1 extra round
Example: bipartite maximal matching
computer network with port numbering

bipartite, 2-colored graph

Δ-regular (here $\Delta = 3$)

output: maximal matching
Very simple algorithm

unmatched white nodes:
send *proposal* to port 1
Very simple algorithm

unmatched white nodes: send \textit{proposal} to port 1

black nodes: accept the first proposal you get, \textit{reject} everything else (break ties with port numbers)
Very simple algorithm

unmatched white nodes: send *proposal* to port 1

black nodes: *accept* the first proposal you get, *reject* everything else (break ties with port numbers)
Very simple algorithm

unmatched white nodes: send *proposal* to port 2
Very simple algorithm

unmatched white nodes:
send *proposal* to port 2

black nodes:
accept the first proposal you get, *reject* everything else
(break ties with port numbers)
Very simple algorithm

unmatched white nodes:
send *proposal* to port 2

black nodes:
accept the first proposal you get, *reject* everything else
(break ties with port numbers)
Very simple algorithm

unmatched white nodes: send \textit{proposal} to port 3
Very simple algorithm

unmatched white nodes:
send *proposal* to port 3

black nodes:
accept the first proposal you get, *reject* everything else
(break ties with port numbers)
Very simple algorithm

unmatched white nodes: send *proposal* to port 3

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)
Very simple algorithm

Finds a maximal matching in $O(\Delta)$ communication rounds

Note: running time does not depend on n
Bipartite maximal matching

• Maximal matching in very large 2-colored Δ-regular graphs
• Simple algorithm: $O(\Delta)$ rounds, independently of n

• Is this optimal?
 • $o(\Delta)$ rounds?
 • $O(\log \Delta)$ rounds?
 • 4 rounds??
Lower-bound proof
Round elimination technique for maximal matching

• Given:
 • algorithm A_0 solves problem $P_0 = \text{maximal matching}$ in T rounds

• We construct:
 • algorithm A_1 solves problem P_1 in $T - 1$ rounds
 • algorithm A_2 solves problem P_2 in $T - 2$ rounds
 • algorithm A_3 solves problem P_3 in $T - 3$ rounds
 ...
 • algorithm A_T solves problem P_T in 0 rounds

• But P_T is nontrivial, so A_0 cannot exist

What are the right problems P_i here?
Round elimination technique for maximal matching

• Given:
 • algorithm A_0 solves problem $P_0 = \text{maximal matching}$ in T rounds

• We construct:
 • algorithm A_1 solves problem P_1 in $T - 1$ rounds
 • algorithm A_2 solves problem P_2 in $T - 2$ rounds
 • algorithm A_3 solves problem P_3 in $T - 3$ rounds
 ...
 • algorithm A_T solves problem P_T in 0 rounds

• But P_T is nontrivial, so A_0 cannot exist
Representation for maximal matchings

white nodes “active”
output one of these:
• $1 \times M$ and $(\Delta - 1) \times O$
• $\Delta \times P$

black nodes “passive”
accept one of these:
• $1 \times M$ and $(\Delta - 1) \times \{P, O\}$
• $\Delta \times O$

M = “matched”
P = “pointer to matched”
O = “other”
We emphasize that the order of the elements does not matter here, and we could equally well write would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However, we have and that black nodes are unmatched only if all white neighbors are matched (all incident edges if it is incident to exactly 0 or 1 edges with label 1.

Example: encoding maximal matchings.

Representation for maximal matchings

white nodes “active”

output one of these:

• $1 \times M$ and $(\Delta - 1) \times O$
• $\Delta \times P$

$W = MO^{\Delta - 1} \mid P^\Delta$

black nodes “passive”

accept one of these:

• $1 \times M$ and $(\Delta - 1) \times \{P, O\}$
• $\Delta \times O$

$B = M[PO]^{\Delta - 1} \mid O^\Delta$
Parameterized problem family

\[
W = \text{MO}^{\Delta - 1} \mid \text{P}^\Delta, \\
B = \text{M}[\text{PO}]^{\Delta - 1} \mid \text{O}^\Delta
\]

\[
W_\Delta(x, y) = \left(\text{MO}^{d - 1} \mid \text{P}^d\right) \text{O}^y \text{X}^x,
\]

\[
B_\Delta(x, y) = \left([\text{MX}][\text{POX}]^{d - 1} \mid [\text{OX}]^d\right) [\text{POX}]^y [\text{MPOX}]^x,
\]

\[
d = \Delta - x - y
\]
Main lemma

• Given: A solves $P(x, y)$ in T rounds
• We can construct: A' solves $P(x + 1, y + x)$ in $T - 1$ rounds

\[
W_\Delta(x, y) = \left(\begin{array}{c} \text{MO}^{d-1} \\ \text{P}^d \end{array} \right) \text{O}^y \text{X}^x,
\]

\[
B_\Delta(x, y) = \left(\begin{array}{c} [\text{MX}][\text{POX}]^{d-1} \\ [\text{OX}]^d \end{array} \right) [\text{POX}]^y [\text{MPOX}]^x,
\]

\[
d = \Delta - x - y
\]
Putting things together

Maximal matching in $o(\Delta)$ rounds

\rightarrow “$\Delta^{1/2}$ matching” in $o(\Delta^{1/2})$ rounds

\rightarrow $P(\Delta^{1/2}, 0)$ in $o(\Delta^{1/2})$ rounds

\rightarrow $P(O(\Delta^{1/2}), o(\Delta))$ in 0 rounds

\rightarrow contradiction

What we really care about

k-matching: select at most k edges per node

Apply round elimination $o(\Delta^{1/2})$ times
Putting things together

• Basic version:
 • deterministic lower bound, *port-numbering model*

• Analyze what happens to local failure probability:
 • *randomized* lower bound, port-numbering model

• With randomness you can construct unique identifiers w.h.p.:
 • randomized lower bound, *LOCAL model*

• Fast deterministic \rightarrow very fast randomized
 • stronger *deterministic* lower bound, LOCAL model

Proof technique does not work directly with unique IDs
Main results

Maximal matching and maximal independent set cannot be solved in

• $o(\Delta + \log \log n / \log \log \log n)$ rounds with randomized algorithms

• $o(\Delta + \log n / \log \log n)$ rounds with deterministic algorithms

Lower bound for MM implies a lower bound for MIS
Summary

• Round elimination technique

• Locality lower bounds for a wide range of problems:
 • symmetry breaking in cycles
 • symmetry breaking in regular trees
 • algorithmic Lovász local lemma
 • maximal matching, maximal independent set ...

• And for a wide range of localities:
 • $\Omega(\log^* n)$, $\Omega(\log \log n)$, $\Omega(\log n)$, $\Omega(\log^* \Delta)$, $\Omega(\Delta)$...
Open questions

• Lower bounds for *volume complexity*?
 • volume lower bounds for *sinkless orientation*?

• Lower bounds for problems related to *graph coloring*?
 • when is partial/defective coloring “easy” and when is it “hard”?
 • nontrivial lower bounds for \((\Delta+1)\)-coloring?

• Exactly when do we get *fixed points* and why?