Linear-in- Δ lower bounds in the LOCAL model

Mika Göös, University of Toronto Juho Hirvonen, Aalto University \& HIIT Jukka Suomela, Aalto Univesity \& HIIT

> PODC 16.7.2014

This work

The first linear-in- Δ lower bound for a natural graph problem in the LOCAL model

Fractional maximal matching:

- There is no o(Δ)-algorithm, independent of n
- There is an $O(\Delta)$-algorithm, independent of n
($\Delta=$ maximum degree, $n=$ number of vertices)

Matching

Matching assigns weight 1 to matched edges and weight 0 to the rest

Fractional matching

FM is a linear relaxation of matching: weights of the incident edges sum up to at most 1

Maximal fractional matching

A node is saturated, if the sum of the weights of the incident edges is equal to one

Maximal fractional matching

The fractional matching is maximal,
if no two unsaturated nodes are adjacent

Standard LOCAL model

- Synchronous communication
- No bandwidth restrictions
- Running time $=$ number of communication rounds
- Both deterministic and randomized algorithms

This work

The first linear-in- Δ lower bound for a natural graph problem in the LOCAL model

Fractional maximal matching:

- There is no o(Δ)-algorithm, independent of n
- There is an $O(\Delta)$-algorithm, independent of n
($\Delta=$ maximum degree, $n=$ number of vertices)

Prior work

Coordination problems:

- Maximal matching
- Maximal independent set
- ($\Delta+1$)-coloring

Algorithms $O\left(\Delta+\log ^{\star} n\right) \quad$ also $O(p o l y \log (n)$
Lower bounds $\Omega(\log * n)$ and $\Omega(\log \Delta)$
[Linial '92] [Kuhn et al. '05]

Prior work

Coordination problems:

- Maximal matching
- Maximal independent set
- ($\Delta+1$)-coloring

Algorithms $O\left(\Delta+\log ^{*} n\right) \quad$ also $O(p o l y \log (n)$
Lower bounds $\Omega(\log * n)$ and $\Omega(\log \Delta)$
[Linial '92] [Kuhn et al. '05]

The Proof

The Proof

A short guide

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$-lower bound in the EC-model
- Step 2: Simulation result $\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID}$
- Step 3: ID \rightarrow Randomized algorithms

The Proof

A short guide

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$-lower bound in the EC-model
- Step 2: Simulation result $\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID}$
- Step 3: ID \rightarrow Randomized algorithms

Edge coloring (EC)

$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

Port-numbering and orientation (PO)

$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

Port-numbering and orientation (PO)

$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

Unique Identifiers (ID)

$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{Ol} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

Order Invariant (OI)

$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

The Proof

A short guide

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$-lower bound in the EC-model
- Step 2: Simulation result $\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID}$
- Step 3: ID \rightarrow Randomized algorithms

Loopy graphs

A graph is k-loopy, if it has at least k self-loops at each node
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

Loopy graphs

Loopy graphs are a compact representation of simple graphs with lots of symmetry
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

Loopy graphs

A loopy graph can be unfolded to get a simple graph
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

Loopy graphs

A loopy graph can be unfolded to get a simple graph
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

Loopy graphs

loopy graphs \approx infinite trees
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

Loopy graphs

Key observation: a maximal fractional matching must saturate all nodes of a loopy graph!
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

EC lower bound

$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

EC lower bound

GG

GH

HH
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

EC lower bound

$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

The Proof

A short guide to the proof

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$-lower bound in the EC-model
- Step 2: Simulation result $\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID}$
- Step 3: ID \rightarrow Randomized algorithms

$\mathrm{EC} \rightarrow \mathrm{PO}$

$\mathrm{EC} \rightarrow \mathrm{PO}$

Assume we have an o(Δ)-time algorithm \mathbf{A} for maximal edge packing in the PO model
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

$\mathrm{EC} \rightarrow \mathrm{PO}$

Transform EC graph into PO graph by replacing each edge with two oriented edges
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

$\mathrm{EC} \rightarrow \mathrm{PO}$

Simulate the PO-algorithm \mathbf{A} and combine the weights of the corresponding edges
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

$\mathrm{EC} \rightarrow \mathrm{PO}$

We get an o(Δ)-algorithm in the EC-model, which is a contradiction
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$
$\mathrm{PO} \rightarrow \mathrm{Ol}$

$\mathrm{PO} \rightarrow \mathrm{Ol}$

- Similar technology as Göös et al. (2012)
- Now we do not need any approximation guarantees
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

$\mathrm{PO} \rightarrow \mathrm{Ol}$

Assume we have a PO-algorithm \mathbf{A}
We use port numbers and orientation to get a local ordering
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

$\mathrm{PO} \rightarrow \mathrm{Ol}$

G

U(G)

Take the universal cover of G
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

$$
\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}
$$

$\mathrm{PO} \rightarrow \mathrm{Ol}$

It is possible to make a PO-graph an Ol-graph locally
Use this to simulate \mathbf{A}
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

$$
\mathrm{Ol} \rightarrow \mathrm{ID}
$$

$\mathrm{Ol} \rightarrow \mathrm{ID}$

> Use the OI \rightarrow ID lemma of
> Naor and Stockmeyer (1995)
> (essentially Ramsey's Theorem)

The idea is to force any ID-algorithm \mathbf{A} to behave like an Ol-algorithm on some inputs
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

$\mathrm{Ol} \rightarrow \mathrm{ID}$

Trick: consider an algorithm \mathbf{A}^{*} that simulates \mathbf{A} and outputs 1 at saturated nodes and 0 elsewhere to apply the Lemma

This forces all nodes to be saturated in \mathbf{A} in loopy neighborhoods

Any change must propagate outside A's run time $\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathrm{R}$

The Proof

A short guide

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$-lower bound in the EC-model
- Step 2: Simulation result $\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID}$
- Step 3: ID \rightarrow Randomized algorithms

Randomized algorithms

Idea: Reduce random algorithms back to deterministic ones

Again use a lemma of Naor and Stockmeyer (1995)
$\mathrm{EC} \rightarrow \mathrm{PO} \rightarrow \mathrm{OI} \rightarrow \mathrm{ID} \rightarrow \mathbf{R}$

Summary

This work

Fractional maximal matching has complexity $\Theta(\Delta)$

Open questions

What is the complexity of maximal matching?
What is the complexity of 2-colored maximal matching?

