e Weeks 1-2: informal introduction

. network =path ™ —m—%__ =

e« Week 3: graph theory

o Weeks 4-7: models of computing

« what can be computed (efficiently)?

e Weeks 8-11: lower bounds

« what cannot be computed (efficiently)?

e Week 12: recap



Week 4

- PN model: port numbering



Port-numbering model

10/100/1000Base-T Ports |




Port-numbering model

« Simple and restrictive

« anonymous nodes, deterministic algorithms

o All other models are extensions of PN model:

« Chapter 5: add unique identifiers
» Chapter 6: add bandwidth restrictions
« Chapter 7: add randomness



Port-numbered

| R

sl |

network
- 1;2

\E_E —

_/— o

L
L




Port-numbered

| R

sl |

network
- 1;2
—\E_E —
E/— o -




Underlying Port-numbered

graph network
G=(V, E) ! N=(V,F p)
a 1|2
b)—d) b d
. ; 1{/213 1
1|2
V={a, b, c, d}
E={{a,b},{a,c}, V={a, b, c, d}
{b,c}, {b,d}} P={(a,1), (a,2), (b,1), (b,2),

b,3), (¢,1), (c,2), (d,1)}
)



Underlying
graph
G=(V, E)

>—d

d

V={aq, b, c, d}
E={{a,b}, {a,c},
1b,c}, {b,d}}

Port-numbered

network
/ N=(V, P, p)
1|2

b d

1
C
1|2
V:{aﬁbﬁcid}

P — {(a)l)) (0,2), (b)l)) (b,2),
(b,3), (c,1), (c,2), (d,1)}
pla,1) =(c,1), p(a,2) = (b,1), ...



Underlying Port-numbered

graph network
G=(V, E) ! N=(V,F p)
a 1|2
B—@ b ﬂ
1213 1
¢ C
1(|2
V={a, b, c, d}
E={{a,b}, {a,c}, V={a,b,c,d}
1b,ct, {b,d}} P={(a,1), (a,2), (b,1), (b,2),
(b,3), (c,1), (c,2), (d,1)}
pla,1) =(c,1), p(a,2) = (b,1),



Underlying Port-numbered

graph network
G=(V, E) ! N=(V,F p)
a 1|2
5)—@) b d
. ; 11123 1
12
V={a,b,c,d}
E={{a,b}, {a,c}, V={a, b, c, d}
{b,c}, {b,d}} P={(a,1), (a,2), (b,1), (b,2),

b,3), (¢,1), (c,2), (d,1)}
) =(c,1), pla,2) =(b,1), ...



Distributed algorithm
in PN model

o Algorithm = state machine
e Input, States, Output, Msg: sets

e inity, sendy, receivey:
functions for each degreed =0, 1, 2, ...



Distributed algorithm
in PN model

e Input =set of local inputs
o States = set of states
o Output =set of stopping states

o Msg = set of possible messages



Distributed algorithm
in PN model

e inity: Input > States
how to initialise the state machine

« send,: States » Msg*
how to construct outgoing messages

e receive,: States x Msg? » States
how to process incoming messages



Distributed algorithm
in PN model

o inity(x)=y
local state at time 0 if local input is x

e sendy(x) = (mi, my, ..., my)
what messages to send if local state is x

e receiveq(x, my, my, ...,mqg) =y
new state after receiving these messages



Distributed algorithm
in PN model

e Execution = sequence of state vectors
XO’ X]_, Xz, XX

e x¢(u) =state of nodeu attimet

e Xo(U) = inity(flu))
e f(u) is the local input of u
» d=degreeofu



Distributed algorithm
in PN model

« Assume p(u, i) = (v, j) Jﬁj—\

o m¢(u, i) = message received by u from port
= message sent by vto portj
= component of vector sendg(x:-1(v))

o Xt(u) = receiveqy(x¢-1(u), me(u, 1), ..., m¢(u, d))



Distributed algorithm
in PN model

e Current state + send » outgoing messages
e Outgoing messages + p » incoming messages

» Incoming messages + receive - new state



Distributed algorithm
in PN model

e For any algorithm A and any network N:
execution xo, X1, X2, ... of AInN

o Stops in time T if xr(v) € Output for all v

 x7(v) is the local output of v



“A solves problem X
on graph family F”

o Take any graph G from graph family F

o Take any port-numbered network N
such that G is the underlying graph of N

e fwerunAin N, then A stops and
outputs a valid solution of problem X



“A solves problem X
on family Fin time T’

o Take any graph G from graph family F

o Take any port-numbered network N
such that G is the underlying graph of N

e fwerunAinN, then A stops in time T and
outputs a valid solution of problem X



“A solves X given Y
on family F”

o Take any graph G from graph family F

o Take any port-numbered network N
such that G is the underlying graph of N

e If werunAin N with any valid input f
then A stops and outputs a valid solution
of problem X



Algorithm P3C:
3-colouring paths

e Local maxima pick a new colour from {1,2,3}

) 19—O—2)—GD)—E)—13
Vs
)19~~~



Algorithm P3C:
3-colouring paths

o “Algorithm P3C solves problem X given Y
on graph family F in time O(|V])”

e X=3-colouring
e Y= colouring (with any number of colours)

o F=path graphs



Algorithm P3C:
3-colouring paths

e Input={1, 2, ...}
e States =1{1, 2, ...}
e Output={1, 2, 3}

e Msg={1, 2, ...}



Al orithm. P3C:
3-gcolourmg paths

e inito(x) =x
o inity(x)=x

e inity(x) =x



Algorithm P3C:
3-colouring paths

e sendo(x) = ()
e sendi(x) = (x)

e send(x) = (x, x)



Algorithm P3C:
3-colouring paths

e receiveo(x) =1 if x ¢ Output

e receiveo(x) = x otherwise



Algorithm P3C:
3-colouring paths

e receivei(x, y) =min({1, 2} \ {v})
if x € Outputand x>y

e receive;(x, y) = x otherwise



Algorithm P3C:
3-colouring paths

e receivez(x, y,z) =min({1, 2,3} \{y, z})
if x ¢ Outputandx>yand x>z

e receivez(x, y, z) = x otherwise



Key question

e What can be solved in PN model
without any additional input?

» no colouring, unique identifiers, etc.
e N0 randomness

« Example: 3-approximation
of minimum vertex cover



Algorithm VC3:
Small vertex covers

e Original graph G: without any colouring
e Virtual graph G’: 2-coloured
e Find a maximal matching M’ in G’

e Use M’ to find a 3-approximation of
a minimum vertex coverin G



1 Construct
virtual
graph G’




1 Construct
virtual

G 2 @ graph G’




1 Find maximal
matching M’
in graph G’




Map back to
original graph




Vertex cover =
all nodes
incidentto M




Vertex cover =
all nodes
incidentto M




Why
vertex
cover?




Edge not
covered
> M’ not
maximal




Why within
factor 3 of
G @ minimum
vertex cover?




Virtual node:
incident to
atmost 1l
edge of M’




Original node:
incident to
at most 2

edges of M

Virtual node:
incident to
atmost 1l
edge of M’



Original node:
incident to
@ at most 2

edges of M

M = paths
and/or cycles

OPT has to
M cover these!






Approximation ratio

Sum over all cycles & paths of M

< 2-OPT for cycles ' <3-OPT for paths

2/1 3/1 4/2




Algorithm VC3:
Small vertex covers

e We can find 3-approximation of
a minimum vertex cover in any graph

e ... assuming that we can find
a maximal matching in 2-coloured graphs!

» Easy to solve: algorithm BMM



Algorithm BMM:
Maximal matching

e Blue nodes send proposals to their
orange neighbours one by one

e using port numbers
e« Orange nodes accept
the first proposal that they get

 using port numbers to break ties



Algorithm BMM:
Maximal matching

e Input: 2-coloured graph

e

11(2]3

12
R




Algorithm BMM:
Maximal matching

« Unmatched blue nodes
send proposals to port 1

i:i_g 1/ 2 123

T




Algorithm BMM:
Maximal matching

e Orange nodes accept the first proposal
that they get (giving priority to small ports)

12

2

3

1

1]

1_7J




Algorithm BMM:
Maximal matching

« Unmatched blue nodes
send proposals to port 2

1|2

1_29

— 1?2{3;]

1_7J




Algorithm BMM:

Maximal matching

e Orange nodes accept the first proposal
that they get (giving priority to small ports)

e

3

1]




Algorithm BMM:
Maximal matching

o Continue until all blue nodes
matched or rejected

11|12+

1_29




Algorithm BMM:
Maximal matching

o All nodes get < 1 partners > matching

_____ 1|2 —{1][2][3F—1]]
3 he




Algorithm BMM:
Maximal matching

« Maximality: blue node unmatched only if all
orange neighbours reject (= already matched)

| izl """" =
. 1 i23 il




Algorithm BMM:
Maximal matching

« Maximality: orange node unmatched only if
no proposals (= blue neighbours are matched)

i_i—@ izl -------- 1)2)(3]]




Summary

e Algorithm BMM: maximal matching
in 2-coloured graphs

o Algorithm VC3: 3-approximation of
minimum vertex covering in any graph

e VC3 uses BMM as a subroutine:
virtual 2-coloured graph



Summary

e There are non-trivial problems
that can be solved in the PN model

 without unique identifiers, colouring, etc.
 However, algorithm design much
easier if we assume unique IDs

« our topic next week



e Weeks 1-2: informal introduction

. network =path ™ —m—%__ =

e« Week 3: graph theory

o Weeks 4-7: models of computing

« what can be computed (efficiently)?

e Weeks 8-11: lower bounds

« what cannot be computed (efficiently)?

e Week 12: recap



