
Local approximation algorithms

for scheduling problems in sensor networks
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Local algorithms

◮ Operation of a node
only depends on input
within its constant-size
neighbourhood

◮ Extreme scalability:
constant amount of
communication, memory
and computation per node

◮ Weak model: 3-colouring
a cycle impossible (Linial 1992)

Our result: local algorithms
can be used to approximate
nontrivial scheduling problems
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Sleep scheduling

Input: redundancy graph,
battery capacities

◮ Set of awake nodes =
dominating set
of redundancy graph

◮ Associate a time period
with each dominating set

◮ Maximise total length

◮ Obey battery constraints

Motivation: maximising lifetime
of a sensor network
(pairwise redundancy)
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Activity scheduling

Input: conflict graph,
activity requirements

◮ Set of active nodes =
independent set
of conflict graph

◮ Associate a time period
with each independent set

◮ Minimise total length

◮ Fulfil activity requirements

Motivation: minimising makespan
of radio transmissions
(pairwise interference)
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Scheduling problems

Sleep scheduling: generalisation
of fractional domatic partition

Activity scheduling: generalisation
of fractional graph colouring

◮ Linear programs

◮ The size of the LP
can be exponential
in the size of the graph

◮ Hard to solve and
approximate
in general graphs
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Solution

◮ Hard problems

◮ Weak model
of computation

Solution: markers

1. Markers break
symmetry

2. Characterisation of
marker distribution
constrains the
family of graphs
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Marked graphs

(∆, ℓ1, ℓµ, µ)-marked
graph:

◮ Degree ≤ ∆

◮ ≥ 1 marker
within ℓ1 hops
from any node

◮ ≤ µ markers
within ℓµ hops
from any node

Intuition: bounded
growth, symmetry-
breakers nearby
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Main results

Local (1 + ǫ)-approximation
algorithm for sleep scheduling
in (∆, ℓ1, ℓµ, µ)-marked graphs
for any ǫ > 4∆/⌊(ℓµ − ℓ1)/µ⌋

Local 1/(1 − ǫ)-approximation
algorithm for activity scheduling
in (∆, ℓ1, ℓµ, µ)-marked graphs
for any ǫ > 4/⌊(ℓµ − ℓ1)/µ⌋

◮ Markers are enough:
no coordinates needed

◮ Markers are necessary

◮ Cannot improve ǫ by factor 9
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Algorithm sketch

Several partitions of
communication graph

◮ Configuration 0:
Voronoi cells
for markers

◮ Configuration 1:
shift cell borders

◮ Configuration i :
shift i units

Solve the scheduling
problem locally for
each cell, interleave the
solutions
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Summary

◮ Local approximation scheme:
constant effort per node

◮ Fractional scheduling problems,
both packing and covering

◮ Can be extended beyond
pairwise redundancy/conflicts
as long as there is “locality”

◮ Markers are enough,
coordinates not needed

◮ Constants are not practical,
more work needed

http://www.hiit.fi/ada/geru
jukka.suomela@cs.helsinki.fi
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Appendix: Examples of marked graphs

◮ 2-dimensional grid of nodes

◮ Use a sparser grid to place the markers

◮ “Local approximation scheme”:
any approximation ratio by using a sparse enough grid
(cost: higher computational complexity)

◮ “Coarse grids”, graphs quasi-isometric to 2-dimensional grids

◮ Arbitrary small-scale structure

◮ Cutting parts of coarse grids, with L + 1 hop margins

◮ Arbitrary small-scale and large-scale structure

◮ Medium-scale structure has similarities
with low-dimensional grids
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Appendix: Sleep scheduling LP

Input:
– communication graph G
– redundancy graph R, subgraph of G
– battery capacity b(v) ≥ 0 for each node v ∈ VR

Task:
maximise

∑
D

x(D)

subject to
∑

D
D(v)x(D) ≤ b(v) and x(D) ≥ 0

v ranges over VR

D ranges over dominating sets of R

D(v) = 1 if v ∈ D and D(v) = 0 if v /∈ D

x(D) = the length of the time period associated with D
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Appendix: Activity scheduling LP

Input:
– communication graph G
– conflict graph C, subgraph of G
– activity requirement a(v) ≥ 0 for each node v ∈ VC

Task:
minimise

∑
I
x(I )

subject to
∑

I
I (v)x(I ) ≥ a(v) and x(I ) ≥ 0

v ranges over VC

I ranges over independent sets of C

I (v) = 1 if v ∈ I and I (v) = 0 if v /∈ I

x(I ) = the length of the time period associated with I
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