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Graph problems

• Today’s topic: graph problems

• Lots of research activity related to individual graph problems
• this one can be solved in O(nm) time, this one is NP-hard…

• What can we say about entire families of graph problems?
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Classifying graph problems

• Combinatorial classifications
• e.g. hereditary, monotone, minor-closed graph properties

• Logical classifications
• e.g. expressible by existential second-order formulas

• Computational classifications
• deterministic time: e.g. in P
• nondeterministic time: e.g. in NP
• parallel time: e.g. in NC
• space: e.g. in PSPACE …
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Classifying graph problems

• Combinatorial classifications

• Logical classifications

• Computational classifications

• Information-theoretic classifications
• how much do you need to know about the graph to solve the problem?
• how many bits do you need to communicate?
• how far do you need to see?
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Today’s focus: locality
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O(1) distance

Θ(n) distance

Local: am I part of a triangle?

Global: how far am I from the nearest triangle?



Why care about locality?

• Problem is local:
• efficient distributed algorithms — few communication rounds
• efficient parallel algorithms — graph can be decomposed in small 

components that can be solved independently from each other
• property testing and sublinear-time algorithms — sample random 

nodes, compute their own part of the solution

• Problem is global:
• understanding nature, biological systems, social networks, computer 

networks — fundamental limitation for any system that consists of 
independent agents that exchange information with each other
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Locality ≈ distributed time complexity

• “LOCAL” model of distributed computing:
• graph = communication network

• node = processor
• edge = communication link
• all nodes have unique identifiers

• time = number of communication rounds
• round = nodes exchange messages with all neighbors
• 1 communication round: all nodes can learn everything within distance 1
• T communication rounds: all nodes can learn everything within distance T

• Time = distance
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Towards distributed
complexity theory
• Lots of work on specific graph problems:
• maximal independent set, maximal matching,

vertex coloring, edge coloring, sinkless orientation …
• upper bounds, lower bounds
• reductions between problems

• What can we say about entire families of graph problems?
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We need the
right definitions!



We have had the right 
concept since 1995 —
didn’t see it until recently
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LCL: locally checkable labeling

• Input:
• graph of maximum degree Δ = O(1)
• node (or edge) labels from set X, with |X| = O(1)

• Output:
• node (or edge) labels from set Y, with |Y| = O(1)

• Constraints:
• solution is globally feasible if it is locally feasible

in all O(1)-radius neighborhoods
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Naor & Stockmeyer 1995



LCL: locally checkable labeling

• Examples (in graphs of max degree Δ):
• (Δ+1)-coloring, Δ-coloring, 3-coloring …
• maximal independent set, maximal matching …
• sinkless orientation

• orient all edges
• all nodes of degree ≥ 3 have outdegree ≥ 1

• locally optimal cut
• label nodes black/white
• at least half of the neighbors have opposite color

• SAT (when interpreted as a graph problem)
• many other constraint satisfaction problems
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LCL: locally checkable labeling

• Typically LCLs:
• finding a solution that satisfies local constraints

• e.g. “maximal”, “minimal”, “equilibrium”

• Typically not LCLs:
• finding a solution that satisfies global constraints

• e.g. “acyclic”, “connected”
• optimization, approximation
• decision, counting, enumeration
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LCL: locally checkable labeling

• Any LCL has a trivial finite specification:
list all feasible local neighborhoods
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Example:
maximal 

independent
set

(Δ = 2)

1 0 1

0 0 1

1 0 0

0 1 0

1 0

0 1
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LCL: locally checkable labeling

• LCL problems can be solved in O(1) rounds with
nondeterministic distributed algorithms
• all nodes non-deterministically guess a solution
• all nodes verify the solution in their local neighborhood

• Natural distributed analogue of class NP
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LCL: locally checkable labeling

• Why is this a useful concept?

• Good: many problems that we study in distributed computing 
are LCLs

• Not obvious: can we prove any interesting theorems of the 
form: “If P is any LCL problem, then …”?
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Yes!



How local are

LCL problems?
When does local checkability imply local solvability?
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Locality of LCL problems

• Some LCLs are trivially local
• e.g. “label all nodes with 1”

• Some LCLs are trivially global
• e.g. 2-coloring: just telling if a solution exists requires Θ(n) distance

• Can we have LCLs that are “intermediate”?
• e.g. Θ(n1/2), Θ(log n), Θ(log log n)?

• Does randomness ever help with LCLs?
• e.g. global deterministically, local with randomness?
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Landscape of
LCL problems
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Landscape of
LCL problems

Deterministic
time complexity
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Landscape of
LCL problems

Randomized
time complexity

Deterministic
time complexity
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Landscape of
LCL problems

deterministic

randomizedn
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Θ(log n) 
deterministic

Θ(log log n)
randomized
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Landscape of
LCL problems

deterministic

randomized

Trivial

Trivial
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Landscape of
LCL problems

deterministic

randomized

Maximal independent set

Cole & Vishkin 1986
Linial 1987, 1992

Naor 1991
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Landscape of
LCL problems

deterministic

randomized

State of the 
art 1992
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Landscape of
LCL problems

deterministic

randomized

State of the 
art 2015

???
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Landscape of
LCL problems

deterministic

randomized

???
Maybe there are 
only 3 classes
of problems?
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Landscape of
LCL problems

deterministic

randomized

???
Or what if any 
complexity is 
possible?
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Landscape of
LCL problems

deterministic

randomized

???
Or could it be that 
randomness 
never helps?



• Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, S, Uitto  (STOC 2016)
• Chang, Kopelowitz, Pettie  (FOCS 2016)
• Ghaffari, Su  (SODA 2017)
• Brandt, Hirvonen, Korhonen, Lempiäinen, Östergård, Purcell, Rybicki, S, Uznański

(PODC 2017)
• Fischer, Ghaffari  (DISC 2017)
• Chang, Pettie  (FOCS 2017)
• Chang, He, Li, Pettie, Uitto  (SODA 2018)
• Balliu, Hirvonen, Korhonen, Lempiäinen, Olivetti, S  (STOC 2018)
• Ghaffari, Hirvonen, Kuhn, Maus  (PODC 2018)
• Balliu, Brandt, Olivetti, S  (DISC 2018)
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Landscape of
LCL problems

Progress in 2016–
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Landscape of
LCL problems

deterministic

randomized

State of the 
art now
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deterministic

randomizedn

n

log n

log n

log log n

log log n

log⇤ n

log⇤ n

log log⇤ n

log log⇤ n

1

1

Brandt et al. 2016
Chang et al. 2016
Ghaffari & Su 2017 

Chang et al. 2016

Chang & Pettie 2017
Naor & Stockmeyer 1995

Cole & Vishkin 1986
Linial 1992
Naor 1991

Balliu et al. 2018a

Chang & Pettie 2017
Fischer & Ghaffari 2017

Chang & Pettie 2017

Balliu et al. 2018a
Balliu et al. 2018b

Ghaffari et al. 2018

Balliu et al. 2019

Landscape of
LCL problems
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Landscape of
LCL problems

deterministic

randomized
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Four classes of 
graph problems

deterministic

randomized
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Gaps

deterministic

randomized



Gaps have direct algorithmic 
implications
If you can solve an LCL problem

• in o(log n) rounds with a deterministic algorithm or

• in o(log log n) rounds with a randomized algorithm

then you can also solve it

• in O(log* n) rounds with a deterministic algorithms
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Gaps have direct complexity-theoretic 
implications
If you can show that there is no O(log* n)-time
deterministic algorithm then:

• deterministic complexity is at least Ω(log n)

• randomized complexity is at least Ω(log log n)
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deterministic

randomized
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deterministic

randomized

Strictly local 
problems

Examples of LCLs:
• detect triangles
• weak 2-coloring in

odd-degree graphs
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deterministic

randomized

Symmetry-
breaking problems
• local if symmetry 

already broken

• can be solved
greedily

• randomness does 
not help at all

Examples of LCLs:
• maximal independent set
• maximal matching
• (Δ+1)-coloring
• weak 2-coloring
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deterministic

randomized

Global problems
• randomness does 

not help much
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deterministic

randomized

Global, but 
“shattering” works
• randomness helps 

exponentially

Examples of LCLs:
• sinkless orientation
• Δ-coloring
• constructive

Lovász local lemma



Shattering technique

• Example: sinkless orientation (in high-degree graphs)

• Orient half of the edges randomly
• runs in O(1) time

• Most nodes are happy
• there is at least one oriented outgoing edge

• Unhappy connected components have O(log n) nodes w.h.p.
• apply O(log n)-time deterministic algorithm in unhappy components
• runs in O(log log n) time
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deterministic

randomized

Δ-coloring

(Δ+1)-coloring



Summary

• Key concept: locally checkable labeling (LCL)
• bounded degrees, bounded inputs, bounded outputs
• constant-radius checkable

• Four distinct classes of LCL problems
• wide gaps→ automatic speedups
• robust classes, relevant also

beyond the LOCAL model

• Key open challenge:
finding useful generalizations
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global

shattering
works

local

local if 
symmetry 

broken


