Exact bounds for
 distributed graph colouring

Joel Rybicki
Max Planck Institute for Informatics

Jukka Suomela

Helsinki Institute for Information
Technology \& Aalto University

SIROCCO 2015
July 15, 2015

Graph colouring

Graph colouring

Input: A cycle with a consistent orientation

Given a colouring $f: V \rightarrow\{1, \ldots, n\}$
$G=(V, E) \quad\{u, v\} \in E \Rightarrow f(u) \neq f(v)$

Task: Colour reduction

Input:
n-colouring

Output:
3-colouring

Model of computing

Synchronous rounds. Each node

1. sends messages
2. receives messages
3. updates local state

Local views

0 rounds

Local views

1 round

Local views

Local views

r rounds

An algorithm is a map

Time complexity

$$
C(n, 3)
$$

is the exact number of rounds it takes to 3 -colour any n-coloured directed cycle

Prior work

Complexity of 3-colouring

$$
\frac{1}{2} \log ^{*} n-1 \leq C(n, 3)
$$

Linial (1992)

$$
\log ^{*} n=\min \{i: \overbrace{\log \cdots \log } n \leq 1\}
$$

Prior work

Complexity of 3-colouring

$$
C(n, 3) \leq \frac{1}{2} \log ^{*} n+3
$$

Cole \& Vishkin (1987)

$$
\log ^{*} n=\min \{i: \overbrace{\log \cdots \log }^{i} n \leq 1\}
$$

Prior work

Complexity of 3-colouring

$$
\frac{1}{2} \log ^{*} n-1 \leq C(n, 3) \leq \frac{1}{2} \log ^{*} n+3
$$

Cole \& Vishkin (1987)
Linial (1992)

$$
\log ^{*} n=\min \{i: \overbrace{\log \cdots \log } n \leq 1\}
$$

Prior work

Complexity of 3-colouring

$$
C(n, 3)=\frac{1}{2} \log ^{*} n+O(1)
$$

In "practice", the additive term dominates:

$$
\log ^{*} 10^{19728}=5
$$

Our result

For infinitely many values of n, 3-colouring requires exactly
$\frac{1}{2} \log ^{*} n$ rounds.

The approach

Lower bound: Tighten Linial's bound using new computational techniques

Upper bound: A careful analysis of NaorStockmeyer (1995) colour reduction

The lower bound

Step 1. Bound the complexity of finding a 16-colouring

Step 2. Show that a fast 3-colouring algorithm implies a fast 16-colouring algorithm

The lower bound

Step 1. Bound the complexity of finding a 16-colouring "Dependence on n "

Step 2. Show that a fast 3-colouring algorithm implies a fast 16-colouring algorithm "The additive $\mathrm{O}(1)$ term"

Two-sided \approx one-sided

Two-sided view $C(n, 3)$
 r rounds

One-sided view $T(n, 3)$

2 rrounds

$$
C(n, 3)=\lceil T(n, 3) / 2\rceil
$$

The speed-up lemma

c-colouring in r rounds

The speed-up lemma

c-colouring in r rounds

$$
\Rightarrow
$$

$\left(2^{c}-2\right)$-colouring in $r-1$ rounds

New technique: Successor Graphs
Fix any (e.g. optimal) algorithm

New technique:

 Successor GraphsFix any (e.g. optimal) algorithm and apply the speed-up lemma to get

$$
A_{0}
$$

\#colours 3
\#rounds t

New technique:

Successor Graphs

Fix any (e.g. optimal) algorithm and apply the speed-up lemma to get

$$
A_{0} \quad A_{1}
$$

\#colours $\quad 3 \quad 2^{3}-2$
\#rounds $t \quad t-1$

New technique:

Successor Graphs

Fix any (e.g. optimal) algorithm and apply the speed-up lemma to get

$$
\begin{array}{llll}
A_{0} & A_{1} & \ldots & A_{t}
\end{array}
$$

$\begin{array}{lcclc}\text { \#colours } & 3 & 2^{3}-2 & \cdots & \geq n \\ \text { \#rounds } & t & t-1 & \ldots & 0\end{array}$

Successor relation

Consider A_{k} that outputs colours from

$$
C_{k}=\{0 \bigcirc \bigcirc \cdots \bigcirc\}
$$

Colour \bigcirc is a successor of colour \bigcirc
if A_{k} outputs $\bigcirc \bigcirc \rightarrow \bigcirc \bigcirc_{u} \rightarrow \bigcirc_{v}$

Successor graph

Edges: the successor relation

Starting from any algorithm we get

Algorithm: $A_{0} \quad A_{1} \cdots A_{t}$
Successor graph:
\mathcal{S}_{0}
\mathcal{S}_{1}
\mathcal{S}_{t}

Colourability lemma

\mathcal{S}_{k} is c-colourable \Rightarrow
there is a c-colouring algorithm running in $t-k$ rounds

A finite super graph

For all k, there is a finite graph that contains the successor graph of any algorithm as a subgraph.

Proving lower bounds

Super graph + colorability lemma: Chromatic number an upper bound for all successor graphs!

Finite super graph:

Easy to use a computer search for small enough super graphs!

The key result

For any t-time 3-colouring algorithm, the successor graph \mathcal{S}_{2} is 16-colourable

Complement of S_{2}

The key result

For any t-time 3-colouring algorithm, the successor graph \mathcal{S}_{2} is 16-colourable

By colourability lemma, there exists a 16-colouring algorithm running in $t-2$ rounds

The lower bound

Step 1. Iterated speed-up lemma: 16-colouring takes $\log ^{*} n-2$ rounds

Step 2. Successor graph bound: 3-colouring takes $\log ^{*} n$ rounds

Two-sided \approx one-sided

Two-sided view $C(n, 3)$
 rrounds

One-sided view $T(n, 3)$

$2 r$ rounds

$$
C(n, 3)=\lceil T(n, 3) / 2\rceil
$$

Conclusions

For infinitely many values

$$
C(n, 3)=\frac{1}{2} \log ^{*} n
$$

Use successor graphs and computers for lower bound proofs!

Conclusions

For infinitely many values

$$
C(n, 3)=\frac{1}{2} \log ^{*} n
$$

Use successor graphs and computers for lower bound proofs!

> Thanks!

