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1 Introduction

Protocols for coordination among concurrent processes are an essential component of modern multiprocessor
and distributed systems. The multitude of behaviors arising due to asynchronous concurrency makes the
design of such protocols difficult, and consequently analyzing such protocols has been a central theme of
research in formal verification for decades [25, 35, 13, 32]. Sustained research in improving verification
tools has resulted in powerful heuristics for coping with the computational intractability of problems such
as Boolean satisfiability and search through the state-space of concurrent systems [11, 26, 15]. Now that
automated verification tools are mature enough to be applied to debugging of real-world protocols [12, 33,
23], the new research frontier is protocol synthesis for simplifying the design process via more intuitive
programming abstractions for specifying the desired behavior.

Traditionally a distributed protocol is modeled as a set of communicating finite-state processes. The
correctness is specified by both safety and liveness requirements. In model checking, a given model of the
distributed protocol is checked against its correctness requirements specified in temporal logic. In reactive
synthesis, the goal is to automatically derive a protocol from the given logical requirements. The synthesis
problem for reactive systems goes back to work in the 1960’s [10], with finite automata on infinite words
and trees providing the crucial algorithmic apparatus, with some recent efforts to translate these results into
practice [39, 30, 8] (see [18] for an excellent survey of the theory of reactive synthesis, and www.syntcomp.org
for benchmarks and a competition of solvers). However, if we require the implementation to be distributed,
then reactive synthesis is undecidable [40, 21]. An alternative, and potentially more feasible approach inspired
by program sketching [49, 48], is to ask the programmer to specify an incomplete protocol to be completed by
the synthesizer so as to satisfy all the correctness requirements. This methodology for protocol specification
can be viewed as a fruitful collaboration between the designer and the synthesis tool: the programmer has
to describe the structure of the desired protocol, but some details that the programmer is unsure about,
for instance, regarding corner cases and handling of unexpected messages, are filled in automatically by the
tool.

The protocol synthesis problem then reduces to the following protocol completion problem: given a set
of finite-state machines for communicating processes with incomplete transition functions, given a model of
the environment, and given a set of safety and liveness requirements, find a completion of the FSMs for the
processes such that the composition satisfies all the requirements. The computational complexity of this
problem is PSPACE, the same as that of model checking of distributed protocols. However, now we need to
cope with a search with two nested exponentials: the number of possible completions of the incomplete input
model is exponential and so is the number of states of the product of all the component processes for any
given completion. Advances in model checking offer a way of dealing with the latter, while counterezample-
guided inductive synthesis (CEGIS) is a new technology that is a potential solution for the former [49, 3, 47].
The synthesis algorithm then consists of iterative invocations of two phases: the learner chooses a candidate
completion, which is then checked with respect to correctness requirements by the verifier; violations of the
requirements are supplied to the learner to prune the search space in subsequent iterations.
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In this paper, using the Alternating Bit Protocol (ABP) as an illustrative example, we explain the for-
malization of the protocol synthesis problem and review the CEGIS-based algorithm for protocol completion
from [6]. Section 2 describes the formal model for finite-state machines communicating via message passing
since the quality of the synthesized protocols is very sensitive to the nuances of modeling. In section 3,
we formalize the analysis problems of verification, synthesis, and completion for distributed protocols and
review the computational complexity of solving these problems. Section 4 contains the detailed model of
the ABP example. In section 5, we describe the protocol completion algorithm, along with the results of
applying it to the ABP example. Section 6 concludes with a survey of related approaches, insights gained
from our work, and directions for future research.

2 Formal Model

The usefulness of automatic synthesis crucially depends on the nuances of the underlying protocol model
and how the synthesis problem is formalized. Our formal model is similar to the well-known model of
I/O automata for asynchronous distributed protocols [35], but we require the protocol components to be
synthesized to be deterministic (sequential) processes. The specific details of the formalization are a minor
variation of the description in [6].

2.1 Modeling Protocols
Finite-State Input-Output Processes

A finite-state input-output process is a tuple P = (I, 0, Q, Qo, T, Ty) where (1) I is a finite set of input events,
(2) O is a finite set of output events with INO = and TUO # 0, (3) Q is a finite set of states, (4) Qo C @
is the set of initial states, (5) T C Q x (I UO) x Q is the transition relation, and (6) Ty C T is the subset
of transitions required to be executed in a strongly fair fashion. We write a transition (¢, z,q’) € T also as
¢ ¢. When z € T (resp., € O), the transition is called an input (resp., output) transition and is also
written as ¢ =% q (resp., q ki q).

Note that we have not explicitly modeled internal transitions: such transitions are useful for constraining
what transitions are visible to the environment of a component, but are not crucial for our purpose. On the
other hand, fairness assumptions are essential for a protocol to satisfy liveness requirements, and we use the
standard notion of strong fairness formalized in the sequel.

A state q is called a deadlock if it has no outgoing transitions. A state g is input-enabled if for every input

event x € I, there exists a state ¢’ such that ¢ = q’. Thus, the process cannot proceed from a deadlock
state, and is ready to accept every possible input in an input-enabled state.

Semantics of Processes

Consider a process P = (I,0,Q, Qo,T,Tf). A run of P is a finite or infinite sequence of transitions starting
from some initial state: go > q1 =3 g2 =% - -, with go € Qp. We call the corresponding sequence of events,
T1,%9,T3,, a trace.

A state q is called reachable if there exists a finite run starting from some initial state and reaching that
state: go = q1 = -+ 33 ¢, for some gy € Qo and some integer n > 0. The process P is deadlock-free if it has
no reachable deadlock state.

To verify safety requirements, we need to consider all finite runs of the process, while to verify liveness
requirements we should focus on traces corresponding to all fair infinite runs. The intuition is that an infinite
run is unfair if some transition in T is enabled infinitely often, but never taken. An infinite run p is said
to be unfair if there exists a transition (g, z,¢’) € Ty such that (g, x,q’) never appears in p, and the state ¢
appears infinitely often in p. Otherwise, the infinite run p is said to be fair. Note that if T is empty, then
all infinite runs are fair by definition.



Composition of Processes

We define an asynchronous (interleaving-based) parallel composition operator with rendezvous synchroniza-
tion. Consider two processes Py = (I1,01,Q1,Qq, T1,T}) and Py = (I2,02,Q2,Q3, T, TF). In order for the
composition of P; and P, to be defined, we require that the processes have no common output events, i.e.,
01 N O3 = (. Then, the composition of P; and P, denoted Pi|| Py, is defined to be the so-called product
process:

PlHPQ = ((Il UIQ) \ (01 UOQ), 0O1UOs, Q1 X Q2, Q(lJ X Qg, T, Tf)

where ((q1,¢2), 2, (q},q5)) € T iff for i = 1,2, if z € I; U O; then (g;,x,q]) € T; else ¢} = q;. The set of fair
transitions of the product process is

Ty ={((q1,2), %, (41, 5)) € T | (qu,%.q}) € T} or (q2,w,q5) € T7}.

Let us provide some intuition for the definition of composition. The set of input events of Py|| P, is (I; U
I5)\ (O1 UOs), meaning that it contains all inputs of either process which are not outputs of the other. The
output events are Oy U Os, i.e., the outputs of either process. This means that an output remains an output
even after it has been “matched” by an input. However, an input is removed once it has been matched by
an output. Preserving output events allows multicasting in the sense that a single output can synchronize
with many inputs, from multiple receiver processes.

As is standard, a state of the product process is a pair of states, one from each of its component processes.
An initial state of the product is a pair of initial states, one from each component process. A transition
(q1,q2) = (¢}, ¢b) of Pi||Py is one of the following three kinds. One where P; issues an output, i.e., 2 € O;.
In that case, either x is an input of Py, i.e., x € I3, or it is not. If © & I5, then P does not move, and only
P, makes a transition. If z € I, then the two processes synchronize, i.e., P; makes an output transition

Q1 z gy while P, makes an input transition gz = ¢5. The symmetric case is where P, issues the output.
The third case is where z is an input for P || Py, i.e., z € (I; U I2) \ (O1 U Os). In this case, if = is an input
for both processes, i.e., z € I; NI, then the two processes must synchronize. Otherwise, only one of the two
processes moves.

Lastly, the definition of fair transitions for the product ensures that an infinite run of P, || P is unfair iff it
violates the fairness conditions of either P; or P5. In this way, the fairness assumptions of P; || P> correspond
logically to the conjunction of the fairness assumptions of each of P; and Ps.

The composition operator || is commutative and associative, and thus, when we need to compose several
processes, the order of compositions does not matter.

Deterministic Processes

A distributed system is modeled as a composition of processes, some of which are protocol processes that
model components of the distributed protocol, and some of which are environment processes that capture
the environment in which the protocol operates. While environment processes are unrestricted processes, we
want protocol processes to satisfy some additional requirements.

First, we want a protocol process to be able to accept any given sequence of inputs. Without such an
assumption, one may get solutions to the synthesis problem that “cheat”, that is, protocols that achieve
certain properties by blocking certain events. For example, in the case of the ABP example, presented in
Section 4, the synthesized ABP Sender might achieve the property “every send is eventually followed by
a deliver” by simply refusing to accept send events from the Sending Client process. Then, a send never
happens and the property is satisfied trivially. This requirement, typically referred to as input-enabledness
or input-receptiveness, has been formalized in different ways in the literature (see [22, 2, 5, 14, 54, 41]).

Second, we want a protocol process to be implementable as a deterministic sequential program. This
means that no state should have two outgoing transitions labeled with the same event: while such nonde-
terministic transitions are useful to model an environment process (for instance, to specify that a message
may or may not get lost), in a deterministic process the next state is determined uniquely from the previous
state and the processed event. Furthermore, if an output event is possible in a state, then the process is



committed to producing this output, and cannot accept inputs or produce any other output. In other words,
execution of an output transition is not in a “race” with other transitions, and the process can continue
only after producing this output. This assumption is common in deterministic models of concurrency such
as Kahn process networks [27] and their various dataflow restrictions [34].

Formally, a deterministic (sequential) process is a process P = (I,0,Q, Qo, T, Ty) satisfying all following
conditions: (1) the initial state is unique: the set Qo contains a single state gg, (2) the transition relation
is deterministic: for every state ¢ and input/output event z, if ¢ 5 q1 and q 5 qo are two transitions, then
g1 = q2, (3) there is no race between input and output transitions: @ is partitioned in two disjoint subsets,
the set @ of states whose outgoing transitions are all input transitions, called input states, and the set Qo
of states with only output outgoing transitions, called output states, (4) input states are input-enabled: if

q € Qr, then for every input event x there exists a (unique) state ¢’ such that ¢ Li¢ q', (5) outputs are
unique: an output state has a single outgoing (output) transition, (6) inputs are eventually enabled: if
the set of input events is non-empty, then from each state g € @), some input state must be reachable, and
(7) enabled output transitions are eventually executed: the set Ty of strongly fair transitions equals the set
T° ={q 5 ¢ € T |2 € O} of all output transitions.

The first condition ensures that the initial state of a deterministic process is determined uniquely. Suppose
the set I of inputs is non-empty. Then, at any step, the process is in either an input state or an output
state (due to condition (3)). In an input state, it can only accept inputs, is willing to accept all possible
inputs (due to condition (4)), and once such an input is received, the next state is determined uniquely
(due to condition (2)). In an output state, the process is not willing to accept any inputs and is ready to
produce a unique output event (due to condition (5)) and continue to a uniquely determined next state.
Condition (6) ensures that there are no deadlocks and no cycles that consist of only output states, so the
process will eventually proceed to a state where it is willing to accept inputs. Finally, we require all output
transitions to be strongly fair (condition (7)). Requiring such output-fairness is reasonable, since when a
protocol process reaches an output state, we would like the (unique) output transition from that state to be
eventually executed. Otherwise, the process is ignored forever, which is clearly unfair. If the set I of inputs
is empty, then a deterministic process has only one run consisting of only output transitions, which could
be finite terminating in a deadlock state or infinite repeating a cycle of output transitions.

Our definition ensures that a deterministic process has a unique response to any given sequence of input
events: if A is a deterministic process and p is an infinite sequence of input events, then there is exactly one
run go — g1 3 g2 2 ... such that the run is fair and the projection of the trace x1,zs, ... on the input
events equals p.

2.2 Modeling Requirements

For a distributed protocol specified as a composition of processes, its semantics is the set of traces capturing
its observable behaviors. A requirement is a classification of all possible traces into correct and incorrect,
and a protocol meets the requirement if all its traces are correct. Such requirements are often specified
in high-level formalisms such as temporal logic [36]. We will use instead the more “low-level” formalism of
monitors. Monitors are extensions of processes, and therefore are easier to present while avoiding a discussion
of temporal logic. Moreover, monitors naturally compose with processes using the same principles. Finally,
formulas in a temporal logic such as LTL (Linear Temporal Logic) can be translated into the type of monitors
used here [56], which means that we do not lose in expressive power.

Automata

Monitors are essentially automata, i.e., processes equipped with additional sets of accepting states modeling
different types of acceptance conditions. In this work we consider two types of acceptance conditions: error
states to capture safety properties, and accepting states of type Biichi to capture liveness properties.
Formally, we use the term automaton for a triple (P, Q., @), where P = (I,0,Q, Qo, T, Ty) is a process,
Q. C Q is a (possibly empty) set of error states, and Q, C @ is a (possibly empty) set of accepting states.



We require that Q. N Q, = 0.

Monitors

A monitor is an automaton (P, Q.,Q,) satisfying the following conditions: (1) P = (I,0,Q, Qo,T,0), that
is, a monitor has no output events, and no fairness constraints; and (2) every state in @ is input-enabled.
These conditions ensure that the monitor is “passive”, i.e., when composed with the system being monitored,
a monitor only observes but does not otherwise interfere with the system. In particular, input-enabledness
ensures that monitors do not block the output events of the system processes they synchronize with. If
Q. # 0 and Q. = () then the monitor is called a safety monitor. If Q, # 0 and Q. = @) then the monitor is
called a liveness monitor.

We use monitors to capture the negation of the properties that we want the system to satisfy, i.e., to
capture the violating traces. A run leading to an error state corresponds to a trace violating a safety property,
while a run visiting an accepting state infinitely often corresponds to a trace violating a liveness property.
A correct system will be one having no violating traces.

Consider a monitor M = (P, Q., Q). The notions of run, reachable state, deadlock, and so on, apply to
M in the sense that they refer to its corresponding process P = (1,0,Q,Qo, T, TY).

The monitor M is said to be safe if it has no reachable error states, i.e., no g € Q). is reachable.

An infinite run of M is said to be accepting if it visits accepting states (i.e., states in Q),) infinitely often.
The monitor M is said to be live if it has no infinite run that is both fair and accepting.

Composition of Monitors, Automata, and Processes

We next define automata composition as an extension of process composition. Since monitors are special cases
of automata, this also defines composition of monitors, as well as composition of monitors with automata.
Moreover, processes can be viewed as special cases of automata with empty sets of error and accepting
states. Therefore, the composition of all three types of components, processes, automata, and monitors,
is also defined. Associativity and commutativity of process composition extends to the case of automata
composition as well.

Consider two automata A; = (P1,QL,QL) and Ay = (P, Q% Q3?). In order for the composition of
Ay and As to be defined, we require that the composition of their processes, Pi|| Pz, is defined. Let
Pl = (Il,Ol,Ql,Q(%,Tl,T}), P2 = (IQ,OQ,QQ,Q%,TQ,TJ%), and P1HP2 = (I,O,Q,Qo,T,Tf). Then, the
composition of A; and As, denoted Aj||As, is defined to be the automaton Ai||As = (Pi||P2, Qe, Qu),
where Qe = (Q! x Q2) U (Q1 x @2) and Q, = (QL x Q2) U (Q1 x Q2).

A state (q1,¢2) is an error state of A;||As if either ¢; is an error state of Ay or g is an error state of As.
Similarly, (q1,g2) is an accepting state of A;||As if either ¢; is an accepting state of A; or ¢o is an accepting
state of As. When A; and A, are monitors, these definitions imply that in order for a violation to occur
in the product monitor, it must occur in at least one of its component monitors. Note that this definition
“works” because we use monitors to model not the properties we want the system to satisfy, but the negation
of those properties. Indeed, suppose we want the system to satisfy several properties, say ¢1, @2, ..., ¢, ; that
is, we want the system to satisfy their conjunction ¢ = ¢1 A ¢pa2 A --- A ¢,,. Then we can build a separate
monitor M; which captures the negation of each property, i.e., —¢;. The definition of product error and
accepting states ensures that the product M|l .- ||M,, captures the disjunction —¢1 V -+ V =, which is
equivalent to the negation of the global property ¢.

3 Analysis and Synthesis Problems

3.1 Protocol Verification

In the verification problem, the protocol is modeled as a set Py, ... P, of processes and the requirements are
captured by a set My, ... M, of monitors. The verification problem is to check if the system is correct:



Problem 1 (Distributed Protocol Verification) Given a set of processes Py, ... P, and a set of mon-
itors My, ... M,, check if (1) the product Py||---||Pn is deadlock-free, and (2) for i = 1,...n, the product
Py || Pl M; is both safe and live.

The first condition checks the implicit requirement of absence of deadlocks and the second condition checks
that the protocol satisfies each of the explicit safety and liveness requirements. Each of these conditions can
be checked separately, and for the second, correctness with respect to each monitor can also be checked
separately. Fach check requires exploration of the global state-space of the product of all the processes.
Checking safety corresponds to checking reachability of error states in the product, while checking liveness
corresponds to detecting reachable cycles that contain accepting states and satisfy fairness assumptions.
The theoretical complexity of the verification problem is PSPACE since this exploration can be done without
explicitly constructing the exponential-sized product graph [56, 13]:

Theorem 1 The distributed protocol verification problem is PSPACE-complete.

The exponential growth in the size of the global state-space is called “state-space explosion”, and in the
last thirty years a number of heuristic approaches have been proposed to cope with this problem. Examples of
model checkers that incorporate these approaches and have been successfully applied to real-world protocols
include SPIN [26], SMV [11], and Murphi [16].

3.2 Protocol Synthesis

In the protocol synthesis problem, we are given a set of processes that model the environment and a set of
monitors that capture the requirements. We are also given the communication architecture, that is, the set of
inputs and outputs through which the protocol processes to be synthesized may communicate. The synthesis
problem then is to construct the desired protocol processes as deterministic processes so that the composed
system meets the safety and liveness requirements of the monitors as well as the implicit requirement of
absence of deadlocks.

An input-output interface (or 10 interface, for short) is a pair (I, O), where I is a set of input events and
O is a set of output events such that 7N O =@ and T U O # (. We are now ready to define the distributed
protocol synthesis problem (DPS):

Problem 2 (Distributed Protocol Synthesis) Given a set of processes Py, ..., Pf, called the environ-
ment processes, a set of 10 interfaces (I1,01), ..., (I;m, Om), and a set of monitors My, ..., M,,, find, if there
exist, a set of deterministic processes Py, ..., Py, called protocol processes, such that: (1) fori =1,...m,
each P; has the interface (I;,0;), that is, P; = (I;,0;, Qi, b, TZ-,T}), for some Q;, q&Ti,T]’}, (2) the product
Pe| - 1PEN P - - - || P is deadlock-free, and (3) for eachi = 1,...n, the product Pg|| - - || Pl Pil| - - - || P || M
is both safe and live.

To understand the difficulty in solving the distributed protocol synthesis problem, let us focus on a special
case: suppose we have no environment processes and a single deterministic safety monitor M. Let the set
of 10 interfaces be (I1,01), ..., (I;m, O). That is, we want to synthesize protocol processes A; with input I;
and outputs O;, where the monitor M imposes a safety requirement on the desired communication pattern.
The synthesis problem then corresponds to finding a winning strategy in a multi-player game played over
the states of monitor M, where the players correspond to the processes to be synthesized. The game starts
in the initial state of the monitor. At every step one of the players takes a step: a step by the process A;
corresponds to an event in O; and this updates the monitor state according to the transition function. The
strategy of the player A; determines which event in O; is to be produced, and it can depend only on the
sequence of events in I; that have been played so far. Such a strategy can be formalized as a function from
I to O;: based on the sequence of inputs observed so far, it produces the next output. Note that the player
does not know the entire history, and thus, has only partial information about the state of the monitor. If we
fix a strategy for each of the players, then we get a unique run of the monitor, and if this run avoids the error
states, then the strategies are winning. Such winning strategies when viewed as deterministic automata give



us a solution to the synthesis question. Thus, the distributed synthesis problem reduces to finding winning
strategies in a multi-player partial information game. Such games unfortunately are undecidable even when
the number of players is two [38]. This does not directly imply undecidability of the distributed synthesis
problem, but essentially the same proof idea can be used to show that as long as we have two unknown
processes and a non-trivial specification, the synthesis problem is undecidable [40].

Theorem 2 The distributed protocol synthesis problem is undecidable.

There have been efforts to identify restrictions on the pattern of communication among the processes
to be synthesized so as to ensure decidability of the synthesis problem. We refer the reader to [21, 18] for
sufficient and necessary conditions on the communication architecture for decidability. Unfortunately, the
communication pattern in our case study of the Alternating Bit Protocol does not fall within the decidable
class.

Supervisory Control

Reactive synthesis is related to the theory of supervisory control for discrete-event systems [43, 44]. A
comparative introduction of reactive synthesis and supervisory control can be found in [17]. Supervisory
controller synthesis has been studied extensively, for the cases of fully observable or partially observable
systems, centralized or decentralized controllers, and many other cases (e.g., see [50, 9]). Particularly related
to the topic of this paper is the case of decentralized control. Undecidability of decentralized supervisory
control problems has been shown in [31, 51] for the case of w-regular languages and in [52, 53] for the
case of regular languages. Other variants of decentralized supervisory control had earlier been shown to be
decidable [46, 45].

3.3 Protocol Completion

In the protocol synthesis problem, we only know the input-output interface of each of the protocol processes
to be synthesized, and need to figure out the set of states and transitions necessary to implement the desired
logic. In a less demanding version of the problem, that we call completion, we have some partial information
regarding the states and transitions of the protocol processes and need to only fill in the missing details.

An incomplete process is a process with some of its elements missing, or incomplete. For the purposes
of this paper, we will define an incomplete process to be simply a process with a possibly incomplete set
of transitions. Extra transitions can be added to such a process during a completion process. Formally, an
incomplete process P is defined by a tuple of the same type as a normal process, where the set of fairness
constraints is initially empty: P = (I,0,Q,qo,T,0). Given a set of transitions 77 C Q x (I U O) x Q,
the completion of P with T' is the new process P’ = (I1,0,Q,qo,T U T',T}), which is required to be a
deterministic process. The requirement that P’ is deterministic implicitly determines the set of strongly fair
transitions T to be the set of all output transitions in 77U T". This includes all existing output transitions
in T, as well as any newly added output transitions in 7".

We now define a second synthesis problem, which we call distributed protocol completion (DPC):

Problem 3 (Distributed Protocol Completion) Given a set of environment processes PY, ..., P¢, a set
of incomplete protocol processes Py, ..., Py, and a set of monitors M, ..., M,, find, if there exist, sets of
transitions Ty, ... Ty, such that: (1) for each i = 1,...m, the completion P! of P; with T; is a deterministic
process, (2) the product Pf| ---||P¢|| Py - || Py, is deadlock-free, and (3) for each i = 1,...n, the product
Pe| - IPENPL - - - 1P| | M is both safe and live.

While protocol synthesis is undecidable, the protocol completion problem is decidable for the following
reason. Every incomplete protocol process has a finite number of states, and only transitions, but no states,
can be added during completion. The sets of input and output events of each process are both finite, and
thus so is the set of all possible transitions. There is a finite number of protocol processes to be completed,
and each one admits a finite number of completions, therefore, the total number of completion combinations



is also finite. For every possible completion, we can then use protocol verification to check if the completion
satisfies all the desired requirements. It is also easy to see that the protocol completion problem belongs to
the complexity class PSPACE: the description of each completed process P/ is polynomial in the description
of the incomplete process P;, and thus, the desired completions can be guessed in polynomial space, and
for a given completion, its validity can be checked using a PSPACE algorithm for the protocol verification
problem.

Theorem 3 The distributed protocol completion problem is PSPACE-complete.

The completion problem in general has the same complexity, PSPACE, as the verification problem, but
unlike the verification problem, it is still hard (NP-complete) even for a constant number of processes [6].

4 Illustrative Example: the Alternating Bit Protocol

The Alternating Bit Protocol (ABP) is a standard communication protocol that provides reliable (i.e., loss-
less) transmission of a message over an unreliable (i.e., lossy) channel. ABP achieves this by retransmitting
the message when the message is deemed lost. ABP is used routinely to illustrate formal modeling and
verification techniques [26, 35, 42], and indeed is simple enough to illustrate our approach to distributed
protocol synthesis.

4.1 ABP System Architecture

The system architecture of the ABP model is shown in Figure 1. The figure shows all the processes of the
model, depicted as rectangles or circles, and their communication events (inputs and outputs), depicted as
labeled arrows. The figure also shows the safety and liveness monitors used in our model. Protocol processes
are denoted by circles. Environment processes and monitors are denoted by rectangles.

The system contains seven processes in total:

e The protocol processes ABP Sender and ABP Receiver.

e The environment processes Forward Channel and Backward Channel. These two processes model the
two lossy channels linking the ABP Sender and Receiver.

e The environment processes Sending Client and Receiving Client which model two client processes: the
former wants to send messages to the latter. The messages must be transmitted reliably, even though
the channels are unreliable.

e The environment process Timer which issues timeouts.
The communication between the system processes is as follows:

e ABP Sender communicates with Forward Channel via events py and p;, modeling the transmission of
a message annotated with bit 0, and that of a message annotated with bit 1, respectively. We are not
interested in the value of the message itself, and therefore do not model what is carried in the “body”
of the message, but only in its “header”. In this simple protocol, the header consists of a single bit.
Events pg, p1 are output events for the ABP Sender, and input events for the Forward Channel.

e Forward Channel communicates with ABP Receiver via events pj and pj. These two events also model
the transmission of a message with 0 or 1, but they are primed, in order to be distinct from pg, p;. The
reason we want to distinguish p{, pj from pg, p1, is that pg, p1 are used to synchronize the transitions of
ABP Sender and Forward Channel (but not of ABP Receiver), whereas py, pj are used to synchronize
the transitions of Forward Channel and ABP Receiver.

e Events ag, a1 and ap, aj model acknowledgment messages annotated with the bit 0 or 1, and sent from
the receiver to the sender through the backward channel.
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Figure 1: ABP system architecture.

e The Sending Client communicates with ABP Sender with events send and done. Event send models
the message that the sending client gives to the ABP protocol for delivery to the receiving client. Event
done models the response from the protocol that the message has been successfully delivered.

e Event deliver models the delivery of the message to the receiving client.

e Event timeout models the occurrence of a timeout. The sender uses such timeouts to retransmit
messages as it deems necessary.

4.2 The Environment Processes

The two channel processes are shown in Figure 2. Circles denote states and arrows between states denote
transitions. Arrows without a source state denote initial states. Transitions with bold lines and double arrows
denote strong fairness constraints, further discussed in §4.5. Transitions are labeled with input or output
events. A ‘7’ following an event indicates an input event, while ‘!’ indicates an output event (c.f. §2.1).

Both channels have capacity 1, meaning that they can store at most one message. In the Forward
Channel, state fy corresponds to the channel being empty, either because it hasn’t received any message
yet, or because it has lost the last message received. When a message, say po, is sent to an empty channel,
the channel may nondeterministically either take the self-loop transition and remain at fy, meaning that
it loses the message, or take the transition from fy to f;, meaning that it stores the message. Then, from
f1, the channel may choose to take, nondeterministically, either the transition labeled p{! back to fy, or
the self-loop with the same label which remains at f;. The first transition corresponds to the channel
forwarding (correctly) a single copy of the message it received. The self-loop transition corresponds to the
channel choosing to forward multiple copies (two or more) of the message. This models another typical defect
of communication channels, namely, message duplication. In addition to the outgoing transitions from f;
labeled with the output event pj, state fi also contains self-loop transitions labeled with the input events
po and p;. These self-loops capture what happens if the channel receives a new message while it still hasn’t
completed forwarding the last message it received. In such a case, the most recent message is simply ignored,
i.e., lost.

The Backward Channel is similar to the Forward Channel and therefore not described in further detail.



Figure 2: Environment processes Forward Channel (left) and Backward Channel (right). Transitions in bold
lines and double arrows are strongly fair, meaning they cannot be enabled infinitely often without being
taken.

done ? deliver ? timeout !
send !
done ?

Figure 3: Environment processes Sending Client (left), Receiving Client (middle), and Timer (right).

The environment processes Sending Client, Receiving Client, and Timer are shown in Figure 3. Sending
Client sends a message and then waits for done before sending the next message. Receiving Client simply
accepts any message delivered to it. Timer can issue a timeout at an arbitrary point in time. This is a
conservative way of modeling timeouts, which in reality occur at precise moments in time, after certain
durations specified as part of the timing parameters of the protocol. Our model is untimed and cannot
capture such quantitative constraints. Still, our model is conservative: if a protocol works correctly assuming
that timeouts can occur at any time, then surely it will also work correctly when timeouts can occur only
after certain specified durations. Timed formalisms such as timed automata [4] exist, allowing to capture
quantitative timing constraints. But such formalisms typically involve much more computationally expensive
analysis and synthesis algorithms.

Note that all environment processes are able to accept all their input messages at every state. This holds
trivially for process T¥mer which has no inputs. The self-loop labeled done? at state s§ of the Sending Client
is added in order to achieve this property. This property ensures that none of the environment processes can
block any output event of another process at any time.

4.3 Safety and Liveness Properties: the Monitors

In addition to deadlock freedom, the system must satisfy certain safety and liveness properties captured by
the safety monitors of Figures 4 and 5, and the liveness monitors of Figures 6 and 7 (and possibly also of
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Figure 4: Safety monitor 1 for the ABP system: “send and deliver happen in the right order”. State g is
the error state, meaning that the safety property is violated if the monitor ever enters that state.

send ?

deliver ?
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Figure 5: Safety monitor 2 for the ABP system: “deliver and done happen in the right order”.

Figure 8, as discussed in the sequel).

The safety monitor of Figure 4 captures the property that events send and deliver must occur in the right
order: a deliver cannot occur unless a send occurs before, and two sends cannot occur in a row without a
deliver in-between. State go of the safety monitor is the error state. If ever the safety monitor enters that
state, the property has been violated.

The safety monitor of Figure 5 captures the property that events deliver and done must occur in the
right order. This monitor has exactly the same structure as the monitor of Figure 4, except that deliver is
replaced by done, and send by deliver.

We want the system to satisfy the liveness property that every send must eventually be followed by a
deliver, i.e., that every message is eventually delivered.! The liveness monitor of Figure 6, with accepting
state ¢, captures the negation of this property. That is, a behavior is accepted by this monitor iff it violates
the property. Such a violating behavior is one where at some point a send occurs (upon which the monitor
moves from gg to ¢1) and no deliver ever occurs after that (therefore the monitor gets “stuck” in ¢; forever,

I In LTL, this property can be stated as G(send — Fdeliver).

send ? send ? send ?

L
% send /(D deliver 7

/

deliver ? deliver ?

Figure 6: Liveness monitor 1 for the ABP system: “every send is eventually followed by a deliver”.
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Figure 7: Liveness monitor 2 for the ABP system: “ every send is eventually followed by a done ”.

any except send any

any
any A send ?
ﬂ@ ) ()
Figure 8: Liveness monitor 3 for the ABP system: “ send occurs infinitely often ”. Each transition labeled

“any” represents a multitude of transitions, one for each input event to the monitor. Similarly, the transition
labeled “any except send” represents a multitude of transitions, one for each input except input send.

thus accepting the behavior). Note that this automaton is nondeterministic: from gg, upon observing event
send, it can either remain at gy or move to g;. This nondeterminism captures in a simple manner violating
behaviors where the send event causing the violation is not necessarily the first one.

The liveness monitor of Figure 7 captures the property that every send must eventually be followed by a
done, i.e., that the sending client is eventually notified of the successful delivery of a message.? This monitor
has exactly the same structure as the monitor of Figure 7, except that deliver is replaced by done.

A final liveness property that we sometimes use in our experiments is the property that send occurs
infinitely often.® This property is useful for eliminating some synthesis solutions which turn out to be
blocking.* The liveness monitor for this property is shown in Figure 8. This monitor receives as inputs all
12 events of the ABP system. Each transition labeled “any” represents a multitude of 12 transitions, one for
each of these 12 input events. Similarly, the transition labeled “any except send” represents 11 transitions,
one for each input except input send. Note that from state gg of this monitor there is a non-deterministic
choice for every input event, e.g., for input event pg, there is the transition gq 5 qo and also the transition
go 23 ¢1. On the other hand determinism holds at states ¢; and ¢2. In particular, send leads only to g, from
q1, and any other event from ¢; leads back to ¢;.

4.4 ABP Sender and Receiver

We now present a first version of the ABP sender and receiver processes. This version was built “manually”,
based on textbook descriptions of the ABP protocol.

ABP Sender

The ABP Sender process is shown in Figure 9. It is a deterministic process with 8 states, out of which 4 are
input states (so, S2, s4, S¢) and 4 are output states (s1, s3, S5, $7). Notice that all input states have outgoing
transitions for each one of the 4 input events of the ABP Sender, therefore, all these states are input-enabled.

2 In LTL, this property can be stated as G(send — Fdone).

3 In LTL, this property can be stated as GFsend.

4 Such solutions may be generated due to current limitations of our tool, which does not ensure that all conditions of a
deterministic sequential process are met. In particular the tool does not ensure condition (6) — c.f. ‘Deterministic Processes’,
page 4.
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Figure 10: “Manually” constructed ABP Receiver.

The sender starts at state sg, where it is idling, awaiting a send, i.e., awaiting to begin transmission of
a message, and ignoring all other input events (af,a}, and timeout). Once it receives a send, the sender
moves to state s; and sends py to the forward channel. After that it moves to state so, where it waits
for an acknowledgment from the ABP Receiver process. The acknowledgment must be annotated with the
same bit as the message, i.e., bit 0 in this case. Therefore the expected acknowledgment event at state s
is af. If the wrong acknowledgment a} is received, it is simply ignored (self-loop at state sg). If the right
acknowledgment af, is received, this means that the message has been successfully transmitted: therefore the
sender moves to state s3, upon which it sends a done event to the Sending Client, and moves to state s4 to
wait for a new message.

At state so, it is also possible for the sender to receive a timeout. In that case, it moves back to state s;
and retransmits the message, i.e., sends a new pg event to the forward channel.

The operation of the sender along states sq4, S5, Sg, S7 is symmetric to its operation along states sg, s1, S2, S3.
The difference is that now the bit is switched from 0 to 1 (hence the term alternating bit).

ABP Receiver

The ABP Receiver process is shown in Figure 10. It is a deterministic process with 6 states, out of which 2
are input states (rg,73) and 4 are output states (1,72, 74,75). Note that all input states of the ABP Receiver
process are input-enabled.

The receiver starts at state rg, where it is idling and awaiting for an input event. If that input event
is p{), then it indicates a new incoming message, since the alternating bit 0 is the correct “next one” in
sequence. In that case, the receiver delivers the message to the Receiving Client by sending a deliver, and
replies to the ABP Sender with an acknowledgment, by sending ag to the Backward Channel. Note that the
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acknowledgment is annotated with the same bit as the message received, namely, 0 in this case.

If, on the other hand, the input received at state rq is not pj, but pf, then this indicates an “out of
sequence” incoming message. For instance, it could be a redundant retransmission by the sender, due to a
lost acknowledgment. In that case, the receiver retransmits the last transmitted acknowledgment, i.e., a; in
this case.

The operation of the receiver at states ss, s4, S5 is symmetric to that at states sg, s1, s3, with the role of
the alternating bit switched from 0 to 1.

4.5 Fairness Assumptions

The ABP Sender and Receiver cannot fulfill the protocol’s liveness requirements unless we impose some
fairness assumptions on the model.

The first assumption that we need is that the channels do not lose all messages. Indeed, without this
assumption, the behavior send, pg, timeout, pg, timeout, -- -, is possible, where the Forward Channel keeps
self-looping at state fj, always losing message pg, thus violating the property that send is eventually followed
by deliver. To avoid such behaviors, we declare the following transitions of the two channels as strongly fair:
(fo, po?, f1), (fo, P17, f2), (bo, ao?, b1), and (bo, a1?, bz).

The second assumption that we need is that the channels don’t get “stuck” at their “full” states, contin-
uously replicating output messages. Here, the violating traces are more subtle. For instance, during the first
send cycle, where the sender sends pg, the Forward Channel may get stuck at state fi. In the next send cycle,
the sender sends p;. But since the Forward Channel is at state f;, it keeps ignoring p;. Therefore, a deliver
never follows the second send. To avoid such behaviors, we declare additionally the following transitions of
the two channels as strongly fair: (f1, pp!, fo), (f2, PiY, fo), (b1, ap!, bo), and (ba, af!l, bo).

The third assumption that we need is that if deliver is possible, it will eventually happen. This is achieved
by the strong fairness assumption on the transitions (r1, deliver!, r2) and (r4, deliver!, r5) of the ABP
Receiver. Without this assumption, the behavior send, po, timeout, pf, po, timeout, po, timeout, --- is
possible. In this behavior, the Forward Channel gets “stuck” at state fi, opting for the self-loop transition
there when it sends p{), instead of the transition returning to fo. The ABP Sender keeps timing-out and
retransmitting pg, between states s; and sy. The ABP Receiver is “stuck” at state ri, waiting to issue
a deliver. The transitions corresponding to deliver are always enabled, but never taken. The fairness
assumptions on the deliver transitions rule out this kind of behavior.

A final fairness assumption that we may wish to impose is to declare the transition (s§, send!, s§) of
the Sending Client as strongly fair. Without this fairness condition, uninteresting behaviors such as an
infinite sequence of timeouts become possible. This fairness condition is needed for the “infinitely often
send” property (liveness monitor 3), but not for the other two liveness properties described above.

Several other transitions of the ABP Sender and Receiver are declared to be strongly fair, in particular,
all output transitions of these processes (see Figures 9 and 10). This is done to conform to the default
requirement that all output transitions of the deterministic protocol processes be strongly fair. However,
these extra fairness assumptions are not strictly necessary, as the assumptions listed above are sufficient in
order to satisfy all three liveness properties discussed above.

4.6 ABP as a Solution to a Distributed Protocol Synthesis Problem

ABP can be seen as a solution to the problem of finding a protocol that guarantees reliable transmission of
messages over unreliable channels. Formally, the ABP model presented above has no deadlocks, and satisfies
the properties expressed by the monitors of Figures 4, 5, 6, 7 and 8.

Moreover, the ABP Sender and Receiver of Figures 9 and 10 are deterministic sequential processes.
Therefore, these two protocol processes can be seen as a solution to the Distributed Synthesis Problem 2,
where: there are k = 5 environment processes — Sending and Receiving Clients, Timer, Forward and Back-
ward Channels; there are m = 2 protocol processes — the ABP Sender and Receiver, with interfaces as shown
in Figure 1; and there are n = 5 monitors — the safety and liveness monitors presented above.
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Figure 11: Blocking Sender: it blocks the send event of the Sending Client by not having any transition
labeled with that event.

It is worth noting that the requirements imposed on deterministic sequential processes, such as input-
enabledness of input states, are crucial, in the sense that ignoring these requirements may result in trivial
solutions. For instance, the Blocking Sender shown in Figure 11, together with the receiver of Figure 10,
satisfy all requirements that are satisfied by the correct protocol. But clearly this is not a solution we
want, since the Blocking Sender achieves the liveness property “every send must be eventually followed by
a deliver” by simply refusing to accept send events, even though send is in its input interface. A send
can therefore never occur, and the above liveness property is trivially satisfied. The same is true with the
other liveness property. Requiring input states of protocol processes to be input-enabled eliminates such
pathological solutions.

5 Automatic Protocol Completion

5.1 Solving the Distributed Protocol Completion Problem

The total number of completions of given incomplete processes may be finite, but in most realistic examples
it is huge. Even in the case of the relatively simple ABP example, there are more than 2 trillion candidate
completions (see Section 5.3). Checking each of them for correctness can be done automatically with a
model checker. But even if model checking each candidate is fast, the sheer number of candidates makes
enumerating and checking all of them an impossible task.

An alternative to brute-force enumeration is proposed in [6]. As we shall see in §5.3, this alternative
method allows to complete examples like the ABP in less than a minute. The method can be viewed as an
instance of the so-called counterezample-guided inductive synthesis paradigm (CEGIS) [49, 48]. At a high-
level, the algorithm works by maintaining a set of completion constraints that any correct completion must
satisfy. The algorithm then repeatedly chooses a candidate completion that satisfies these constraints. If no
such completion exists, the algorithm terminates and reports no solution. Otherwise, the chosen completion
is checked against the correctness requirements using a model checker. If the chosen completion satisfies the
requirements then a solution is found and the algorithm terminates. Otherwise, the model checker returns
a counterexample showing one possible violation of the requirements. From this counterexample as well as
possibly additional knowledge, the synthesis algorithm extracts information used to create more constraints
on the set of correct completions, therefore pruning further the search space. As can be seen, this method
relies heavily on the counterexamples returned by the model checker, hence the term counterezample-guided.

The approach is illustrated in Figure 12. The figure depicts the interplay of the two main components
of the algorithm: the Learner component which maintains the set of completion constraints and generates
the candidate completions; and the Verifier component which checks those candidates for correctness. The
Learner also processes the counterexamples returned by the Verifier when the candidate completion is incor-
rect. Apart from the candidate completions, other inputs to the Verifier include the overall model (system
architecture, environment processes, incomplete protocol processes, monitors, etc.). Additional inputs to the
Learner are the incomplete processes, and possibly also the overall model.
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Figure 12: Block diagram of a completion algorithm that uses the CEGIS paradigm.

The completion constraints maintained by the algorithm of [6] are propositional formulas over a set
of Boolean variables. There is one such variable for each candidate transition that can be added to each
individual incomplete processes. The variable represents whether the transition can be added or not. For
example, if variables zo and x7 represent some transitions to and t7, respectively, then the formula —(xo A27)
states that no completion must add both ¢ and ¢7.

It is beyond the scope of this paper to explain the algorithm of [6] in detail. But let us give a flavor of
how the algorithm works in one simple case. Suppose the algorithm currently explores the candidate set of
added transitions T' = {¢2,¢7}. This means that we are attempting to add to the incomplete protocol two
transitions, namely to,t7, and we want to check whether this addition is correct. Suppose it is not: suppose
the model checker detects a safety violation. This means that the completed protocol has a run reaching an
error state. But this implies that any set of added transitions 7" such that 7" O T, will also be incorrect.
Indeed, if a run is possible with a given set of transitions, adding even more transitions cannot eliminate this
run. Therefore, if an error state is reachable with T, it will also be reachable with any 77 2 T'. Thus, 7" will
have the same safety violation as T. This reasoning implies that any completion that contains at least ¢5
and t7, and possibly more transitions, is bound to be incorrect. Therefore, we add the constraint —(xo A7)
to the set of completion constraints.

5.2 From Scenarios to Incomplete Processes

The incomplete protocol processes used in protocol completion do not necessarily have to be “manually”
designed. They can also be generated automatically from example scenarios, as proposed in [6]. Let us
briefly illustrate this in the context of the ABP example. For a more detailed description of the scenario-
based methodology we refer the reader to [6].

An example scenario for the ABP protocol is shown in Figure 13. This scenario is given in the form of a
message sequence chart (MSC). MSCs are a popular graphical notation for describing distributed protocol
interactions. MSCs are also an IEEE standard [1].

In the MSC shown in Figure 13, every vertical dotted line corresponds to the time-line of a process
in the system. This scenario involves six processes in total (process Timer does not participate in this
scenario). Each labeled arrow corresponds to a message sent by one process to another. Although there is no
quantitative time in this model, there is an implicit ordering of events: the reception of a message happens
after the transmission of the same message; also, within a process, events happen later as we move further
down the line. Thus, we can begin “reading” the scenario as follows: first, the Sending Client sends message
send to the ABP Sender; the ABP Sender receives message send, and then sends message py to the Forward
Channel; the Forward Channel receives py and then sends pj, to the ABP Receiver; etc. It is worth noting
that, although the transmission of deliver by the ABP Receiver happens before its transmission of ag, there
is no guaranteed ordering between the receptions of these two messages, as these reception events happen at
different concurrent processes.

Another thing to be noted in the MSC of Figure 13 are the rectangles labeled sy and 7o, which annotate
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Figure 13: A scenario for the alternating-bit protocol.
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the time-lines of ABP Sender and ABP Receiver. These correspond to states of these processes as will be
explained next.

Starting from a scenario such as the one of Figure 13, incomplete processes can be constructed auto-
matically for each of the processes participating in the scenario. For our purpose, which is synthesis, we do
not need to construct incomplete processes for the environment components, since we already have complete
processes for those (although we do need to check consistency between the scenario and the environment
processes, in order to catch possible mistakes in any of these models). But we can use the scenario to au-
tomatically construct incomplete processes for the protocol components, in our case, ABP Sender and ABP
Receiver.

The basic idea of the transformation of scenarios to incomplete processes is the following. For each
component, we start at the top of each time-line, which is mapped by default to the initial state of the
corresponding process, unless a state label indicates otherwise. Then we move down the time-line, and every
time we encounter a new event, i.e., the transmission or reception of a message m, we create a new state and
a transition from the last state to that state labeled by m! or m?, depending on whether m is transmitted
or received. An exception is when we encounter a state label in the time-line which has been encountered
before. In that case, we do not create a new state, but direct the transition to the corresponding previously
encountered state (this is the case, for instance, with state labels so and 7o on the time-lines of ABP Sender
and Receiver processes in Figure 13).

Executing the above algorithm on the time-lines of ABP Sender and ABP Receiver of the scenario of
Figure 13, results in the incomplete processes shown in Figures 14 and 15, respectively. The differences
between these processes and the corresponding “manually” built sender and receiver of Figures 9 and 10 are
explained in §5.3 that follows.

Note that the scenario of Figure 13 does not reveal all possible transitions in the system (let alone all
possible behaviors, which are both infinite in number and infinite in length). But the scenario does cover all
states of the protocol processes. This is important, since our completion method adds transitions, but not
states. Therefore, this completion method works as long as the local states present in the input scenarios
are sufficient (i.e., at least as many as a correct protocol requires for each process).

5.3 Automatic Completion of the Alternating-Bit Protocol

In view of automatic completion, we now revisit the ABP example presented in Section 4. The automatic
completion algorithm described above has been implemented in a prototype tool written in Python. This tool
is an extended version of the tool used in [6] (we thank Christos Stergiou for implementing these extensions).
Using the completion tool, we synthesized the ABP Sender and ABP Receiver processes automatically,
starting from incomplete versions of these processes. These incomplete versions were originally obtained from
example scenarios as explained in Section 5.2. Other incomplete versions were obtained by further removing
transitions from the original incomplete processes, in order to test scalability of the tool as described below.

The overall system architecture is as shown in Figure 1 and as described in Section 4.1. The environment
processes given are the same as those depicted in Figures 2 and 3. The properties that the final system must
satisfy, in addition to absence of deadlocks, are captured by the safety and liveness monitors of Figures 4, 5,
6, 7, and 8.

Incomplete Processes

The incomplete A BP Sender process provided as input to the automatic completion tool is shown in Figure 14.
As can be seen from the figure, the incomplete sender is like the sender shown in Figure 9, but with several
transitions missing (fair transitions are also not shown as these are automatically added during completion
— see §3.3). In particular, all self-loop transitions are missing from states sy and ss. Also, the self-loop
transitions as well as the timeout transitions are missing from states sy and sg. Note that the incomplete
sender has no timeout transitions at all. In total, 12 out of 20 transitions are missing in the incomplete
sender compared to the sender of Figure 9. As it is produced by the scenario of Figure 13, this incomplete
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Figure 15: Incomplete process of ABP Receiver.

sender captures only the “typical” behavior of the protocol and does not specify how to deal with message
loss and duplication. The logic to deal with these must be discovered by the completion tool.

The incomplete ABP Receiver process provided as input to the automatic completion tool is shown
in Figure 15. It is like the receiver of Figure 10, but with 2 transitions missing, from states ry and rs,
respectively. Like the incomplete sender, the incomplete receiver only represents the typical behavior of the
protocol.

Total Number of Completions in the ABP Example

Let us count the total number of completions in the case of the ABP example. First, let us count the
number of possible completions of the incomplete ABP Receiver of Figure 15. To begin with, note that no
transitions can be added in any of the states r1,79,74,75. The reason is that these are output states and
every completed process must be deterministic. There are two remaining states, rg and r3. We count the
number of transitions that may be added to each of them, and multiply the two numbers. First consider rg.
There are two input events for the receiver, p{, and p). State ry already has a transition with pj: we cannot
add an extra one with the same event, because that would break determinism. For event p/, we can add it
on a transition leading to any of the 6 states of the receiver process; This makes 6 possible completions for
state rg. The same calculation holds for state r3. Therefore, the total number of possible completions of the
incomplete receiver is 6 - 6 = 36.

Let us now count the number of possible completions of the incomplete ABP Sender of Figure 14. States
s1, 83, S5, S7 of the sender are output states, and thus cannot be completed due to determinism. There are
4 possible input events to the sender: send, timeout, af,, and a}. For each event missing from a state, there
are 8 completions. Thus, there are 8 - 8 - 8 = 512 possible completions for state sg, since s is missing three
input events. The same calculation holds for states ss, s4, s6. Therefore, the total number of completions of
the sender is 5124,

Multiplying the total number of completions of the sender with the total number of completions of the
receiver, we get the total number of completions in the ABP example, which is 512436, i.e., about 2.5 trillion
completions. As mentioned above, each candidate completion needs to be model-checked for correctness.
This example is sufficiently small for a model checker, so verification of each candidate does not take a lot
of time. But even with 1 millisecond per candidate, it would take more than 78 years to verify all of them.
As these numbers show, brute-force enumeration is not an option. Instead, the algorithm described in §5.1
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Figure 16: ABP Sender automatically synthesized by completing the sender of Figure 14.

is much more efficient, as we show next.

Automatic Completion of the ABP Example

We provide as input to our automatic synthesis tool: (1) the environment processes Forward Channel,
Backward Channel, Sending Client, Receiving Client, and Timer, shown in Figures 2 and 3; (2) the incomplete
sender and receiver processes shown in Figures 14 and 15; and (3) the safety and liveness monitors shown
in Figures 4, 5, 6, 7, and 8. We ask the tool to solve the DPC problem (Problem 3), i.e., to synthesize
deterministic sequential process completions for the ABP Sender and Receiver, such that the overall system
is deadlock-free and satisfies the safety and liveness properties expressed by the monitors.

The tool runs for about 19 secs (on a T430s Lenovo laptop) and finds a solution consisting of 2 transitions
added to the incomplete ABP Receiver and 12 transitions added to the incomplete ABP Sender. Completing
the ABP Receiver with the 2 added transitions we find a process identical to the one of Figure 10. Completing
the ABP Sender with the 12 added transitions we find the process shown in Figure 16. The added transitions
are drawn with dashed arrows. As can be seen, the tool adds 3 transitions in each of the 4 input states of
the sender process.

There are several similarities but also several differences between the automatically synthesized sender
of Figure 16 and the manually built sender of Figure 9. On the similarities: state s¢ is completed in exactly
the same way as in the manual design; also, the timeout transitions are added in exactly the same manner;
finally, some (but not all) of the transitions labeled aj), o} are added to states sa, s4, s in exactly the same
manner as in the manual design. But there are also several differences: the transitions labeled send are
added differently at states so and sg; also the transition labeled af is added differently at state sy4.

One might wonder whether some of these transitions (in particular those that differ in the automated and
manual versions) really matter. For instance, are all the added transitions really necessary, or can some of
them be removed without affecting the correctness of the protocol? Given our requirement that input states
of completed protocol processes must be input-enabled, none of the added transitions can be completely
removed. However, this does not imply that the exact placement of these transitions (i.e., their target
states) matters. To check if it does, we use a feature of our tool which allows to identify dead transitions.
These are local transitions (i.e., of some component process) which are never exercised in the global model,
i.e., which never participate in any synchronized transition of the global state space.

We ask the tool to find dead transitions giving it as input the completed ABP model. The tool reports
the following dead transitions (we only list dead transitions of the system processes, and not of the monitors):

e No dead transitions in Timer, Forward Channel, Backward Channel, ABP Receiver, and Receiving
Client.

e . : done?
e Dead transition in Sending Client: s§ "% s§.
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.. . ay? send? ay? send?
e Dead transitions in ABP Sender: sy — sg, S3  — 81, S4 — S5, S —>  S5.

Armed with the above piece of information, we manually reset the 4 dead transitions of the ABP Sender
to be self-loops in the incomplete sender process. Then we re-execute the synthesis tool, but this time asking
it to find all possible solutions. After about 19 secs, the tool reports 4 solutions. In all 4 solutions the ABP
Receiver is identical to the manually built receiver (Figure 10). All 4 solutions therefore correspond to 4
different variants of the ABP Sender. These variants are shown in Figure 17. They are identical, except for
the transitions drawn with dashed lines.

As can be seen the 4 variants are the 4 possible combinations of placements of transitions labeled a} and
afy, respectively from states s and sg. These labels correspond to unexpected acknowledgments at those
states. The “natural” solution is to ignore those acknowledgments, as is done with the self-loops of the fourth
variant. However, it is also possible to return to the previous state (s; or ss5), as done in the other three
variants. This then leads to retransmit the last message. It may be redundant and “wasteful” to retransmit
when a wrong acknowledgment is received, but it is not incorrect.

As already stated, these 4 solutions were obtained by fixing the “don’t care” dead transitions to be self-
loops. These transitions can be set to lead anywhere, however, and we still get a valid solution. Since each
of the 4 dead transitions may lead to any of the 8 possible target states, there are in total 4 - 8% = 16384
correct completions of the ABP example. It takes the tool about 88 mins to generate all 16384 solutions —
see Table 1 and related discussion in the sequel.

Impossibility and Other Results

Apart from automatically completing the ABP example, we have also used the synthesis tool to obtain other
interesting results, described next.

No solution exists if channels are unfair: We might wonder what happens if we remove the fairness
constraints from the two channels. It takes about 18 secs for the tool to report that no correct completions
can be found in that case. This impossibility result is to be expected since it is impossible to transmit reliably
over an unreliable channel without assuming some kind of fairness from that channel. What is interesting
here is that this impossibility result is obtained automatically.

No solution exists if deliver is not strongly fair: What if we remove the strong fairness assumption
from the deliver transition of ABP Receiver? It takes the tool about 18 secs to report no solutions. This
impossibility result is also to be expected, in view of the comments in §4.5.

On the strong fairness of the send transition of Sending Client: As already stated in §4.5, the
strong fairness condition on the send transition of Sending Client is needed only for the property of liveness
monitor 3. What if we tried completion without this fairness assumption and without requiring this liveness
property? Could this result in a different set of solutions? In fact, no. Performing this experiment we find
that the completion tool returns the same 4 solutions as those shown in Figure 17.

A surprising ABP Receiver: One of the benefits of synthesis is that it offers even more surprises than
verification. While performing one of the (too many to list exhaustively) experiments that we ran, we were
surprised to see the tool return as a solution the ABP Receiver process of Figure 18. This process is identical
to the one in Figure 10, except for the outgoing transition from state r4. In Figure 18, this transition leads
to state rg instead of r5. (This solution was returned when starting with an incomplete receiver having fewer
transitions than the one of Figure 15, in particular, missing the deliver transition from state r4.)

As it turns out, the receiver of Figure 18, together with any of the senders of Figure 17, is a correct
solution to the ABP synthesis problem. This may appear surprising at first, as the receiver of Figure 18
omits to send the acknowledgment message a; after it has sent deliver from state r4. But this omission
simply results in the sender having to retransmit. Eventually, the receiver receives p}, moves from state
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send ?

done !

timeout ?

send ?

ai? 7
timeout ?

timeout ?

timeout ?

send ?

(a) Variant 1

timeout ?

ay?

timeout ?

timeout 7

timeout ?

send ?

(b) Variant 2

send ?

timeout ?

done !

al?
timeout ?

send ?

(c) Variant 3

timeout ?

timeout ? timeout ?

(d) Variant 4

Figure 17: Four variants of ABP Sender automatically synthesized by the completion tool.
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Figure 18: Automatically synthesized ABP Receiver during a completion experiment.

timeout?

Figure 19: Automatically synthesized ABP Sender during a completion experiment.

ro to r5, and sends the acknowledgment message a;. As can be seen, this unorthodox solution is strictly
speaking correct, even though it wastefully forces the sender to perform unnecessary retransmissions.

A surprising ABP Sender: Another solution that we found automatically and which surprised us at first
was one where the ABP Sender was as shown in Figure 19 (this figure has been generated automatically by
the tool using the Graphviz package — http://www.graphviz.org/). As can be seen in the figure, this sender
does not immediately transmit py after receiving send and moving to state s4. Instead, it relies on timeout
to move from s4 to s3, and then returns to s; having transmitted py. After that, its behavior is similar to
the senders already presented earlier. Although unorthodox, this solution satisfies the requirements.

How many transitions can be left unspecified?

Ideally we should be able to synthesize the ABP protocol from scratch, by only specifying the number of
states of the ABP Sender and Receiver processes, i.e., by providing incomplete processes with no transitions
at all, and asking the completion tool to find the transitions. Our tool is not currently capable of that.
However, the set of experiments that we report on in the sequel are encouraging, and lead us to believe that
the goal of synthesizing ABP from scratch will soon be within reach.

We performed the following two sets of experiments:

1. Starting with the manually constructed ABP Sender of Figure 9, we removed transitions one by one,
until we reached the incomplete sender of Figure 14. In each experiment we asked the completion tool
to synthesize all possible correct completions. The results are shown in Table 1.

2. Starting with the incomplete sender of Figure 14, we continued removing transitions one by one, and
in this case asking the tool to compute one solution each time. The results are shown in Table 2.

In all cases we used the incomplete ABP Receiver of Figure 15. In each experiment we ran the completion
tool and measured its performance. Performance was measured in terms of execution time (on a T430s
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Transitions removed from the complete sender of Figure 9 \ Solutions | Iterations Time

timeout?

s¢ —  Ss 1 12 9 secs
timeout? timeout?

s¢ = — 5,84 — 84 1 19 10 secs
timeout? timeout? timeout?

S9  — S1,8 — S5,84 — S84 1 18 11 secs
timeout? timeout? timeout? timeout?

ss — S0,82 — S1,8 — S5,84 — S84 1 25 13 secs
timeout? timeout? timeout? timeout?

S0 — S0, S2 — S1, S¢ — S5, S4 — S4,
ah?

S0 = So 1 43 14 secs
timeout? timeout? timeout? timeout?

So — So,S2 — S1,8 — S5,84 —  S4,
/ ‘? / 7

S0 —> S0, S4 —> Sy 1 56 16 secs
timeout? timeout? timeout? timeout?

S0 — S0, S2 — S1, Se — S5, S4 — S4,
/ 7 I ? / ?

S0 *) S0, S4 *) S4, S2 *) CP) 2 46 16 secs
timeout? timeout? timeout? timeout?

So — S0, S2 — S1, S¢ — S5, S4 — S4,
a}? ag 2 a}? /7

50 = S0, 54 — S4, 82 —> 52, Sg — S 4 72 19 secs
timeout? timeout? timeout? timeout?

So —  So0,82 — 81,86 —> S5, 84  — a4,

? al 0! ? ? al 0!

S0 —> S0, S4 A S4, S2 —> So, Sg —> S, So A S0 32 103 27 secs
timeout? timeout? timeout? timeout?

S0 — S0, S2 — S1, S¢ — S5, S4 — 4
a}? a,? a}? ao? aj? send? .

S0 4y S0, S4 N S4, So 4y S9, Sg 2o, Sg, S0 A S0, S2  —  S2 256 320 1 min 25 secs
timeout? timeout? timeout? timeout?

So  — 0, 82— 1,8 — S5,S84 —  S4,
ay? aj 0! ay? aq 0?7 aj 0! send?

So —> S0, S4 —) S4, S2 —) S92, Sg —) S6, S0 —> S0, S2 — S2,
a/ 2 .

S4 = 84 2048 2133 9 mins 20 secs
timeout? timeout? timeout? timeout?

S0 — S0, S2 — S1, S¢ — S5, S4 — S4,
a}? ag 0?7 a}? a[’) ay, 07 send?

So —> S0, S4 —) S4, 82 —) S92, S¢ — S6, SO —> S0, S92 — S92,
al 1! send? .

S4 4y S4, S¢ — Sg 16384 16471 88 mins 19 secs

Table 1: Some performance experiments with our completion tool: in each experiment in this table all correct
completions have been synthesized — their number is reported in the column “Solutions”.

Lenovo laptop), and also in terms of number of iterations. Each iteration corresponds to one candidate
completion tried out, i.e., it includes one call to the model checker to check correctness of that candidate.

As can be observed from Table 1, it is generally the case that the more transitions we remove, the
more iterations (and time) it takes to find the solutions. However, this is not always the case, e.g., see the
differences between rows 2 and 3, and also between rows 6 and 7. Also note that this table represents only
one set of experiments corresponding to one of the many possible orders of removing transitions. Another
order may yield different results, since not only the number of transitions removed but also the exact set of
these transitions can influence performance significantly.

In Table 2 we start from the incomplete sender of Figure 14, which is already missing 12 transitions
compared to the manual solution. We then further remove transitions as shown in the table. Note that
removing these extra transitions results in some states of the sender process becoming deadlocks or even
completely disconnected. These states can be completed to become either input states or output states. To
help the tool, we specify the choice for each state as an input, i.e., we specify that states sg, s2, s4, S¢ are
input states, and that states sq, s3, S5, S7 are output states.

As with the experiments in Table 1, it is generally the case that the more transitions we remove the longer
it takes to find a solution. But this is again not always true. For instance, removing the 2 transitions shown
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Further transitions removed from the incomplete sender of Figure 14 | Iterations Time

None 65 19 secs
send?

S — 81 168 24 secs
send? ag? .

S0 5 51, 52 > 83 1077 2 mins 4 secs
send? ag? send?

S0 5 81, 52 > 83, 84— S5 447 50 secs
send? ag? send? ay? .

S0 5 81, 52 > 83, 84— S5, 56 — 7 4991 11 mins 36 secs
send? ap? send? a}? po! .

S0 5 81, 52 3 83, 54— S5, 86 —> S7, 51 — 52 5272 12 mins 22 secs
send? ap? send? a}? po! done! .

S0 =81, 89 % 83,84 — S5, S —> S7, 5] — S2, 83 =5 84 4056 9 mins 20 secs
send? ag? send? a/17 po! done!

S9 — 81,82 — S3, S84 — S5, S¢ — S7, S1 — S2, S3 — S4,
p1! .

S5 — Sg 9001 21 mins 44 secs
send? a(/ﬂ send? ay? po! done!

So — 81,82 — S3,S84 — S5, S¢ — S7, S1 — S92, 83 — S4,
p1! done!

S5 = Sg, 57 =5 S0 aborted after 4 hours

Table 2: More performance experiments with our completion tool: in each experiment the first correct
completion found has been returned.

in row 3 of the table requires more time (and iterations) to find a solution than removing the 3 transitions
shown in row 4. But also note that the results of a single experiment can vary greatly, depending on the
order in which transitions are explored in the algorithm. This order depends on a number of factors, such as
on the solutions returned by the SAT solver (which is an external library). We can run the same experiment
several times and obtain different results using the —seed option of the tool which controls the random seed.
Using different random seeds yields, for example, a different solution for the experiment of row 2 is obtained
in 475 iterations (instead of 168 shown in the table), and a different solution for the experiment of row 3 is
obtained in 135 iterations (instead of 1077 shown in the table).

The last experiment shown in Table 2 did not terminate after 4 hours, and was then aborted. Note that
in this last experiment the sender process provided to the tool has no transitions left, as all 8 transitions of
the incomplete sender of Figure 14 have been removed. Being able to complete this last experiment would
amount to synthesizing the ABP Sender from scratch, with the proviso that input-output states are also
specified as an input.

5.4 Alternative Approaches

We describe two related approaches that can be used to solve the protocol completion problem.

Bounded Synthesis, Lazy Synthesis, and Template-Based Synthesis

Since distributed protocol synthesis is undecidable, the bounded synthesis problem asks, given a number
k, do there exist protocol processes, each as a finite-state machine with at most k states, that satisfy the
requirements of the desired solution [21]. The set of possible protocol processes is now bounded and thus
bounded synthesis is decidable. The solution strategy in [21] is purely symbolic and can be used to reduce
the distributed protocol completion problem that we have defined to Boolean satisfiability. The first step is
a straightforward encoding of the desired transition functions of the protocol processes as Boolean variables.
The problem of checking whether the product of the resulting processes satisfies all the safety and liveness
monitors is then reduced to finding a satisfying assignment for a set of constraints over these variables. This
relies on interpreting the monitors as universal co-Biichi automata and computing a bound on the lengths
of runs that need to be explored to check acceptance.

25



Bounded synthesis is combined with lazy synthesis in [19]. Lazy synthesis uses a solve-check-refine loop
which is similar to the approach described in §5.1. The main difference in our approach is the use of scenarios
which are pre-processed into incomplete protocols. In contrast, the lazy synthesis algorithm in [19] works
solely on the basis of an LTL specification and a bound on the number of states k, while it also contains an
outer loop which increases k£ until a solution is found.

Completion of incomplete protocols is also similar to template-based synthesis [20]. The main difference
is that in protocol completion transitions are added, whereas in template-based synthesis transitions are
removed during the synthesis process.

Genetic Programming

An interesting alternative to distributed protocol synthesis relies on genetic programming [28, 29]: given
an initial protocol template specified in a protocol description language and correctness requirements, if the
model checker finds that the protocol does not satisfy the requirements, the tool tries multiple mutations
of the abstract syntax tree of the protocol description, ranks the resulting versions by estimating how close
they are to satisfying the requirements using state-space analysis, and iterates by probabilistically selecting
a variant with weights proportional to ranks. The success of such a technique crucially depends on finding
the suitable ranking function. This technique has been used to generate multiple variants of shared memory
mutual exclusion algorithms and the leader election protocol [28, 29]. We believe that this approach is
complementary to the one we have described and combining the two is a promising direction for future
research.

6 Conclusions

We have described how current tools for automated analysis and constraint solving can be effectively used
to assist a programmer in the design of distributed protocols. The main insights from our experience are
summarized below:

Benefits of Protocol Completion The goal of formal verification is to produce a mathematical proof
that an implementation meets its correctness specification. Model checking realizes this goal only partially
but effectively: it checks only the requirements expressible in temporal logic against a finite-state abstraction
of the protocol, but is supported by algorithmic tools that produce counterexamples that are useful for finding
bugs in real-world protocols. The relationship of protocol completion to protocol synthesis can be potentially
analogous to the one of model checking to verification: while protocol completion does not fulfill the original
synthesis vision of deriving protocols automatically from high-level specifications, it can be useful as a design
tool by automatically inferring missing cases in a partially designed protocol. Our case study of the ABP
protocol illustrates the potential as the completion tool automatically infers how to cope with message losses
and message duplications and synthesizes variants of the protocol that also meet the requirements.

Synthesis as Integration Classical synthesis aims to raise the level of abstraction, say, from imperative
code to declarative logic formulas, and the goal of the synthesizer is to derive the low-level implementation
from the high-level specification. In the more modern view of synthesis, a programmer interacts with the
synthesizer by expressing the desired functionality via different synthesis artifacts. Such artifacts can in-
clude programs (that may not yet be complete), declarative specifications of high-level requirements, positive
and negative examples of desired behaviors, and optimization criteria for selecting among alternative imple-
mentations. This diversity is aimed at allowing a programmer to express her insights through a variety of
modes, leading to a potentially more intuitive and less error-prone way of programming. The synthesis tool
integrates these different views about the structure and functionality of the system into a unified, concrete
implementation using computational techniques such as decision procedures for constraint-satisfaction prob-
lems, iterative schemes for abstraction and refinement, and data-driven learning. The protocol completion
problem we have described is an instance of this modern view of synthesis: the requirements expressed by
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the monitors, the protocol template, and the scenarios describing some of the transitions are all different
artifacts that are to be integrated into a unified implementation by the synthesis tool.

Importance of Formal Models Dating back to models such as CSP [24] and CCS [37], there is a rich
literature in concurrency theory focused on variations and properties of formal models for distributed pro-
tocols. Model checkers however typically do not emphasize the nuances of formal models, and are primarily
focused on the state-transition system underlying a protocol. As we have explained, the modeling assump-
tions, for instance, regarding fairness and non-blocking outputs, are crucial for automated synthesis to yield
meaningful solutions. Thus, automated synthesis requires an integration of ideas from automated tools and
concurrency theory.

Learning and Verification The CEGIS-based solution to protocol completion consists of interacting
learning and wverification phases where the learner proposes a candidate completion and the verifier checks
the proposed completion for correctness and returns counterexamples if the correctness check fails. This is
an instance of active learning, and such an architecture that integrates learning techniques with verification
technology can have many potential applications in improving programmer productivity.

Future Work

We conclude by discussing two directions for future research:

Protocols as Extended FSMs In this paper, we modeled each protocol process as a finite-state machine.
A more practical approach is to model a process as an extended finite-state machine, that is, a state-machine
with variables (such as queues and counters) that the transitions may test and update. Such a protocol is
an infinite-state system, but an effective heuristic for verification is to bound the values of all state variables
(for example, the size of each queue) and then to apply a model checker. Inferring missing transitions
for automatic protocol completion in this setting requires a systematic generation of expressions for the
guards and updates for the variables. We have some preliminary work on this problem with application to
cache coherence protocols [55, 7] (see also the approach based on genetic programming [28, 29]), but new
computational techniques will be needed for applicability of this approach.

Battling the Exponential Search As noted earlier, solving the protocol completion problem requires
battling two nested exponential search spaces: the number of possible completions of the given template
and exploration of the state-space of each completion for violation of correctness requirements. While we
have many techniques available for battling the state-space explosion, less is known for searching efficiently
through the space of possible completions. Possible search strategies include enumeration with pruning,
symbolic encoding, and stochastic walk over the graph of all possible completions [3]. A potential catalyst
for advancing the state-of-the-art in computational solvers for this problem is the standardization of the
related problem of Syntax-Guided Synthesis with a repository of benchmarks, prototype solvers, and an
annual competition of solvers (see www.sygus.org).
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