Linear-in-△ lower bounds in the LOCAL model

Mika Göös, University of Toronto **Juho Hirvonen**, Aalto University & HIIT

Jukka Suomela, Aalto University & HIIT

PODC 16.7.2014

This work

The first linear-in-∆ lower bound for a natural graph problem in the LOCAL model

Fractional maximal matching:

- There is no $o(\Delta)$ -algorithm, independent of n
- There is an $O(\Delta)$ -algorithm, independent of n
 - $(\Delta = \text{maximum degree}, n = \text{number of vertices})$

Matching

Matching assigns weight 1 to matched edges and weight 0 to the rest

Fractional matching

FM is a linear relaxation of matching: weights of the incident edges sum up to at most 1

Maximal fractional matching

A node is *saturated*, if the sum of the weights of the incident edges is equal to one

Maximal fractional matching

The fractional matching is *maximal*, if no two unsaturated nodes are adjacent

Standard LOCAL model

- Synchronous communication
- No bandwidth restrictions
- Running time = number of communication rounds
- Both deterministic and randomized algorithms

This work

The first linear-in-∆ lower bound for a natural graph problem in the LOCAL model

Fractional maximal matching:

- There is no $o(\Delta)$ -algorithm, independent of n
- There is an $O(\Delta)$ -algorithm, independent of n

 $(\Delta = \text{maximum degree}, n = \text{number of vertices})$

Prior work

Coordination problems:

- Maximal matching
- Maximal independent set
- $(\Delta+1)$ -coloring

```
Algorithms O(\Delta + \log^* n) also O(\text{polylog}(n))
```

Lower bounds $\Omega(\log^* n)$ and $\Omega(\log \Delta)$ [Linial '92] [Kuhn et al. '05]

Prior work

Coordination problems:

- Maximal matching
- Maximal independent set
- $(\Delta+1)$ -coloring

```
Algorithms O(\Delta + \log^* n) also O(\text{polylog}(n))
```

```
Lower bounds \Omega(\log^* n) and \Omega(\log \Delta) [Linial '92] [Kuhn et al. '05]
```

A short guide

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$ -lower bound in the EC-model
- Step 2: Simulation result EC→PO→OI→ID
- Step 3: ID → Randomized algorithms

A short guide

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$ -lower bound in the EC-model
- Step 2: Simulation result EC→PO→OI→ID
- Step 3: ID → Randomized algorithms

Edge coloring (EC)

Port-numbering and orientation (PO)

Port-numbering and orientation (PO)

Unique Identifiers (ID)

Order Invariant (OI)

A short guide

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$ -lower bound in the EC-model
- Step 2: Simulation result EC→PO→OI→ID
- Step 3: ID → Randomized algorithms

A graph is k-loopy, if it has at least k self-loops at each node

Loopy graphs are a compact representation of simple graphs with lots of symmetry

A loopy graph can be unfolded to get a simple graph

A loopy graph can be unfolded to get a simple graph

loopy graphs ≈ infinite trees

Key observation: a maximal fractional matching must saturate all nodes of a loopy graph!

EC lower bound

EC lower bound

EC lower bound

A short guide to the proof

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$ -lower bound in the EC-model
- Step 2: Simulation result EC→PO→OI→ID
- Step 3: ID → Randomized algorithms

EC \rightarrow PO

EC \rightarrow PO

Assume we have an $o(\Delta)$ -time algorithm **A** for maximal edge packing in the PO model

EC ~ PO

Transform EC graph into PO graph by replacing each edge with two oriented edges

EC ~ PO

Simulate the PO-algorithm **A** and combine the weights of the corresponding edges

EC \rightarrow PO

We get an $o(\Delta)$ -algorithm in the EC-model, which is a contradiction

PO \rightarrow OI

PO ~ OI

- Similar technology as Göös et al. (2012)
- Now we do not need any approximation guarantees

PO ~ OI

Assume we have a PO-algorithm A

We use port numbers and orientation to get a *local* ordering

$PO \rightarrow OI$

Take the universal cover of G

EC → PO → OI → ID → R

PO ~ OI

It is possible to make a PO-graph an OI-graph locally

Use this to simulate A

 $OI \rightarrow ID$

$OI \rightarrow ID$

Use the OI → ID lemma of Naor and Stockmeyer (1995) (essentially Ramsey's Theorem)

The idea is to force any ID-algorithm **A** to behave like an OI-algorithm on *some* inputs

$OI \rightarrow ID$

Trick: consider an algorithm **A*** that simulates **A** and outputs 1 at saturated nodes and 0 elsewhere to apply the Lemma

This forces all nodes to be saturated in **A** in loopy neighborhoods

Any change must propagate outside A's run time

44

A short guide

- Step 0: Introduce models EC, PO, OI and ID
- Step 1: $\Omega(\Delta)$ -lower bound in the EC-model
- Step 2: Simulation result EC→PO→OI→ID
- Step 3: ID → Randomized algorithms

Randomized algorithms

Idea: Reduce random algorithms back to deterministic ones

Again use a lemma of Naor and Stockmeyer (1995)

Summary

This work

Fractional maximal matching has complexity $\Theta(\Delta)$

Open questions

What is the complexity of maximal matching?

What is the complexity of 2-colored maximal matching?