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4 Activity scheduling
Input is a conflict graph C:

– If nodes u and v are adjacent in C, then
u and v are mutually conflicting: if v is active
then u must be inactive and vice versa.

– I is a valid set of active nodes
iff I is an independent set of C.

Each node v must be active for 1 time unit:

minimise ∑I x(I)
subject to ∑I: v∈I x(I) ≥ 1 ∀ v,

x(I) ≥ 0 ∀ I.

Integral solutions are graph (vertex) colourings.
Our focus is on fractional graph colourings:
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Theorem 5. Assume that C is a (∆, `1, `µ, µ)-
marked graph. Then there is a local algorithm for
activity scheduling with the approximation ratio
1/(1− ε) for any ε > 4/b(`µ − `1)/µc.
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3 Sleep scheduling
Input is a redundancy graph R:

– If nodes u and v are adjacent in R, then
u and v are pairwise redundant: if v is awake
then u can be asleep and vice versa.

– D is a valid set of nodes that are awake
iff D is a dominating set of R.

Each node v can be awake for 1 time unit:

maximise ∑D x(D)
subject to ∑D: v∈D x(D) ≤ 1 ∀ v,

x(D) ≥ 0 ∀D.

Integral solutions are domatic partitions:
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/∈ D (asleep) ∈ D (awake)

Our focus is on fractional domatic partitions:
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Local algorithms

A graph G is a (∆, `1, `µ, µ)-marked graph if

– the maximum degree of G is ∆
– some nodes are designated as markers such

that for any node of G there is at least one
marker within distance `1 and at most µ
markers within distance `µ.

Theorem 4. Assume that R is a (∆, `1, `µ, µ)-
marked graph. Then there is a local algorithm for
sleep scheduling with the approximation ratio
(1 + ε) for any ε > 4∆/b(`µ − `1)/µc.

2 Max-min LPs
Max-min LPs are linear programs of the form

maximise min
k∈K

∑v∈Vk
ckvxv

subject to ∑v∈Vi
aivxv ≤ 1 ∀ i ∈ I,

xv ≥ 0 ∀ v ∈ V.

Here

– aiv ≥ 0 and ckv ≥ 0
– Vi ⊆ V and Vk ⊆ V
– |Vi | ≤ ∆I and |Vk | ≤ ∆K

– ∆I ≥ 2 and ∆K ≥ 2 are constants.

Bipartite version: each v ∈ V is in exactly one
set Vi and exactly one set Vk .

Local algorithms

The underlying communication graph G:

– the vertex set is V ∪ I ∪ K
– an edge {i, v} for each i ∈ I, v ∈ Vi

– an edge {k, v} for each k ∈ K, v ∈ Vk .

Each agent v ∈ V must choose the value of xv.

Theorem 1 (Papadimitriou&Yannakakis 1993).
There is a local algorithm for max-min LPs with
the approximation ratio ∆I .

Theorem 2. For any ε > 0, there is a local
algorithm for bipartite max-min LPs with the
approximation ratio ∆I(1− 1/∆K) + ε.

Theorem 3. No local algorithm achieves the
approximation ratio ∆I(1− 1/∆K) for bipartite
max-min LPs.

There is a local approximation algorithm that
achieves a better approximation ratio if G has
bounded relative growth.

Application: fair bandwidth allocation
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max min {x11, x21 + x22,
x31 + x32 + x33,
x42 + x43, x53}

s.t. x11 + x21 + x31 ≤ 1,

x22 + x32 + x42 ≤ 1,

x33 + x43 + x53 ≤ 1,

x11, x21, . . . , x53 ≥ 0.

1 Local algorithms
Local algorithms are constant-time distributed algorithms. The output of a node is
a function of the input available within its constant-radius neighbourhood.

Changes outside the local horizon of a node do not affect its output.


