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This work

The first linear-in-A lower bound for a natural graph
problem in the LOCAL model

Fractional maximal matching:
- There is no o(A)-algorithm, independent of n
- There is an O(A)-algorithm, independent of n

(A = maximum degree, n = number of vertices)
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Matching

Matching assigns weight 1 to matched edges and
weight 0 to the rest
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Fractional matching
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FM is a linear relaxation of matching: weights of
the incident edges sum up to at most 1
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Maximal fractional matching
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A node is , if the sum of the weights of
the incident edges is equal to one
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Maximal fractional matching
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The fractional matching is maximal,
it no two unsaturated nodes are adjacent
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Standard LOCAL model

- Synchronous communication
- No bandwidth restrictions
- Running time = number of communication rounds

- Both deterministic and randomized algorithms
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Prior work

Coordination problems:
- Maximal matching

- Maximal independent set
- (A+1)-coloring

Algorithms O(A+ log*n)  also O(polylog(n)

Lower bounds Q(log* n) and Q(log A)
[Linial '92] [Kuhn et al. '05]
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The Proof



The Proof

A short guide

- Step 0: Introduce models EC, PO, Ol and ID

- Step 1: Q(A)-lower bound in the EC-model
- Step 2: Simulation result EC~PO~OI~ID

- Step 3: ID ~ Randomized algorithms
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Eage coloring (EC)

O

EC~>~PO~Ol~ID~R



Port-numbering and orientation

(PO)

EC ~>~PO ~Ol~ID~R 15



Port-numbering and orientation
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Unique |dentitiers (ID)
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Order Invariant (Ol)

FC~>PO~OIl~ID~R

U
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The Proof

A short guide
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Loopy graphs

=

A graph is k-loopy, it it has at least k self-loops at
each node

EC~>~PO~Ol~ID~R 20



Loopy graphs
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Loopy graphs are a compact representation of
simple graphs with lots of symmetry

EC~>~PO~Ol~ID~R 21



Loopy graphs
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A loopy graph can be unfolded to get a simple graph
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Loopy graphs
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A loopy graph can be unfolded to get a simple graph
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Loopy graphs

FAS SIS A

60 O—&

()
-/

loopy graphs = infinite trees

EC~>~PO~Ol~ID~R 24



Loopy graphs

Sl

Key observation: a maximal fractional matching must
saturate all nodes of a loopy graph!
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EC lower bound
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EC lower bound
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EC lower bound
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The Proof

A short guide to the proot

- Step 0: Introduce models EC, PO, Ol and ID

- Step 1: Q(A)-lower bound in the EC-model
- Step 2: Simulation result EC~PO-~OI~ID

- Step 3: ID ~ Randomized algorithms

29



EC ~ PO



FC - PO

Assume we have an o(A)-time algorithm A for
maximal edge packing in the PO model

EC->PO~OIl~ID~R 31



FC ~ PO
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Transtform EC graph into PO graph by replacing each
edge with two oriented edges

EC-PO~OI~ID~R 32



FC - PO
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Simulate the PO-algorithm A and combine the

weights of the corresponding edges

EC-PO~OI~ID~R 33



EC ~ PO

We get an o(A)-algorithm in the EC-model,
which is a contradiction

EC->PO~OIl~ID~R 34



PO ~ Ol



PO ~ Ol

- Similar technology as Go0os et al. (2012)

- Now we do not need any approximation
guarantees

EFC~>~PO~OIl~ID~R 36



PO ~ Ol

Assume we have a PO-algorithm A

We use port numbers and orientation to get a local
ordering

EFC~>~PO~OIl~ID~R 37



Take the universal cover of G

EFC~>~PO~OIl~ID~R 38



Canonically
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Embed U(Q)

EFC~>~PO~OIl~ID~R



PO ~ Ol

't is possible to make a PO-graph an Ol-graph locally

Use this to simulate A

EFC~>~PO~OIl~ID~R 41



Ol ~ ID



Ol ~ ID

Use the Ol ~ ID lemma of

Naor and Stockmeyer (1995)
(essentially Ramsey’s Theorem)

The idea is to force any ID-algorithm A to behave like
an Ol-algorithm on some inputs

FC~PO~OlI~ID~R



Ol ~ ID

Trick: consider an algorithm A* that simulates A and
outputs 1 at saturated nodes and O elsewhere to
apply the Lemma

This forces all nodes to be saturated in A in loopy
neighborhoods

Any change must propagate outside A’s run time

FC~PO~OlI~ID~R 4



The Proof

A short guide

- Step 0: Introduce models EC, PO, Ol and ID

- Step 1: Q(A)-lower bound in the EC-model
- Step 2: Simulation result EC~PO~OI~ID

- Step 3: ID ~ Randomized algorithms
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Randomized algorithms

|dea: Reduce random algorithms back to
deterministic ones

Again use a lemma of Naor and Stockmeyer (1995)

FC~>~PO~Ol~ID~>R 4



Summary

This work

Fractional maximal matching has complexity O(A)

Open questions
What is the complexity of maximal matching?

What is the complexity of 2-colored maximal
matching?
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