Deterministic Local Algorithms, Unique Identifiers, and Fractional Graph Colouring

Henning Hasemann, <u>Juho Hirvonen</u>, Joel Rybicki, and Jukka Suomela

> TU Braunschweig University of Helsinki

> > SIROCCO 2012 30 June 2012

Our Result

There is a deterministic distributed algorithm that runs in 1 communication round that, for any $\alpha>1$, finds a fractional graph colouring of length at most $\alpha(\Delta+1)$

Communication graph

Synchronous communication

Synchronous communication

▶ In *T* rounds gather radius-*T* neighbourhood

Constant-time algorithms

► Each node maps neighbourhood to output

Our Result Again

There is a deterministic distributed algorithm that runs in 1 communication round that, for any $\alpha>1$, finds a fractional graph colouring of length at most $\alpha(\Delta+1)$

Lower Bound

▶ Impossible to break symmetry in an anonymous cycle

Nodes must produce an empty schedule

▶ Standard assumption: numeric identifiers

Standard assumption: numeric identifiers

- Standard assumption: numeric identifiers
- ► FGC is the first example where numeric identifiers give a constant-time algorithm

Why Numeric Identifiers Do Not Help?

Numeric Identifiers Not Needed

- ▶ Naor & Stockmeyer (1995) studied when numeric identifiers are necessary
- ► LCL-problems

Maximal Independent Set

Vertex Cover

Maximal Matching

Numeric Identifiers Not Needed

- ▶ Naor & Stockmeyer (1995): In LCL-problems numeric identifiers not necessary
 - ► Technicality: applies if output bounded

No FGC with Comparisons

▶ Identifiers arranged in an ascending order

No FGC with Comparisons

► Some nodes must produce an empty schedule

Why Numeric Identifiers Help with FGC?

Non-constant output

▶ In FGC natural encoding of solution not bounded in size

Non-constant output

Non-constant output

The Algorithm

Algorithm Design Idea

- Use a randomised independent set algorithm as a black box
- Iterate over possible random bit strings for the black box to get a deterministic algorithm

A Randomised Algorithm

- A randomised algorithm for the independent set problem
- ► Each node gets a random bit string

A Randomised Algorithm

- Local maxima join the independent set
- Guarantee: each node v joins with probability at least

$$\frac{1-\varepsilon}{\deg(v)+1}$$

Deterministic Algorithm (Oversimplified)

- Simulate the random algorithm by iterating over all combinations of inputs
- Encoding of the output grows with size of the network
- ▶ By Naor & Stockmeyer, dependence on *n* is necessary

Deterministic Algorithm (Oversimplified)

Tradeoffs

Granularity Tradeoff

- Any two can be kept constant in bounded degree graphs
- Constant running time and length of schedule
 - ► This work
 - granularity of schedule grows with size of the network

Running Time Tradeoff

- Any two can be kept constant in bounded degree graphs
- Constant length of schedule and granularity
 - find a $(\Delta + 1)$ -colouring in $O(\log^* n)$ rounds

Length of Schedule Tradeoff

- Any two can be kept constant in bounded degree graphs
- Constant running time and granularity
 - node of colour c(v) is active during time interval

$$(c(v)-1,c(v)]$$

length of schedule poly(n)

Time-Length-Granularity Tradeoff—Summary

- Impossible to have constant running time, length and granularity at the same time
 - ► Naor & Stockmeyer

granularity	O(1)
length	O(1)
running time	O(1)

Our Result

There is a deterministic distributed algorithm that runs in 1 communication round that, for any $\alpha>1$, finds a fractional graph colouring of length at most $\alpha(\Delta+1)$