Exact bounds for distributed graph colouring

Joel Rybicki

Jukka Suomela

Max Planck Institute for Informatics

Helsinki Institute for Information Technology & Aalto University

SIROCCO 2015 July15, 2015

Graph colouring

Input: A cycle with a consistent orientation

Graph colouring

Input: A cycle with a consistent orientation

Given a colouring $f: V \to \{1, \dots, n\}$ $G = (V, E) \quad \{u, v\} \in E \Rightarrow f(u) \neq f(v)$

Task: Colour reduction

Model of computing

Synchronous rounds. Each node

- 1. sends messages
- 2. receives messages
- 3. updates local state

0 rounds

1 round

An **algorithm** is a map $A(\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc) \in \{\bigcirc, \bigcirc, \bigcirc\}$

Time complexity

C(n,3)

is the **exact** number of rounds it takes to 3-colour **any** *n*-coloured directed cycle

Complexity of 3-colouring

 $\frac{1}{2}\log^* n - 1 \le C(n,3)$

Linial (1992)

$$\log^* n = \min\{i : \overbrace{\log \cdots \log n}^{i} \le 1\}$$

Complexity of 3-colouring

$$C(n,3) \le \frac{1}{2}\log^* n + 3$$

Cole & Vishkin (1987)

$$\log^* n = \min\{i : \overbrace{\log \cdots \log n}^{i} \le 1\}$$

Complexity of 3-colouring

$$\frac{1}{2}\log^* n - 1 \le C(n,3) \le \frac{1}{2}\log^* n + 3$$

Cole & Vishkin (1987) Linial (1992)

$$\log^* n = \min\{i : \log \cdots \log n \le 1\}$$

Complexity of 3-colouring

$$C(n,3) = \frac{1}{2}\log^* n + O(1)$$

In "practice", the additive term dominates:

$$\log^* 10^{19728} = 5$$

Our result

For infinitely many values of *n*, 3-colouring requires *exactly* $\frac{1}{2}\log^* n$ rounds.

The approach

Lower bound: Tighten Linial's bound using new computational techniques

Upper bound: A careful analysis of Naor– Stockmeyer (1995) colour reduction

The lower bound

Step 1. Bound the complexity of finding a 16-colouring

Step 2. Show that a fast 3-colouring algorithm implies a fast 16-colouring algorithm

The lower bound

Step 1. Bound the complexity of finding a 16-colouring **"Dependence on** *n***"**

Step 2. Show that a fast 3-colouring algorithm implies a fast 16-colouring algorithm "The additive O(1) term"

The speed-up lemma

c-colouring in *r* rounds

The speed-up lemma

c-colouring in *r* rounds

Fix any (e.g. optimal) algorithm

Fix any (e.g. optimal) algorithm and apply the speed-up lemma to get

 A_0

- **#colours** 3
- **#rounds** t

Fix any (e.g. optimal) algorithm and apply the speed-up lemma to get

- $A_0 \qquad A_1$ #colours 3 $2^3 - 2$
- **#rounds** t t-1

Fix any (e.g. optimal) algorithm and apply the speed-up lemma to get

$$A_0$$
 A_1 \cdots A_t #colours3 $2^3 - 2$ \cdots $\geq n$ #rounds t $t-1$ \cdots 0

Successor relation

Consider A_k that outputs colours from

$$C_k = \{ \mathbf{O} \mathbf{O} \cdots \mathbf{O} \}.$$

Colour \bigcirc is a *successor* of colour \bigcirc if A_k outputs $\bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc$

Successor graph

Nodes: $C_k = \{ \bigcirc \bigcirc \cdots \bigcirc \}$ Edges: the successor relation

Starting from any algorithm we get

Colourability lemma

\mathcal{S}_k is *c*-colourable

 \Rightarrow

there is a *c*-colouring algorithm running in *t-k* rounds

A finite super graph

For all *k*, there is a **finite graph** that contains the successor graph of **any algorithm** as a subgraph.

Proving lower bounds

Super graph + colorability lemma:

Chromatic number an upper bound for all successor graphs!

Finite super graph:

Easy to use a *computer search* for small enough super graphs!

For any *t*-time 3-colouring algorithm, the successor graph \mathcal{S}_2 is **16-colourable**

Complement of S₂

The key result

For any *t*-time 3-colouring algorithm, the successor graph \mathcal{S}_2 is **16-colourable**

By **colourability lemma**, there exists a 16-colouring algorithm running in t - 2 rounds

The lower bound

Step 1. Iterated speed-up lemma: 16-colouring takes $\log^* n - 2$ rounds

Step 2. Successor graph bound: 3-colouring takes $\log^* n$ rounds

Conclusions

For infinitely many values $C(n,3) = \frac{1}{2} \log^* n.$

Use successor graphs and computers for lower bound proofs!

Conclusions

For infinitely many values $C(n,3) = \frac{1}{2} \log^* n.$

Use successor graphs and computers for lower bound proofs!

Thanks!