Foundations of Distributed Computing in the 2020s

Jukka Suomela

Aalto University, Finland

What are the theoretical foundations of the modern society?

- Modern world ~ large-scale communication networks
- Physical side:
 - practice: computers, network equipment, laser, fiber optics, radio ...
 - solid theoretical foundations: electromagnetism, quantum mechanics ...

• Logical side:

- practice: communication protocols, networked applications ...
- solid theoretical foundations: ???

Logical foundations of large communication networks

• Computers:

- theory of computation, computability, computational complexity ...
- Communication between computers:
 - information theory, communication complexity theory ...
- Computation in a network as a whole:
 - theory of distributed computing

Our focus today

Logical foundations of computers vs. computer networks

• Theory of computation:

Which tasks can be solved efficiently with a computer?

• Theory of distributed computing:

Which tasks can be solved efficiently in a large computer network?

Logical foundations of computers vs. computer networks

- Example: solving graph problems
- Theory of computation:

- "Here is a graph that is given as a string on a Turing machine tape"
- How many **steps** does a Turing machine need to solve this problem?

• Theory of distributed computing:

- "I am a node in the middle of a very large graph"
- How far do I need to see to pick my own part of the solution?
- How much of the graph do I need to see?
- How many communication **rounds** are needed to solve the problem?

Local: am I part of a triangle?

Global: how far am I from the nearest triangle?

Logical foundations of computers vs. computer networks

- Theory of computation:
 - e.g. hugely influential framework of NP-completeness (1970s)
- Theory of distributed computing:
 - studied actively already since the 1980s
 - but we have only very recently started to really understand e.g. locality
 - solid theoretical foundations still largely missing
 - lots of progress in the 2010s, tons of work left for the 2020s

Distributed computing before the 2010s

Standard models of computing

- LOCAL model
 - input graph = computer network
 - initially: each node has a unique ID + its own part of input
 - communication round: each node sends a message to each neighbor
 - finally: each nodes stops and outputs its own part of the solution

CONGEST model

- bounded-size messages
- Port-numbering model
 - no unique IDs

Number of rounds = time = distance

8

Some important ideas and concepts

- Solving vs. checking
 - finding a solution vs. verifying a solution
 - cf. deterministic vs. nondeterministic Turing machines, P vs. NP
- Problem family of "locally checkable labelings" (LCLs)
 - O(1) input labels, O(1) output labels, max degree O(1)
 - verification: check each radius-O(1) neighborhood
 - Naor & Stockmeyer (1993, 1995)
- Proof labeling schemes
 - Korman, Kutten, Peleg (2005)

Example: vertex coloring with 3 colors

3

3

3

Some well-understood questions

- What can be computed with deterministic algorithms in anonymous networks?
 - e.g. Angluin (1980), Yamashita & Kameda (1996)
 - key technique: covering maps
- Which LCL problems can be solved in constant time?
 - e.g. Naor & Stockmeyer (1993, 1995)
 - key technique: Ramsey theory

maximal	maximal
independent set	matching
(∆+1)-vertex	(2∆−1)-edge
coloring	coloring

- Key primitives for symmetry breaking
 - e.g. input is a symmetric cycle \rightarrow output has to break symmetry
- Trivial linear-time centralized algorithms
 - e.g. maximal matching: pick non-adjacent edges until stuck
- Can we solve these efficiently in a distributed setting?

maximal	maximal
independent set	matching
(∆+1)-vertex	(2∆−1)-edge
coloring	coloring

• Pioneering work on upper bounds:

- Cole & Vishkin (1986), Luby (1985, 1986), Alon, Babai, Itai (1986), Israeli & Itai (1986), Panconesi & Srinivasan (1996), Hanckowiak, Karonski, Panconesi (1998, 2001), Panconesi & Rizzi (2001) ...
- Pioneering work on lower bounds:
 - Linial (1987, 1992), Naor (1991), Kuhn, Moscibroda, Wattenhofer (2004)

maximal	maximal
independent set	matching
(∆+1)-vertex	(2∆−1)-edge
coloring	coloring

- Still wide gaps between upper and lower bounds
- Role of randomness poorly understood

It seems that before the 2010s...

- Lots of work focused on specific problems
 - proving upper & lower bounds for problem *X*
 - connecting complexity of problem *X* through reductions to problem *Y*
- Not so much effort in understanding the overall landscape of distributed computational complexity
 - what are the meaningful **classes** of problems?
 - what can we prove about entire classes of problems?
- We were lacking general-purpose techniques for studying distributed computing

With hindsight...

- Naor & Stockmeyer (1993, 1995) introduced a very useful problem class (LCLs) and initiated the study of decidability of distributed complexity
 - but there was little follow-up work on these ideas until around 2016
- Linial (1987, 1992) already had the key idea behind "round elimination"
 - but it was not really recognized as a general-purpose proof technique until around 2018

Some highlights of distributed computing in the 2010s

From the 2010s: Classification of LCLs

LCL problems

- Examples of LCL problems (in graphs of max degree $\Delta = O(1)$):
 - (Δ +1)-coloring, Δ -coloring, 3-coloring ...
 - maximal independent set, maximal matching ...
 - sinkless orientation
 - orient all edges
 - all nodes of degree \ge 3 have outdegree \ge 1
 - locally optimal cut
 - label nodes black/white
 - at least half of the neighbors have opposite color
 - **SAT** (when interpreted as a graph problem)
 - many other constraint satisfaction problems

Can we say something about all of these?

Gaps have direct algorithmic implications

If you can solve an LCL problem

- in **o(log n)** rounds with a **deterministic** algorithm **or**
- in o(log log n) rounds with a randomized algorithm then you can also solve it
- in **O(log* n)** rounds with a **deterministic** algorithms

Gaps have direct complexity-theoretic implications

If you can show that there is no O(log* n)-time deterministic algorithm then:

- deterministic complexity is at least Ω(log n)
- randomized complexity is at least Ω(log log n)

From the 2010s: **Complexity of maximal independent set & maximal matching**

2 of 4 key problems well understood

- Maximal independent set & matching:
 - deterministic O(Δ + log* n)
 - deterministic poly(log n)
 - randomized O(log Δ) + poly(log log n)
 - cannot improve any of these much
- Upper bound: Rozhon & Ghaffari (2019) + many others
 - a new algorithm for deterministic network decomposition
- Lower bound: Balliu et al. (2019)
 - based on the "round elimination" technique

maximal	maximal
independent set	matching
(∆+1)-vertex	(2∆−1)-edge
coloring	coloring

From the 2010s: **Round elimination technique**

Round elimination technique

• Given:

• algorithm A_0 solves problem P_0 in T rounds

• We construct:

- algorithm A_1 solves problem P_1 in T 1 rounds
- algorithm A_2 solves problem P_2 in T 2 rounds
- algorithm A₃ solves problem P₃ in T 3 rounds
- algorithm A_T solves problem P_T in 0 rounds
- But P_{T} is nontrivial, so A_{0} cannot exist

Linial (1987, 1992): coloring cycles

- Given:
 - algorithm A_0 solves 3-coloring in $T = o(\log^* n)$ rounds

• We construct:

- algorithm A₁ solves 2³-coloring in T 1 rounds
- algorithm A₂ solves 2^{2³}-coloring in T 2 rounds
- algorithm A_3^- solves $2^{2^{2^3}}$ -coloring in T 3 rounds
- algorithm A_T solves o(n)-coloring in 0 rounds
- But o(n)-coloring is nontrivial, so A_0 cannot exist

Brandt et al. (2016): sinkless orientation

• Given:

• algorithm A_0 solves sinkless orientation in $T = o(\log n)$ rounds

• We construct:

- algorithm A₁ solves sinkless coloring in T 1 rounds
- algorithm A₂ solves sinkless orientation in T 2 rounds
- algorithm A₃ solves sinkless coloring in T 3 rounds
- algorithm A_T solves sinkless orientation in 0 rounds
- But sinkless orientation is nontrivial, so A_0 cannot exist

Round elimination can be automated

Brandt 2019

- Always possible for any graph problem P₀ that is locally checkable
- If problem P₀ has complexity T, we can always find in a mechanical manner problem P₁ that has complexity T - 1
- Holds for tree-like neighborhoods (e.g. high-girth graphs)
- Can be used to derive lower bounds and to design algorithms

From the 2010s: Using computers to study distributed computing

Using computers to do study distributed computing

- Many questions related to distributed computational complexity have turned out to be *decidable* or semi-decidable
 - at least in principle, and often also in practice
 - we can start to *automate our own work* and outsource algorithm design & lower bound construction to computers
- Automatic round elimination implemented, available online: github.com/olidennis/round-eliminator (Olivetti 2019)
 - in 2016 a lower bound for "sinkless orientation" was a STOC paper
 - in 2019 you can reproduce it in your web browser

Distributed computing in the 2020s

Distributed complexity theory beyond LCLs

- We can nowadays say a lot about LCL problems:
 - near-complete classification of distributed complexity
 - systematic studies, powerful proof techniques, automatic tools
- How could we extend all this to non-LCLs?
- Small first steps for the coming years:
 - locally checkable problems with unbounded degrees?
 - locally checkable problems with **countably many labels**?
 - locally checkable problems with **real numbers** and linear constraints?
 - **optimization problems** with locally checkable constraints?

maximal	maximal
independent set	matching
(∆+1)-vertex	(2∆−1)-edge
coloring	coloring

- Independent sets & matchings: now well understood
- Coloring: distributed complexity still wide open
- "Small" first step for the coming years:
 - show that (Δ+1)-vertex coloring cannot be solved in o(log Δ) + O(log* n) rounds

Network algorithms

- Solving problems related to the network structure
- Example: network protocols
- Key limitation: long distances
- No centralized control
- Local perspective

- Solving large computational tasks with many computers
- Example: MapReduce

Big data

- Key limitation: bandwidth
- Fully centralized control
- Global perspective

Network algorithms

- LOCAL
- CONGEST

- PRAM
- MPC = Massively Parallel Computation
- BSP = Bulk-Synchronous Parallel
- Congested clique

Unifying

Technology transfer?

Network algorithms

 tight unconditional lower bounds for many problems typically at best conditional lower bounds

Volume model

- Time *T* in LOCAL model:
 - each node can explore a subgraph of radius *T* around it and then choose its output
- Time T in VOLUME model:
 - each node can adaptively explore a subgraph of size T around it and then choose its output

 Closely related model: LCA (local computation algorithms), a.k.a. centralized LOCAL algorithms or CentLOCAL

Volume model

- Bridge between two flavors of distributed computing
- Close enough to LOCAL so that it is possible to prove unconditional lower bounds
- Yet poorly understood: typically exponential gaps between upper and lower bounds
- Not-so-small first steps:
 - charting the landscape of LCL problems in the volume model
 - tight bounds for e.g. sinkless orientation, maximal matching ...
 - volume analogue of round elimination

Summary

• 2010s:

- systematic study of LCL problems in the LOCAL model
- new techniques and automatic tools

• 2020s:

- extending theory *beyond LCLs*
- technology transfer $LOCAL \rightarrow VOLUME \rightarrow MPC$, PRAM, ...
- Small puzzles to solve:
 - show that $O(\Delta)$ volume is not enough for bipartite maximal matching
 - construct an LCL problem with deterministic volume ω(log* n) ... o(n)

