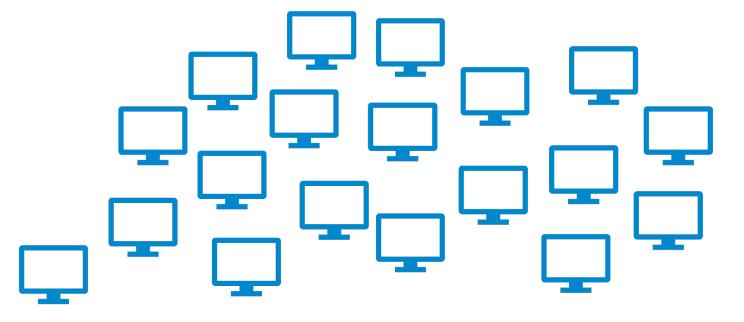
Foundations of Distributed Computing in the 2020s

Jukka Suomela

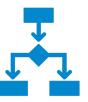


What are the theoretical foundations of the modern society?

- Modern world ≈ large-scale communication networks
- Physical side:
 - practice: computers, network equipment, laser, fiber optics, radio ...
 - solid theoretical foundations: electromagnetism, quantum mechanics ...

Logical side:

- practice: communication protocols, networked applications ...
- solid theoretical foundations: ???



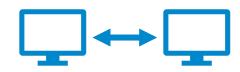
Logical foundations of large communication networks

Computers:

 theory of computation, computability, computational complexity ...

Communication between computers:

• information theory, communication complexity theory ...



Computation in a network as a whole:

theory of distributed computing

Our focus today

Logical foundations of computers vs. computer networks

Theory of computation:

Which tasks can be solved efficiently with a computer?

Theory of distributed computing:

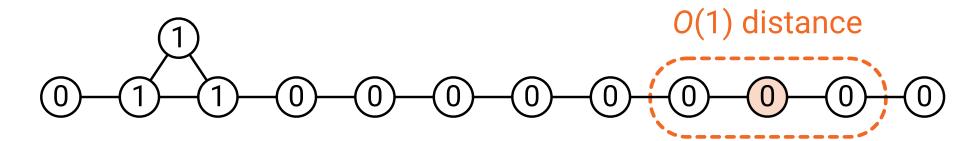
Which tasks can be solved efficiently in a large computer network?

Logical foundations of computers vs. computer networks

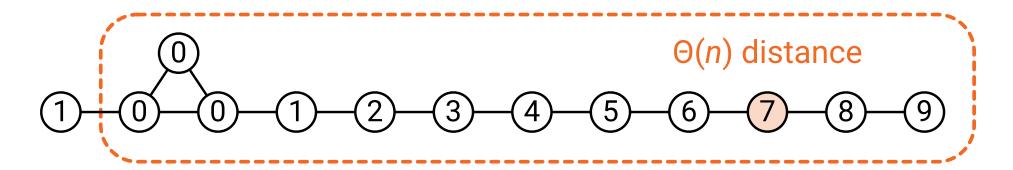
- Example: solving graph problems
- Theory of computation:

- "Here is a graph that is given as a string on a Turing machine tape"
- How many steps does a Turing machine need to solve this problem?
- Theory of distributed computing:
 - "I am a node in the middle of a very large graph"
 - · How far do I need to see to pick my own part of the solution?
 - How much of the graph do I need to see?
 - How many communication rounds are needed to solve the problem?

Local: am I part of a triangle?



Global: how far am I from the nearest triangle?



Logical foundations of computers vs. computer networks

- Theory of computation:
 - e.g. hugely influential framework of NP-completeness (1970s)
- Theory of distributed computing:
 - studied actively already since the 1980s
 - but we have only very recently started to really understand e.g. locality
 - solid theoretical foundations still largely missing
 - lots of progress in the 2010s, tons of work left for the 2020s

Distributed computing before the 2010s

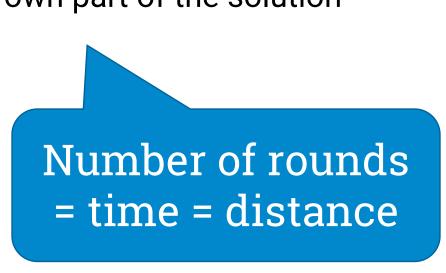
Standard models of computing

LOCAL model

- input graph = computer network
- initially: each node has a unique ID + its own part of input
- communication round: each node sends a message to each neighbor
- finally: each nodes stops and outputs its own part of the solution

CONGEST model

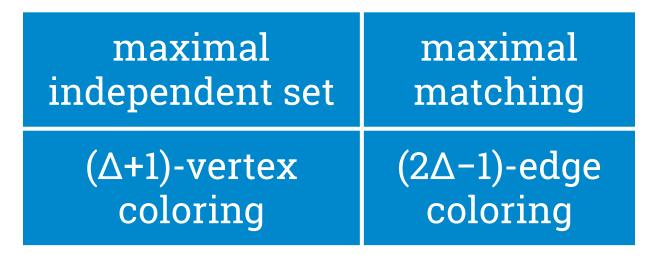
- bounded-size messages
- Port-numbering model
 - no unique IDs



Some important ideas and concepts

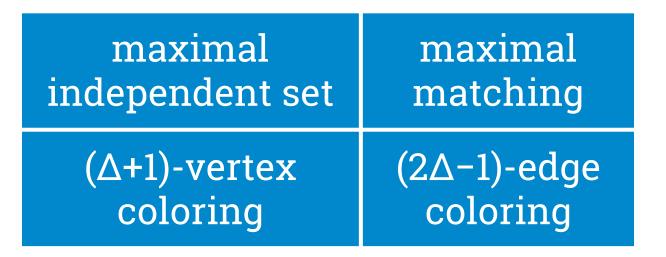
- Solving vs. checking
 - finding a solution vs. verifying a solution
 - cf. deterministic vs. nondeterministic Turing machines, P vs. NP
- Problem family of "locally checkable labelings" (LCLs)
 - O(1) input labels, O(1) output labels, max degree O(1)
 - verification: check each radius-O(1) neighborhood
 - Naor & Stockmeyer (1993, 1995)
- Proof labeling schemes
 - Korman, Kutten, Peleg (2005)

Four key problems



- Key primitives for symmetry breaking
 - e.g. input is a symmetric cycle → output has to break symmetry
- Trivial linear-time centralized algorithms
 - e.g. maximal matching: pick non-adjacent edges until stuck
- Can we solve these efficiently in a distributed setting?

Four key problems



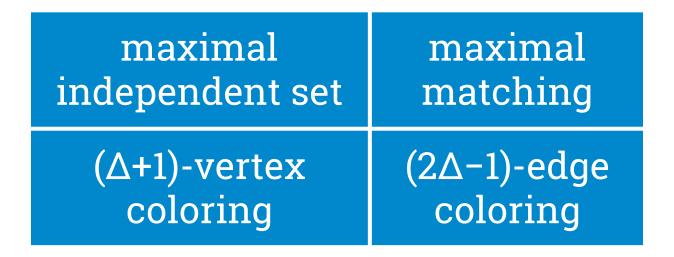
Pioneering work on upper bounds:

 Cole & Vishkin (1986), Luby (1985, 1986), Alon, Babai, Itai (1986), Israeli & Itai (1986), Panconesi & Srinivasan (1996), Hanckowiak, Karonski, Panconesi (1998, 2001), Panconesi & Rizzi (2001) ...

Pioneering work on lower bounds:

• Linial (1987, 1992), Naor (1991), Kuhn, Moscibroda, Wattenhofer (2004)

Four key problems



- Still wide gaps between upper and lower bounds
- Role of randomness poorly understood

Early days: summary

- Lots of work focused on specific problems
 - proving upper & lower bounds for problem X
 - connecting complexity of problem X through reductions to problem Y
- Not so much effort in understanding the overall landscape of distributed computational complexity
 - what are the meaningful classes of problems?
 - what can we prove about entire classes of problems?
- We were lacking general-purpose techniques for studying distributed computing

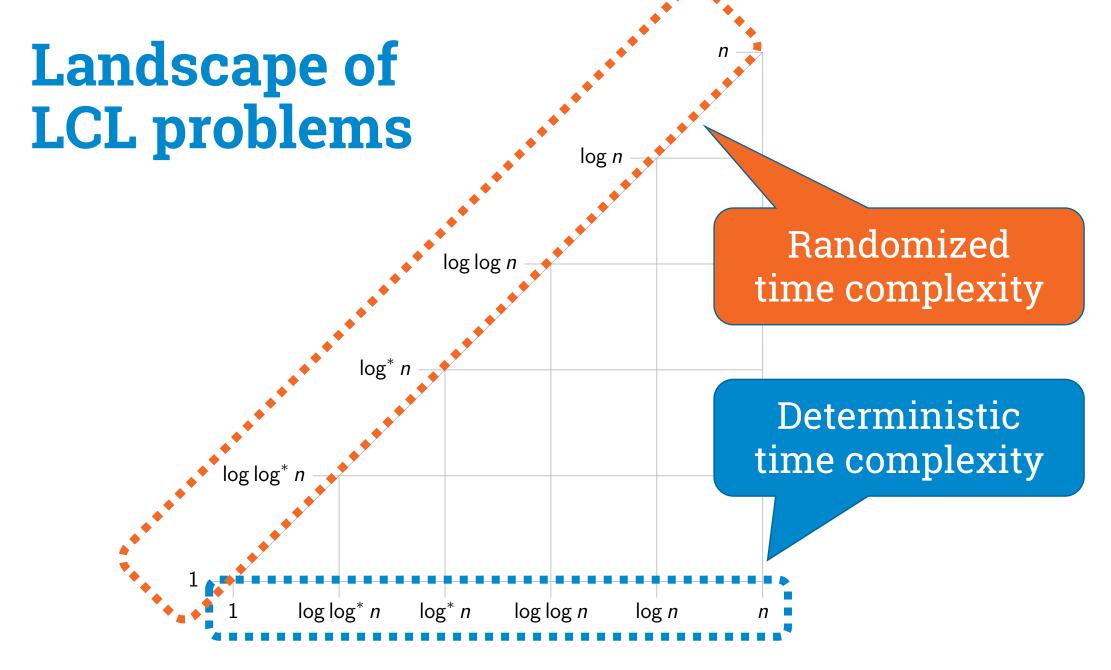
Some highlights of distributed computing in the 2010s

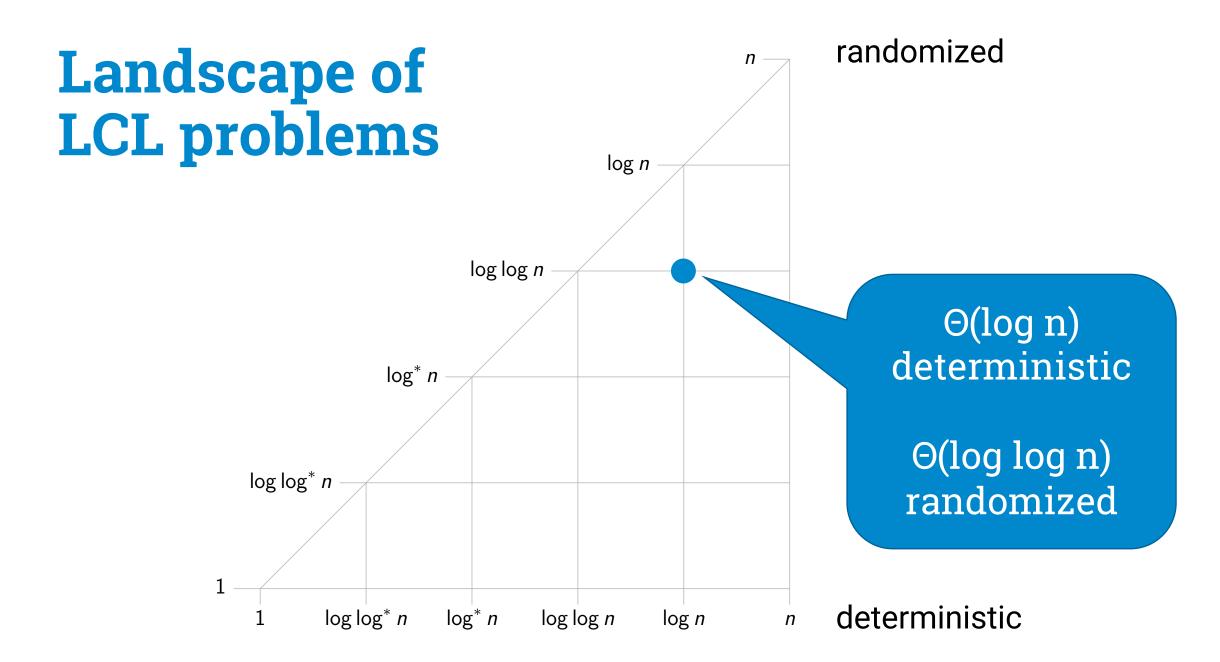
From the 2010s: Classification of LCLs

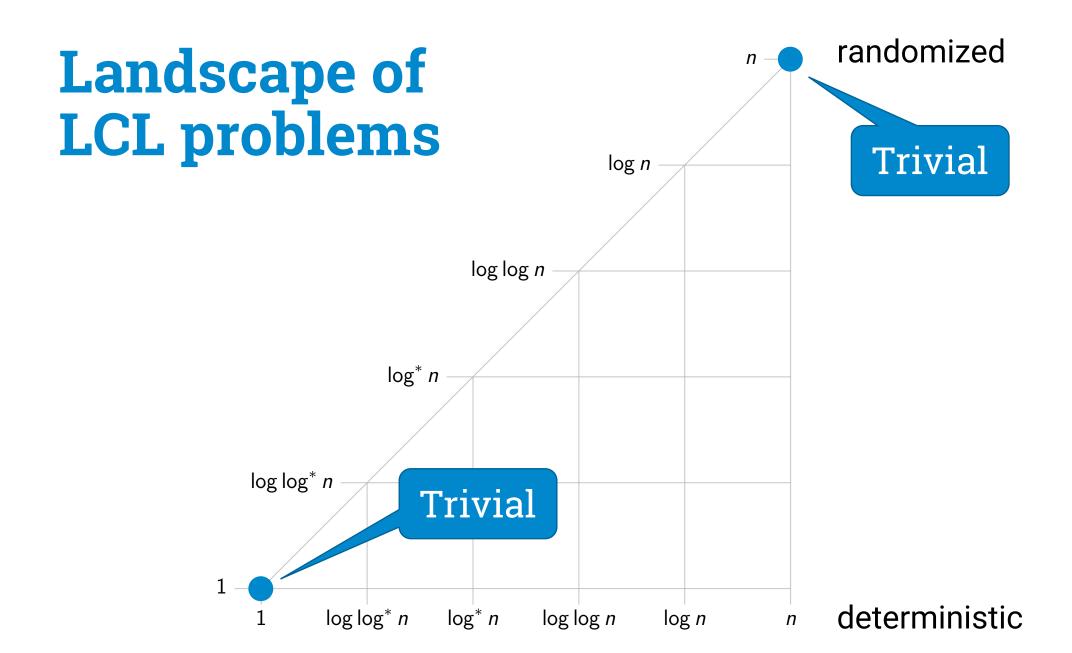
LCL problems

- Examples of LCL problems (in graphs of max degree $\Delta = O(1)$):
 - (Δ+1)-coloring, Δ-coloring, 3-coloring ...
 - maximal independent set, maximal matching ...
 - sinkless orientation
 - orient all edges
 - all nodes of degree ≥ 3 have outdegree ≥ 1
 - locally optimal cut
 - label nodes black/white
 - at least half of the neighbors have opposite color
 - SAT (when interpreted as a graph problem)
 - many other constraint satisfaction problems

Can we say something about all of these?







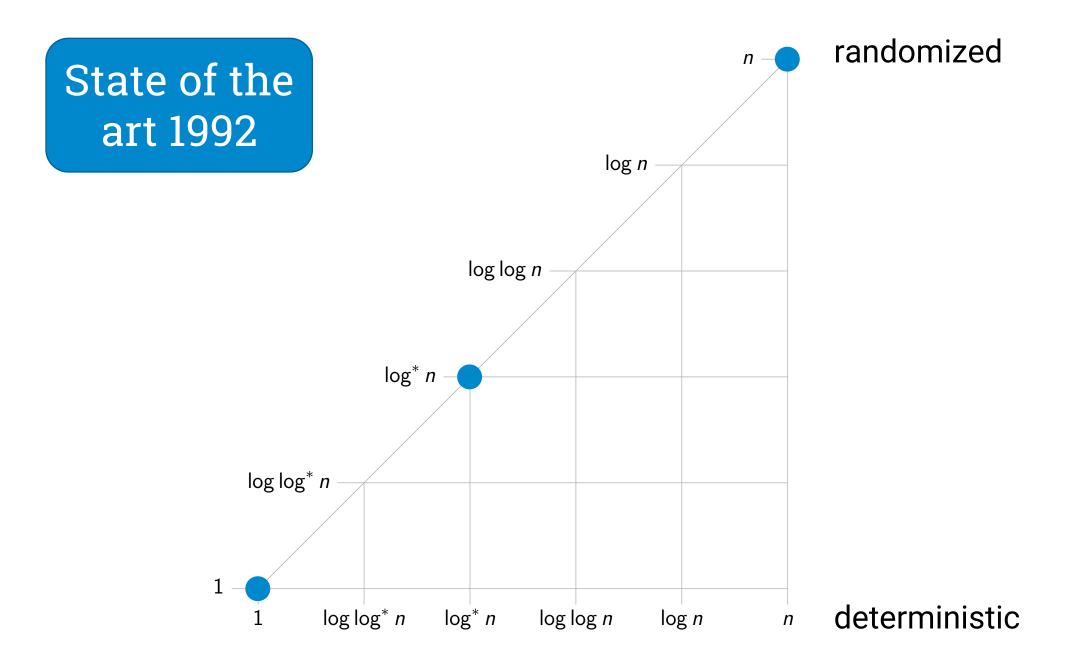
randomized Landscape of LCL problems log n log log *n* Maximal independent set log* n Cole & Vishkin 1986 Linial 1987, 1992 $\log \log^* n$ Naor 1991 deterministic $\log \log^* n$

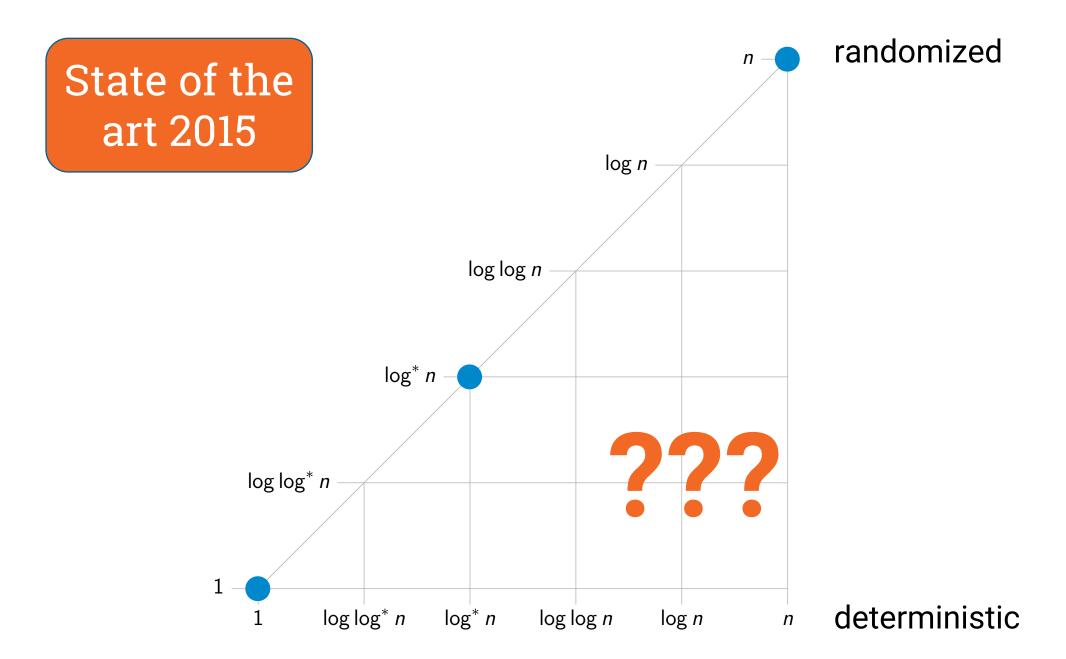
log log *n*

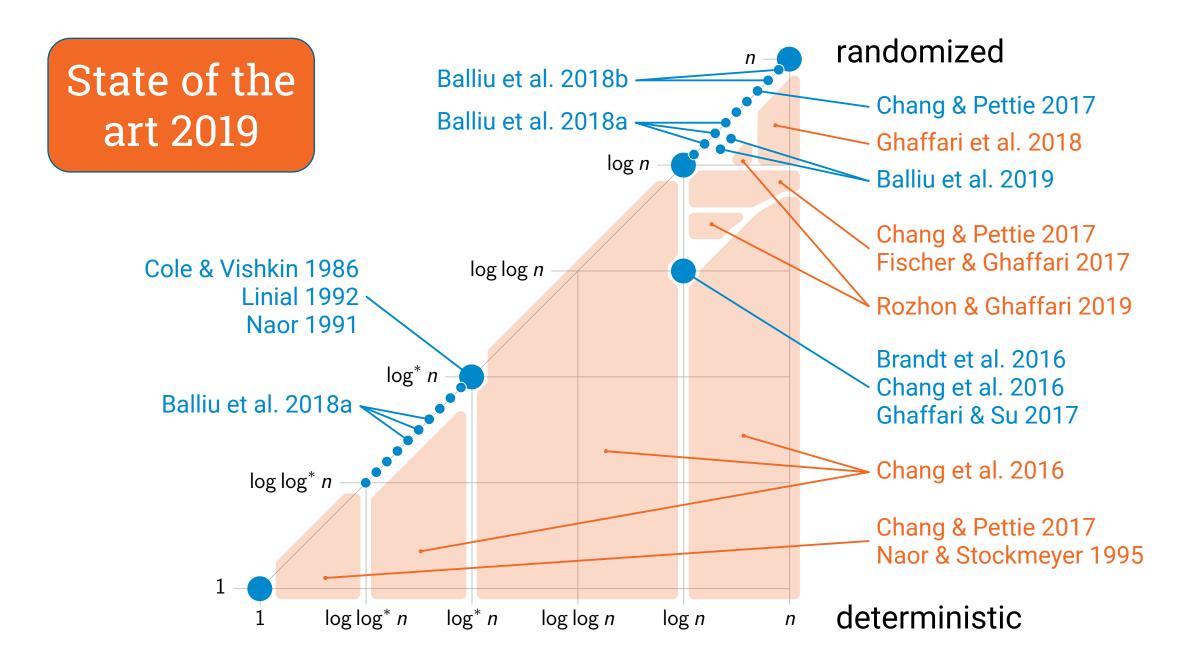
 $\log n$

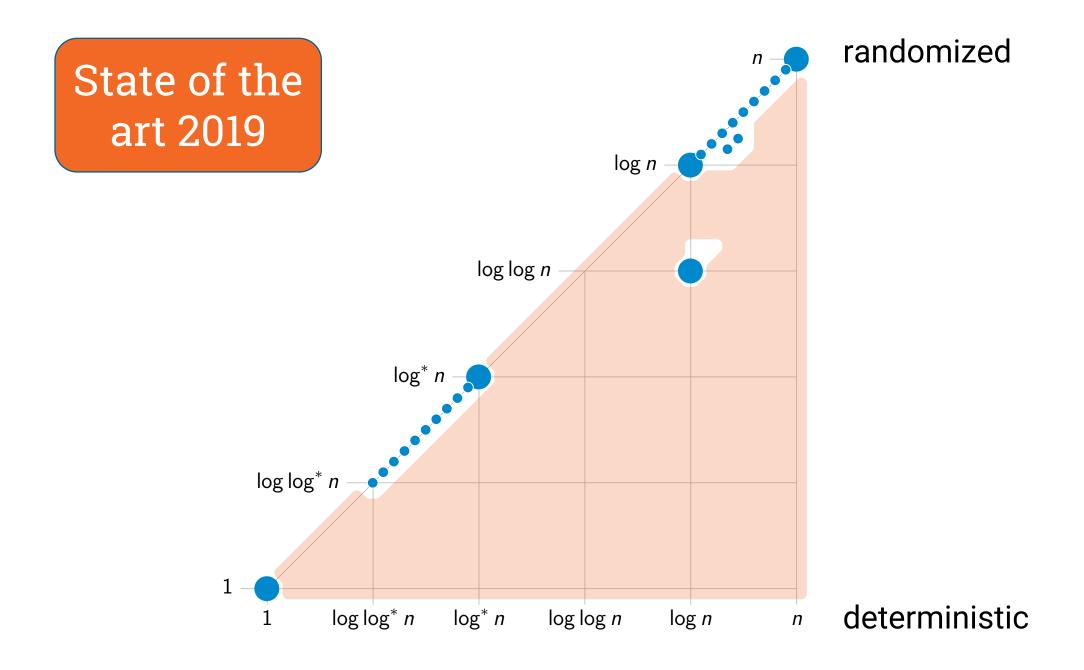
n

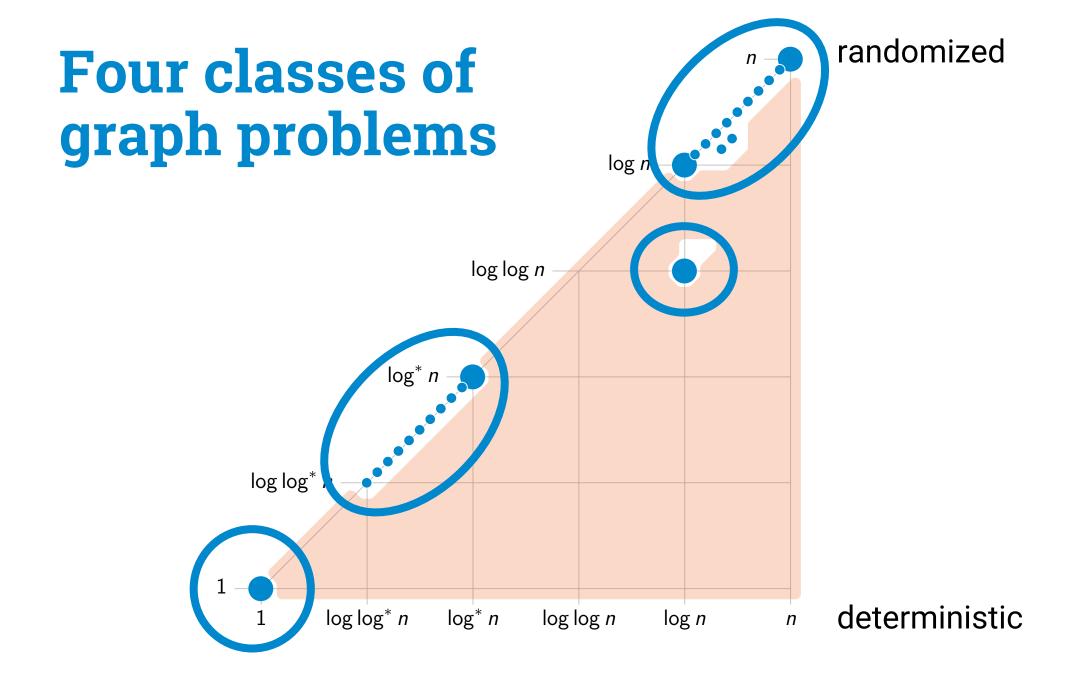
 $\log^* n$



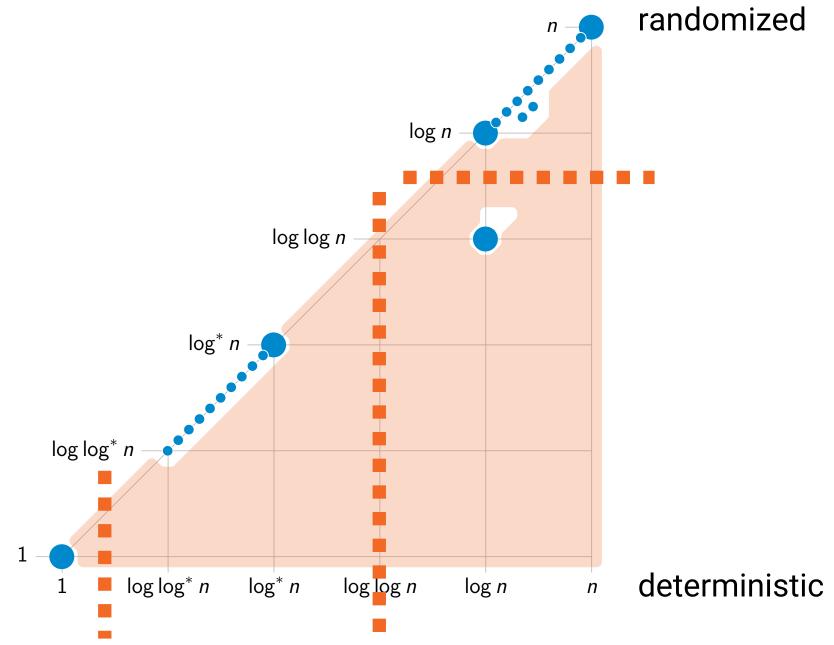








Gaps



Gaps have direct algorithmic implications

If you can solve an LCL problem

- in o(log n) rounds with a deterministic algorithm or
- in o(log log n) rounds with a randomized algorithm then you can also solve it
- in O(log* n) rounds with a deterministic algorithms

Gaps have direct complexity-theoretic implications

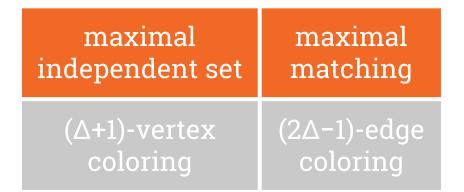
If you can show that there is no O(log*n)-time deterministic algorithm then:

- deterministic complexity is at least $\Omega(\log n)$
- randomized complexity is at least $\Omega(\log \log n)$

From the 2010s: Complexity of maximal independent set & maximal matching

2 of 4 key problems well understood

- Maximal independent set & matching:
 - deterministic $O(\Delta + \log^* n)$
 - deterministic poly(log n)
 - randomized $O(\log \Delta)$ + poly(log log n)
 - cannot improve any of these much
- Upper bound: Rozhon & Ghaffari (2019) + many others
 - a new algorithm for deterministic network decomposition
- Lower bound: Balliu et al. (2019)
 - based on the "round elimination" technique



From the 2010s: Round elimination technique

Round elimination technique

Given:

• algorithm A_0 solves problem P_0 in T rounds

We construct:

- algorithm A_1 solves problem P_1 in T-1 rounds
- algorithm A_2 solves problem P_2 in T 2 rounds
- algorithm A_3 solves problem P_3 in T-3 rounds

• • •

- algorithm A_T solves problem P_T in 0 rounds
- But P_T is nontrivial, so A_0 cannot exist

Linial (1987, 1992): coloring cycles

• Given:

• algorithm A_0 solves 3-coloring in $T = o(\log^* n)$ rounds

We construct:

- algorithm A₁ solves 2³-coloring in T 1 rounds
- algorithm A_2 solves 2^{2^3} -coloring in T-2 rounds
- algorithm A_3 solves 2^{2^2} -coloring in T-3 rounds

•••

- algorithm A_T solves o(n)-coloring in 0 rounds
- But o(n)-coloring is nontrivial, so A_0 cannot exist

Brandt et al. (2016): sinkless orientation

• Given:

• algorithm A_0 solves sinkless orientation in $T = o(\log n)$ rounds

We construct:

- algorithm A₁ solves sinkless coloring in T 1 rounds
- algorithm A₂ solves sinkless orientation in T 2 rounds
- algorithm A_3 solves sinkless coloring in T-3 rounds

•••

- algorithm A_T solves sinkless orientation in 0 rounds
- But sinkless orientation is nontrivial, so A_0 cannot exist

Round elimination can be automated

Brandt 2019

- Always possible for any graph problem P_0 that is locally checkable
- If problem P₀ has complexity T, we can always find in a mechanical manner problem P₁ that has complexity T 1
- Holds for tree-like neighborhoods (e.g. high-girth graphs)
- Can be used to derive lower bounds and to design algorithms

From the 2010s: **Using computers to study distributed computing**

Using computers to do study distributed computing

- Many questions related to distributed computational complexity have turned out to be decidable or semi-decidable
 - at least in principle, and often also in practice
 - we can start to *automate our own work* and outsource algorithm design & lower bound construction to computers
- Automatic round elimination implemented, available online: github.com/olidennis/round-eliminator (Olivetti 2019)
 - in 2016 a lower bound for "sinkless orientation" was a STOC paper
 - in 2019 you can reproduce it in your web browser

Distributed computing in the 2020s

Distributed complexity theory beyond LCLs and the LOCAL model

- We can nowadays say a lot about LCL problems:
 - near-complete classification of distributed complexity
 - systematic studies, powerful proof techniques, automatic tools
- How could we extend all this to non-LCLs?
- Small first steps for the coming years:
 - locally checkable problems with unbounded degrees?
 - locally checkable problems with countably many labels?
 - locally checkable problems with real numbers and linear constraints?
 - optimization problems with locally checkable constraints?

Distributed complexity theory beyond LCLs and the LOCAL model

- We can nowadays say a lot about LCL problems:
 - near-complete classification of distributed complexity
 - systematic studies, powerful proof techniques, automatic tools
- How could we extend all this to non-LCLs?
- How could we extend all this beyond the LOCAL model?

Two perspectives of distributed computing

Network algorithms

- Solving problems related to the network structure
- Example: network protocols
- Key limitation: long distances
- No centralized control
- Local perspective

- Solving large computational tasks with many computers
- Example: MapReduce
- Key limitation: bandwidth
- Fully centralized control
- Global perspective

Two perspectives of distributed computing

Unifying models?

Network algorithms

- LOCAL
- CONGEST

- PRAM
- MPC = Massively Parallel Computation
- BSP = Bulk-Synchronous **Parallel**
- Congested clique

Two perspectives of distributed computing

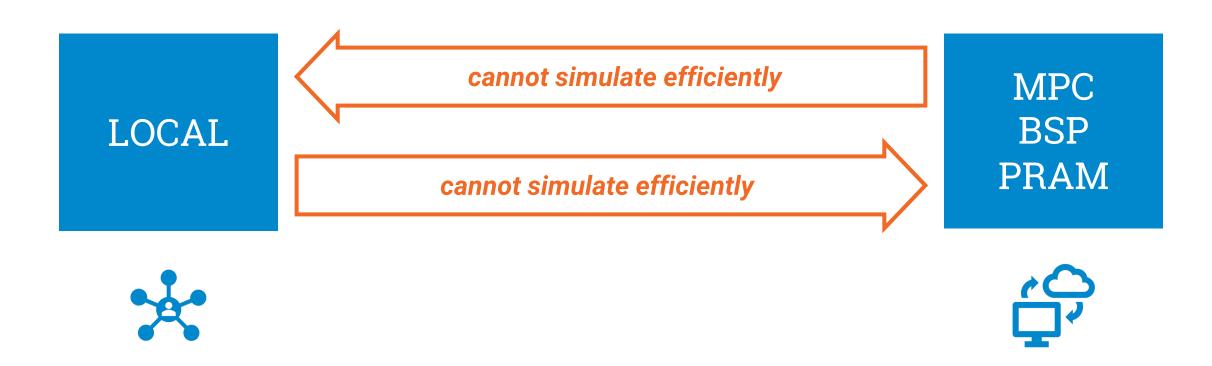
Technology transfer?

Network algorithms

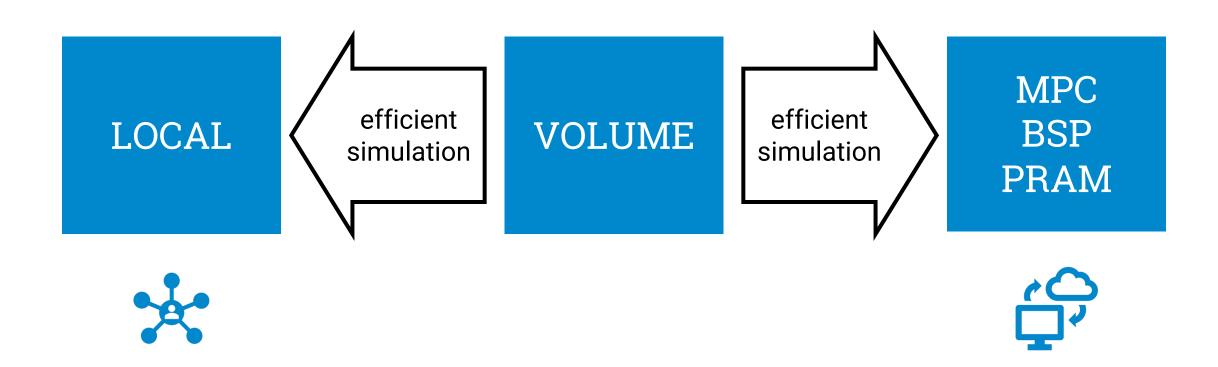
 tight unconditional lower bounds for many problems

 typically at best conditional lower bounds

Two perspectives of distributed computing



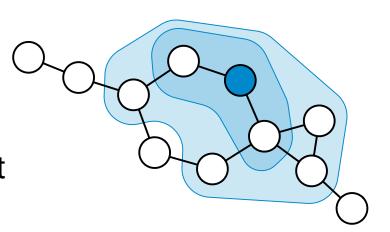
Two perspectives of distributed computing



Volume model

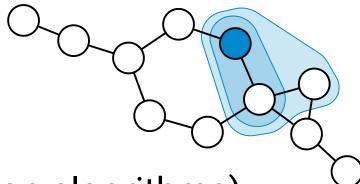
Time T in LOCAL model:

each node can explore a subgraph
 of radius T around it and then choose its output



• Time T in VOLUME model:

 each node can adaptively explore a subgraph of size T around it and then choose its output



 Closely related model: LCA (local computation algorithms), a.k.a. centralized LOCAL algorithms or CentLOCAL

Volume model

- Bridge between two flavors of distributed computing
- Close enough to LOCAL so that it is possible to prove unconditional lower bounds
- Yet poorly understood: typically exponential gaps between upper and lower bounds
- Not-so-small first steps:
 - charting the landscape of LCL problems in the volume model
 - tight bounds for e.g. sinkless orientation, maximal matching ...
 - volume analogue of round elimination

Summary

• 2010s:

- systematic study of LCL problems in the LOCAL model
- new techniques and automatic tools

• 2020s:

- extending theory beyond LCLs
- technology transfer $LOCAL \rightarrow VOLUME \rightarrow MPC$, PRAM, ...

Small puzzles to solve:

- show that $O(\Delta)$ volume is not enough for bipartite maximal matching
- construct an LCL problem with deterministic volume $\omega(\log^* n) \dots o(n)$

Appendix: Additional notes

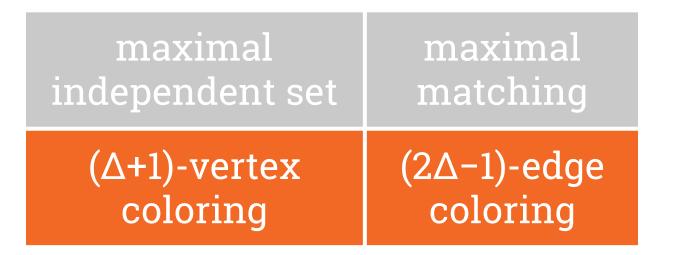
Examples of questions that were well-understood already in the 1990s

- What can be computed with deterministic algorithms in anonymous networks?
 - e.g. Angluin (1980), Yamashita & Kameda (1996)
 - key technique: covering maps
- Which LCL problems can be solved in constant time?
 - e.g. Naor & Stockmeyer (1993, 1995)
 - key technique: Ramsey theory

With hindsight...

- Naor & Stockmeyer (1993, 1995) introduced a very useful problem class (LCLs) and initiated the study of decidability of distributed complexity
 - but there was little follow-up work on these ideas until around 2016
- Linial (1987, 1992) already had the key idea behind "round elimination"
 - but it was not really recognized as a general-purpose proof technique until around 2018

Four key problems



- Independent sets & matchings: now well understood
- Coloring: distributed complexity still wide open
- "Small" first step for the coming years:
 - show that $(\Delta+1)$ -vertex coloring cannot be solved in $o(\log \Delta) + O(\log^* n)$ rounds