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Graph colouring

G = (V,E)

Input: A cycle with a  
consistent orientation



Graph colouring

Input: A cycle with a  
consistent orientation

Given a colouring
f : V ! {1, . . . , n}

{u, v} 2 E ) f(u) 6= f(v)G = (V,E)



Task: Colour reduction

3-colouringn-colouring
Input: Output: 



Model of computing

1. sends messages 

2. receives messages

3. updates local state

Synchronous rounds. Each node
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Local views

0 rounds
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Local views

1 round
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Local views

2 rounds



Local views

r rounds
v

A( ) 2 { , , }
An algorithm is a map



Time complexity

is the exact number of rounds it takes to 
3-colour any n-coloured directed cycle

C(n, 3)



Prior work

Linial (1992)

1

2

log

⇤ n� 1  C(n, 3)  1

2

log

⇤ n+ 3

Complexity of 3-colouring

log

⇤ n = min{i :
iz }| {

log · · · log n  1}



Prior work

1

2

log

⇤ n� 1  C(n, 3)  1

2

log

⇤ n+ 3

Cole & Vishkin (1987)

Complexity of 3-colouring

log

⇤ n = min{i :
iz }| {

log · · · log n  1}



Prior work

1

2

log

⇤ n� 1  C(n, 3)  1

2

log

⇤ n+ 3

Complexity of 3-colouring

Cole & Vishkin (1987)
Linial (1992)

log

⇤ n = min{i :
iz }| {

log · · · log n  1}



Prior work
Complexity of 3-colouring
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In “practice”, the additive term dominates:
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Our result

For infinitely many values of n, 
3-colouring requires exactly 

1

2

log

⇤ n rounds.



The approach

Lower bound: Tighten Linial’s bound 
using new computational 
techniques

Upper bound: A careful analysis of Naor–
Stockmeyer (1995) colour 
reduction 



The lower bound

Show that a fast 3-colouring  
algorithm implies a fast  
16-colouring algorithm

Bound the complexity of  
finding a 16-colouring

Step 1.

Step 2.



The lower bound

Show that a fast 3-colouring  
algorithm implies a fast  
16-colouring algorithm

Bound the complexity of  
finding a 16-colouring

Step 1.

Step 2.

“Dependence on n”

“The additive O(1) term”



Two-sided ≈ one-sided
Two-sided view

v

One-sided view
v0

C(n, 3) = dT (n, 3)/2e

r rounds

2r rounds

C(n, 3)

T (n, 3)



The speed-up lemma
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  -colouring in r roundsc



The speed-up lemma

va

va

  -colouring in r rounds

   -colouring in r− 1 rounds

c

)

(2c � 2)



New technique: 
Successor Graphs
Fix any (e.g. optimal) algorithm



New technique: 
Successor Graphs
Fix any (e.g. optimal) algorithm
and apply the speed-up lemma to get 
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Colour       is a successor of colour   

Successor relation
Consider that outputs colours from 

{ }. . .Ck = .

if       outputsAk
u v

Ak



Successor graph

Nodes: { }. . .Ck =

Edges: the successor relation



Starting from any 
algorithm we get

Algorithm:

Successor 
graph:

A0 A1
. . .

S0 S1
. . . St

At



Colourability lemma

Sk is c-colourable

there is a c-colouring algorithm 
running in t-k rounds

)



A finite super graph

For all k, there is a finite graph 
that contains the successor graph of 

any algorithm as a subgraph.



Proving lower bounds

Super graph + colorability lemma:
Chromatic number an upper 
bound for all successor graphs!

Finite super graph:
Easy to use a computer search 
for small enough super graphs!



For any t-time 3-colouring algorithm, 
the successor graph       is 16-colourable

The key result

S2
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For any t-time 3-colouring algorithm, 
the successor graph       is 16-colourable

The key result

S2

By colourability lemma, there exists a 
16-colouring algorithm running in t− 2  
rounds



The lower bound

Iterated speed-up lemma:
16-colouring takes 
rounds

Step 1.

Step 2.

log

⇤ n� 2

Successor graph bound:
3-colouring takes 
rounds

log

⇤ n



Two-sided ≈ one-sided
Two-sided view

v

One-sided view
v0

C(n, 3) = dT (n, 3)/2e

r rounds

2r rounds

C(n, 3)

T (n, 3)



Conclusions

For infinitely many values

C(n, 3) =
1

2

log

⇤ n.

Use successor graphs and 
computers for lower bound proofs!



Conclusions

For infinitely many values

C(n, 3) =
1

2

log
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Use successor graphs and 
computers for lower bound proofs!

Thanks!


