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What are the theoretical foundations
of the modern society?
• Modern world ≈ large-scale communication networks

• Physical side:
• practice: computers, network equipment, laser, fiber optics, radio …
• solid theoretical foundations: electromagnetism,

quantum mechanics …

• Logical side:
• practice: communication protocols, networked applications …
• solid theoretical foundations: ???
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Logical foundations of large 
communication networks
• Computers:
• theory of computation, computability,

computational complexity …

• Communication between computers:
• information theory,

communication complexity theory …

• Computation in a network as a whole:
• theory of distributed computing
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Our focus today



Logical foundations of
computers vs. computer networks
• Theory of computation:

Which tasks can be solved
efficiently with a computer?

• Theory of distributed computing:

Which tasks can be solved efficiently
in a large computer network?
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Logical foundations of
computers vs. computer networks
• Example: solving graph problems

• Theory of computation:
• “Here is a graph that is given as a string on a Turing machine tape”
• How many steps does a Turing machine need to solve this problem?

• Theory of distributed computing:
• “I am a node in the middle of a very large graph”
• How far do I need to see to pick my own part of the solution?
• How much of the graph do I need to see?
• How many communication rounds are needed to solve the problem?
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Local: am I part of a triangle?

Global: how far am I from the nearest triangle?



Logical foundations of
computers vs. computer networks
• Theory of computation:
• e.g. hugely influential framework of NP-completeness (1970s)

• Theory of distributed computing:
• studied actively already since the 1980s
• but we have only very recently started to really understand e.g. locality
• solid theoretical foundations still largely missing
• lots of progress in the 2010s, tons of work left for the 2020s
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Distributed computing
before the 2010s
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Standard models
of computing
• LOCAL model
• input graph = computer network
• initially: each node has a unique ID + its own part of input
• communication round: each node sends a message to each neighbor
• finally: each nodes stops and outputs its own part of the solution

• CONGEST model
• bounded-size messages

• Port-numbering model
• no unique IDs
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Some important ideas
and concepts
• Solving vs. checking
• finding a solution vs. verifying a solution
• cf. deterministic vs. nondeterministic Turing machines, P vs. NP

• Problem family of “locally checkable labelings” (LCLs)
• O(1) input labels, O(1) output labels, max degree O(1)
• verification: check each radius-O(1) neighborhood
• Naor & Stockmeyer (1993, 1995)

• Proof labeling schemes
• Korman, Kutten, Peleg (2005)
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Some well-understood questions

• What can be computed with deterministic algorithms in 
anonymous networks?
• e.g. Angluin (1980), Yamashita & Kameda (1996)
• key technique: covering maps

• Which LCL problems can be solved in constant time?
• e.g. Naor & Stockmeyer (1993, 1995)
• key technique: Ramsey theory
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Four key
problems

• Key primitives for symmetry breaking
• e.g. input is a symmetric cycle → output has to break symmetry

• Trivial linear-time centralized algorithms
• e.g. maximal matching: pick non-adjacent edges until stuck

• Can we solve these efficiently in a distributed setting?
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Four key
problems

• Pioneering work on upper bounds:
• Cole & Vishkin (1986), Luby (1985, 1986), Alon, Babai, Itai (1986),

Israeli & Itai (1986), Panconesi & Srinivasan (1996), Hanckowiak, 
Karonski, Panconesi (1998, 2001), Panconesi & Rizzi (2001) …

• Pioneering work on lower bounds:
• Linial (1987, 1992), Naor (1991), Kuhn, Moscibroda, Wattenhofer (2004)
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Four key
problems

• Still wide gaps between upper and lower bounds

• Role of randomness poorly understood
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It seems that before the 2010s…

• Lots of work focused on specific problems
• proving upper & lower bounds for problem X
• connecting complexity of problem X through reductions to problem Y

• Not so much effort in understanding the overall landscape of 
distributed computational complexity
• what are the meaningful classes of problems?
• what can we prove about entire classes of problems?

• We were lacking general-purpose techniques for studying 
distributed computing
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With hindsight…

• Naor & Stockmeyer (1993, 1995) introduced a very useful 
problem class (LCLs) and initiated the study of decidability of 
distributed complexity
• but there was little follow-up work on these ideas until around 2016

• Linial (1987, 1992) already had the key idea behind 
“round elimination”
• but it was not really recognized as a general-purpose proof technique 

until around 2018
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Some highlights of 
distributed computing
in the 2010s
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From the 2010s:
Classification of LCLs
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LCL problems

• Examples of LCL problems (in graphs of max degree Δ = O(1)):
• (Δ+1)-coloring, Δ-coloring, 3-coloring …
• maximal independent set, maximal matching …
• sinkless orientation

• orient all edges
• all nodes of degree ≥ 3 have outdegree ≥ 1

• locally optimal cut
• label nodes black/white
• at least half of the neighbors have opposite color

• SAT (when interpreted as a graph problem)
• many other constraint satisfaction problems
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Can we say 
something 

about all
of these?
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Gaps have direct algorithmic 
implications
If you can solve an LCL problem

• in o(log n) rounds with a deterministic algorithm or

• in o(log log n) rounds with a randomized algorithm

then you can also solve it

• in O(log* n) rounds with a deterministic algorithms

30



Gaps have direct complexity-theoretic 
implications
If you can show that there is no O(log* n)-time
deterministic algorithm then:

• deterministic complexity is at least Ω(log n)

• randomized complexity is at least Ω(log log n)
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From the 2010s:
Complexity of maximal 
independent set &
maximal matching
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2 of 4 key problems
well understood
• Maximal independent set & matching:
• deterministic O(Δ + log* n)
• deterministic poly(log n)
• randomized O(log Δ) + poly(log log n)
• cannot improve any of these much

• Upper bound: Rozhon & Ghaffari (2019) + many others
• a new algorithm for deterministic network decomposition

• Lower bound: Balliu et al. (2019)
• based on the “round elimination” technique
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From the 2010s:
Round elimination 
technique

34



Round elimination technique

• Given:
• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist
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Linial (1987, 1992):
coloring cycles
• Given:
• algorithm A0 solves 3-coloring in T = o(log* n) rounds

• We construct:
• algorithm A1 solves 23-coloring in T − 1 rounds
• algorithm A2 solves 223-coloring in T − 2 rounds
• algorithm A3 solves 2223

-coloring in T − 3 rounds
…
• algorithm AT solves o(n)-coloring in 0 rounds

• But o(n)-coloring is nontrivial, so A0 cannot exist
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Brandt et al. (2016):
sinkless orientation
• Given:
• algorithm A0 solves sinkless orientation in T = o(log n) rounds

• We construct:
• algorithm A1 solves sinkless coloring in T − 1 rounds
• algorithm A2 solves sinkless orientation in T − 2 rounds
• algorithm A3 solves sinkless coloring in T − 3 rounds

…
• algorithm AT solves sinkless orientation in 0 rounds

• But sinkless orientation is nontrivial, so A0 cannot exist
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Round elimination
can be automated
• Always possible for any graph problem P0

that is locally checkable

• If problem P0 has complexity T, we can always find in a 
mechanical manner problem P1 that has complexity T − 1

• Holds for tree-like neighborhoods (e.g. high-girth graphs)

• Can be used to derive lower bounds and to design algorithms
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From the 2010s:
Using computers to study 
distributed computing
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Using computers to do study 
distributed computing
• Many questions related to distributed computational complexity 

have turned out to be decidable or semi-decidable
• at least in principle, and often also in practice
• we can start to automate our own work and outsource

algorithm design & lower bound construction to computers

• Automatic round elimination implemented, available online:
github.com/olidennis/round-eliminator (Olivetti 2019)
• in 2016 a lower bound for “sinkless orientation” was a STOC paper
• in 2019 you can reproduce it in your web browser
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Distributed computing
in the 2020s
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Distributed complexity theory
beyond LCLs
• We can nowadays say a lot about LCL problems:
• near-complete classification of distributed complexity
• systematic studies, powerful proof techniques, automatic tools

• How could we extend all this to non-LCLs?

• Small first steps for the coming years:
• locally checkable problems with unbounded degrees?
• locally checkable problems with countably many labels?
• locally checkable problems with real numbers and linear constraints?
• optimization problems with locally checkable constraints?
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Four key
problems

• Independent sets & matchings: now well understood

• Coloring: distributed complexity still wide open

• “Small” first step for the coming years:
• show that (Δ+1)-vertex coloring cannot

be solved in o(log Δ) + O(log* n) rounds
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Two perspectives of
distributed computing
Network algorithms

• Solving problems related
to the network structure

• Example: network protocols

• Key limitation: long distances

• No centralized control

• Local perspective

Big data

• Solving large computational 
tasks with many computers

• Example: MapReduce

• Key limitation: bandwidth

• Fully centralized control

• Global perspective
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Two perspectives of
distributed computing
Network algorithms

• LOCAL

• CONGEST

Big data

• PRAM

• MPC = Massively Parallel 
Computation

• BSP = Bulk-Synchronous 
Parallel

• Congested clique
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Unifying 
models?



Two perspectives of
distributed computing
Network algorithms

• tight unconditional
lower bounds for
many problems

Big data

• typically at best
conditional lower
bounds
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Technology
transfer?



Two perspectives of
distributed computing
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Two perspectives of
distributed computing
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Volume model

• Time T in LOCAL model:
• each node can explore a subgraph

of radius T around it and then choose its output

• Time T in VOLUME model:
• each node can adaptively explore a subgraph

of size T around it and then choose its output

• Closely related model: LCA (local computation algorithms),
a.k.a. centralized LOCAL algorithms or CentLOCAL
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Volume model

• Bridge between two flavors of distributed computing

• Close enough to LOCAL so that it is possible to prove
unconditional lower bounds

• Yet poorly understood: typically exponential gaps between
upper and lower bounds

• Not-so-small first steps:
• charting the landscape of LCL problems in the volume model
• tight bounds for e.g. sinkless orientation, maximal matching …
• volume analogue of round elimination
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Summary

• 2010s:
• systematic study of LCL problems in the LOCAL model
• new techniques and automatic tools

• 2020s:
• extending theory beyond LCLs
• technology transfer LOCAL → VOLUME →MPC, PRAM, …

• Small puzzles to solve:
• show that O(Δ) volume is not enough for bipartite maximal matching
• construct an LCL problem with deterministic volume ω(log* n) … o(n)
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