Locality lower bounds through round elimination
 Jukka Suomela
 Aalto University, Finland

Joint work with

- Alkida Balliu
- Sebastian Brandt
- Orr Fischer
- Juho Hirvonen
- Barbara Keller
- Tuomo Lempiäinen
- Dennis Olivetti
- Mikaël Rabie
- Joel Rybicki
- Jara Uitto

Locality = how far do I need to see to produce my own part of the solution?

Locality = how far do I need to see to produce my own part of the solution?

Locality = how far do I need to see to produce my own part of the solution?

Local outputs form a globally consistent solution

Locality: formalization

- "LOCAL" model of distributed computing:
- graph = communication network
- node = processor
- edge = communication link

- all nodes have unique identifiers
- time = number of communication rounds
- round = nodes exchange messages with all neighbors
- 1 communication round: all nodes can learn everything within distance 1
- T communication rounds: all nodes can learn everything within distance T
- Time = distance

Locality: examples

- Setting: graph with n nodes, maximum degree $\boldsymbol{\Delta}=\mathbf{O}$ (1)
- Maximal independent set:

O(log* n) randomized,

$\Theta\left(\log ^{*} n\right)$ deterministic

- Sinkless orientation:

O($\log \log n$) randomized, $\Theta(\log n)$ deterministic

- orient edges such that all nodes of degree ≥ 3 have outdegree ≥ 1

How to study locality?

Proving locality upper \& lower bounds

Locality: proving upper bounds

- Find a function that maps local neighborhoods to local outputs
- Design a fast distributed message-passing algorithm
- Design a slow distributed algorithm and apply "speedup" arguments to turn it into a fast distributed algorithm
- e.g. o(n) $\rightarrow O$ (log* n) for "LCL problems" in cycles
- Design a fast centralized sequential algorithm model and turn it into a fast distributed algorithm
- e.g. greedy strategy \rightarrow SLOCAL algorithm \rightarrow LOCAL algorithm

Locality: proving lower bounds

- Indistinguishability
- same local view \rightarrow same output
- Adaptive constructions
- inductively construct a bad input for this specific algorithm
- Ramsey-type arguments
- "monochromatic set" \approx bad choice of identifiers
- Speedup \& derandomization arguments and reductions
- locality $R \rightarrow$ locality $R^{\prime} \rightarrow$ not possible

Locality: proving lower bounds

- Indistinguishability
- same local view \rightarrow same output
- Adaptive constructions
- inductively construct a bad input for this specific algorithm

Today's focus: "round elimination" technique for proving locality lower bounds

- Ramsey-type arguments
- "monochromatic set" \approx bad choice of identifiers
- Speedup \& derandomization arguments and reductions
- locality $R \rightarrow$ locality $R^{\prime} \rightarrow$ not possible

Round elimination

Round elimination technique

- Given:
- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem \boldsymbol{P}_{1} in $T-1$ rounds
- algorithm \boldsymbol{A}_{2} solves problem P_{2} in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves problem P_{3} in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves problem P_{T} in 0 rounds
- But P_{T} is nontrivial, so $\boldsymbol{A}_{\mathbf{0}}$ cannot exist

Linial (1987, 1992): coloring cycles

- Given:
- algorithm \boldsymbol{A}_{0} solves 3-coloring in $T=o(\log * n)$ rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves 2^{3}-coloring in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves $2^{2^{3}}$-coloring in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves $2^{2^{2^{3}}}$-coloring in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves o(n)-coloring in 0 rounds
- But o(n)-coloring is nontrivial, so $\boldsymbol{A}_{\mathbf{0}}$ cannot exist

Brandt et al. (2016): sinkless orientation

- Given:
- algorithm \boldsymbol{A}_{0} solves sinkless orientation in $T=O(\log n)$ rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves sinkless coloring in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves sinkless orientation in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves sinkless coloring in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves sinkless orientation in 0 rounds
- But sinkless orientation is nontrivial, so \boldsymbol{A}_{0} cannot exist

Round elimination can be automated

- Good news: always possible for any graph problem P_{0} that is "locally checkable"
- if problem P_{0} has complexity T, we can always find in a mechanical manner problem P_{1} that has complexity T - 1
- holds for tree-like neighborhoods (e.g. high-girth graphs)
- Bad news: this does not directly give a lower bound
- P_{1} is not necessarily any natural graph problem
- P_{1} does not necessarily have a small description
- how do we prove that P_{1}, P_{2}, P_{3}, etc. are nontrivial problems?

Round elimination and fixed points

- Sometimes we are very lucky:
- $P_{0}=$ sinkless orientation
- $P_{1}=$ something (no need to understand it)
- $P_{2}=$ sinkless orientation
- If you are feeling optimistic: just apply round elimination in a mechanical manner for a small number of steps and see if your reach a fixed point or cycle
- or you reach a well-known hard problem
- Open question: exactly when does this happen?

Round elimination and "rounding down"

- Sometimes some amount of creativity is needed:
- $P_{0}=k$-coloring cycles
- $P_{1}=$ something complicated with 2^{k} possible output labels
- define: $Q_{1}=2^{k}$-coloring cycles
- observation: solution to P_{1} implies a solution to Q_{1}

$$
\begin{aligned}
& P_{0} \text { takes exactly } T \text { rounds } \\
& \rightarrow P_{1} \text { takes exactly } T-1 \text { rounds } \\
& \rightarrow Q_{1} \text { takes at most } T-1 \text { rounds } \\
& \rightarrow \ldots \\
& \rightarrow Q_{T} \text { takes at most } 0 \text { rounds }
\end{aligned}
$$

How does it work?

Correct formalism

- We will need the right formalism for the graph problems that we study
- It will look seemingly arbitrary and very restrictive at first
- No worries, you can encode a broad range of locally checkable problems in this formalism with some effort
- maximal matching, maximal independent set, vertex coloring, edge coloring, sinkless orientation ...

Correct formalism: edge labeling in bipartite graphs

- Assumption: input graph properly 2-colored ("white" / "black")
- Finite set of possible edge labels
- White constraint:
- feasible multiset of labels on edges adjacent to a white node
- Black constraint:
- feasible multiset of labels on edges adjacent to a black node

Example 1: sinkless orientation

- Setting: bipartite 3-regular graphs
- Encoding: use original graph
- "0" = orient from white to black

- " 1 " = orient from black to white
- White constraint:

$$
\cdot\{0,0,0\},\{0,0,1\} \text { or }\{0,1,1\}
$$

- Black constraint:
- $\{0,0,1\},\{0,1,1\}$ or $\{1,1,1\}$

Example 2: sinkless orientation

- Setting: 3-regular graphs
- Encoding: subdivide edges
- white = edge, black = node
- "H" = head, "T" = tail
- White constraint:
- $\{\mathrm{H}, \mathrm{T}\}$
- Black constraint:
- $\{H, H, T\},\{H, T, T\}$ or $\{T, T, T\}$

Example 3: vertex coloring

- Setting: 3-regular graphs
- Encoding: subdivide edges
- white = edge, black = node
- "1", "2", "3" = color of incident black node
- White constraint:
- $\{1,2\}$ or $\{1,3\}$ or $\{2,3\}$
- Black constraint:
- $\{1,1,1\},\{2,2,2\}$ or $\{3,3,3\}$

Correct formalism: white and black algorithms

- White algorithm:
- each white node produces labels on its incident edges
- black nodes do nothing
- satisfies white and black constraints
- Black algorithm:
- each black node produces labels on its incident edges
- white nodes do nothing
- satisfies white and black constraints
- White and black complexity within ± 1 round of each other

Round elimination

Given: white algorithm A that runs in $T=2$ rounds

- v_{1} in \boldsymbol{A} sees U and D_{1}

Construct: black algorithm A^{\prime} that runs in $T-1=1$ rounds

- u in A^{\prime} only sees U
$A^{\prime}:$ what is the set of possible outputs of \boldsymbol{A} for edge $\left\{u, v_{1}\right\}$ over all possible inputs in D_{1} ?

Round elimination

Given: white algorithm A that runs in $T=2$ rounds

- v_{1} in A sees U and D_{1}

Construct: black algorithm \boldsymbol{A}^{\prime} that runs in $T-1=1$ rounds

- u in A^{\prime} only sees U
$A^{\prime}:$ what is the set of possible outputs of A for edge $\left\{u, v_{1}\right\}$ over all possible inputs in D_{1} ?

Example: edge coloring

Independence!

- Assume there is some extension \boldsymbol{D}_{1} such that $\boldsymbol{v}_{\mathbf{1}}$ labels $\left\{\mathbf{u}, \mathbf{v}_{\mathbf{1}}\right\}$ green
- Assume there is some extension \boldsymbol{D}_{2} such that $\boldsymbol{v}_{\mathbf{2}}$ labels $\left\{\mathbf{u}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}}\right\}$ green
- Then we can construct an input in which both $\left\{\boldsymbol{u}, \mathbf{v}_{\mathbf{1}}\right\}$ and $\left\{\boldsymbol{u}, \mathbf{v}_{\mathbf{2}}\right\}$ are green

Algorithm A' has to do something nontrivial

Here: sets incident to black nodes have to be non-empty and disjoint

They contain enough information so that we could recover a proper edge coloring in 1 extra round

Example: edge coloring

Independence!

- Assume there is some extension \boldsymbol{D}_{1} such that $\boldsymbol{v}_{\mathbf{1}}$ labels $\left\{\mathbf{u}, \mathbf{v}_{\mathbf{1}}\right\}$ green
- Assume there is some extension D_{2} such that $\boldsymbol{v}_{\mathbf{2}}$ labels $\left\{\mathbf{u}, \mathbf{v}_{\mathbf{2}}\right\}$ green
- Then we can construct an input in which both $\left\{\mathbf{u}, \mathbf{v}_{\mathbf{1}}\right\}$ and $\left\{\mathbf{u}, \mathbf{v}_{\mathbf{2}}\right\}$ are green

Example:
bipartite maximal matching
computer network with port numbering bipartite, 2-colored graph
Δ-regular (here $\Delta=3$)

output: maximal matching

Very simple algorithm

unmatched white nodes:

send proposal to port 1

Very simple algorithm

unmatched white nodes:

send proposal to port 1

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:

send proposal to port 1

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 2

Very simple algorithm

unmatched white nodes:

send proposal to port 2

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 3

Very simple algorithm

unmatched white nodes:

send proposal to port 3

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

Finds a maximal matching in $O(\Delta)$ communication rounds

Note: running time does not depend on n

Bipartite maximal matching

- Maximal matching in very large 2-colored Δ-regular graphs
- Simple algorithm: $O(\Delta)$ rounds, independently of n
- Is this optimal?
- o(Δ) rounds?
- $O(\log \Delta)$ rounds?
- 4 rounds??

Lower-bound proof

Round elimination technique for maximal matching

- Given:
- algorithm $\boldsymbol{A}_{\mathbf{0}}$ solves problem $P_{0}=$ maximal matching in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves problem P_{2} in $T-2$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{3}}$ solves problem P_{3} in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves problem P_{T} in 0 rounds
- But P_{T} is nontrivial, so \boldsymbol{A}_{0} cannot exist

What are the right problems
 P_{i} here?

Round elimination technique for maximal matching

- Given:
- algorithm \boldsymbol{A}_{0} solves problem $P_{0}=$ maximal matching in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm \boldsymbol{A}_{2} solves problem P_{2} in T - 2 rounds
- algorithm \boldsymbol{A}_{3} solves problem P_{3} in T - 3 rounds
- algorithm \boldsymbol{A}_{T} solves problem P_{T} in 0 rounds
- But P_{T} is nontrivial, so $\boldsymbol{A}_{\mathbf{0}}$ cannot exist

Representation for maximal matchings
white nodes "active"
output one of these:
$.1 \times M$ and $(\Delta-1) \times 0$

- $\Delta \times P$

$$
\begin{aligned}
& \mathrm{M}=\text { "matched" } \\
& \mathrm{P}=\text { "pointer to matched" } \\
& \mathrm{O}=\text { "other" }
\end{aligned}
$$

black nodes "passive"

accept one of these:

- $1 \times \mathrm{M}$ and $(\mathbf{\Delta} \mathbf{- 1}) \times\{\mathrm{P}, 0\}$
- $\Delta \times 0$

Representation for maximal matchings
white nodes "active"
output one of these:
$.1 \times M$ and $(\Delta-1) \times 0$
$\cdot \Delta \times P$
$W=\mathrm{MO}^{\Delta-1} \mid \mathrm{P}^{\Delta}$

M = "matched"
P = "pointer to matched"
$0=$ "other"

black nodes "passive"

accept one of these:

- $1 \times \mathrm{M}$ and $(\mathbf{\Delta - 1}) \times\{\mathrm{P}, 0\}$
- $\Delta \times 0$

$$
B=\mathrm{M}[\mathrm{PO}]^{\Delta-1} \mid \mathrm{O}^{\Delta}
$$

Parameterized problem family

$$
\begin{aligned}
W & =\mathrm{MO}^{\Delta-1} \mid \mathrm{P}^{\Delta}, \\
B & =\mathrm{M}[\mathrm{PO}]^{\Delta-1} \mid \mathrm{O}^{\Delta}
\end{aligned}
$$

$$
W_{\Delta}(x, y)=\left(\mathrm{MO}^{d-1} \mid \mathrm{P}^{d}\right) \mathrm{O}^{y} \mathrm{X}^{x}
$$

$$
B_{\Delta}(x, y)=\left([\mathrm{MX}][\mathrm{POX}]^{d-1} \mid[\mathrm{OX}]^{d}\right)[\mathrm{POX}]^{y}[\mathrm{MPOX}]^{x},
$$

$$
d=\Delta-x-y
$$

"weak" matching

Main lemma

- Given: \boldsymbol{A} solves $P(x, y)$ in T rounds
- We can construct: \boldsymbol{A}^{\prime} solves $P(x+1, y+x)$ in $T-1$ rounds

$$
\begin{aligned}
W_{\Delta}(x, y) & =\left(\mathrm{MO}^{d-1} \mid \mathrm{P}^{d}\right) \mathrm{O}^{y} \mathrm{X}^{x} \\
B_{\Delta}(x, y) & =\left([\mathrm{MX}][\mathrm{POX}]^{d-1} \mid[\mathrm{OX}]^{d}\right)[\mathrm{POX}]^{y}[\mathrm{MPOX}]^{x} \\
d & =\Delta-x-y
\end{aligned}
$$

Putting things together

What we really care about

Maximal matching in $o(\Delta)$ rounds
\rightarrow " $\Delta^{1 / 2}$ matching" in o($\Delta^{1 / 2}$) rounds
$\rightarrow P\left(\Delta^{1 / 2}, 0\right)$ in o $\left(\Delta^{1 / 2}\right)$ rounds
k-matching:
select at most k edges per node
$\rightarrow P\left(O\left(\Delta^{1 / 2}\right), o(\Delta)\right)$ in 0 rounds
\rightarrow contradiction

Apply round elimination $o\left(\Delta^{1 / 2}\right)$ times

Putting things together

Proof technique does not work directly with unique IDs

- Basic version:
- deterministic lower bound, port-numbering model
- Analyze what happens to local failure probability:
- randomized lower bound, port-numbering model
- With randomness you can construct unique identifiers w.h.p.:
- randomized lower bound, LOCAL model
- Fast deterministic \rightarrow faster deterministic \rightarrow faster randomized
- stronger deterministic lower bound, LOCAL model

Main results

Maximal matching and maximal independent set

 cannot be solved in- o($\Delta+\log \log n / \log \log \log n)$ rounds with randomized algorithms
- o($\Delta+\log n / \log \log n)$ rounds with deterministic algorithms

FOCS 2019

Summary

- Round elimination technique
- Locality lower bounds for a wide range of problems:
- symmetry breaking in cycles
- symmetry breaking in regular trees
- algorithmic Lovász local lemma

- maximal matching, maximal independent set ...
- And for a wide range of localities:
- $\Omega\left(\log ^{\star} n\right), \Omega(\log \log n), \Omega(\log n), \Omega(\log * \Delta), \Omega(\Delta) \ldots$

Open questions

- Lower bounds for volume complexity?
- volume lower bounds for sinkless orientation?
- Lower bounds for problems related to graph coloring?
- when is partial/defective coloring "easy"
 and when is it "hard"?
- nontrivial lower bounds for ($\Delta+1$)-coloring?
- Exactly when do we get fixed points and why?

