
FIDE – An FMI Integrated Development Environment∗

Fabio Cremona
University of California,

Berkeley, USA, and Scuola
Superiore Sant’Anna, Italy

f.cremona@eecs.berkeley.edu

Marten Lohstroh
University of California,

Berkeley, USA
marten@eecs.berkeley.edu

Stavros Tripakis
University of California,

Berkeley, USA, and Aalto
University, Finland

stavros@eecs.berkeley.edu
Christopher Brooks
University of California,

Berkeley, USA
cxh@eecs.berkeley.edu

Edward A. Lee
University of California,

Berkeley, USA
eal@eecs.berkeley.edu

ABSTRACT
This paper presents FIDE, an Integrated Development En-
vironment (IDE) for building applications using Functional
Mock-up Units (FMUs) that implement the standardized Func-
tional Mock-up Interface (FMI). FIDE is based on the actor-
oriented Ptolemy II framework and leverages its graphical
user interface, simulation engine, and code generation feature
to let a user arrange a collection of FMUs and compile them
into a portable and embeddable executable that efficiently
co-simulates the ensemble. The FMUs are orchestrated by a
well-vetted implementation of a master algorithm (MA) that
deterministically combines discrete and continuous-time dy-
namics. The ability to handle these interactions correctly
hinges on the implementation of extensions to the FMI 2.0
standard. We explain the extensions, outline the architecture
of FIDE, and show its use on a particularly challenging exam-
ple that cannot be handled without the proposed extensions
to FMI 2.0 for co-simulation.

CCS Concepts
•Computing methodologies → Discrete-event simulation;
Continuous simulation; Simulation languages; Simulation tools;

Keywords
Functional Mock-up Interface (FMI); Simulation; Co-simulation;
Ptolemy II; Master Algorithm

∗Acknowledgments: This work was supported in part by the iCyPhy Re-
search Center (Industrial Cyber-Physical Systems, supported by IBM and
United Technologies) and by the Center for Hybrid and Embedded Software
Systems (CHESS) at UC Berkeley (supported by the National Science Foun-
dation, #1446619 (Mathematical Theory of CPS) and the following companies:
Denso, National Instruments, and Toyota. This work has also been supported
by the Academy of Finland and by NSF awards #1329759 and #1139138.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s).
SAC’16, April 4-8, 2016, Pisa, Italy
Copyright 2016 ACM
ACM 978-1-4503-3739-7/16/04.
http://dx.doi.org/10.1145/2851613.2851677

1. INTRODUCTION
Cyber-Physical Systems (CPS) are characterized by the con-
junction of a Cyber component (a controller) and a Physical
component (a plant). Modeling the interaction between these
components often spans different paradigms, including con-
tinuous time, modal models, and discrete events. Design and
simulation of a CPS usually involves multiple teams work-
ing simultaneously on different aspects of the system. The
design of a controller typically requires different models and
tools than are used in the design of a physical plant. Even
modeling the physical system alone may involve a breadth
of components, each of which may rely on a separate area of
expertise (e.g., electrical, mechanical, chemical, thermal, etc.)
and may require a separate toolkit.

Co-simulation permits a model of a system to comprise com-
ponents that are simulated using different tools. The com-
munication between components (slaves) is orchestrated by
an external program (a master) that implements what is of-
ten referred to as a master algorithm (MA). This algorithm
generally involves querying components for outputs, setting
component’s inputs, and advancing model time.

FMI (Functional Mock-up Interface) is a standard initiated
by Daimler AG within the ITEA2 MODELISAR project [3, 4,
20], and is now maintained by the Modelica Association. It
has been designed to enable the exchange and interoperation
of model components or subsystems designed with differ-
ent modeling tools. In FMI, a component is called an FMU
(Functional Mock-up Unit). The FMI standard describes two
different modes of operation: FMI for model exchange (FMI-
ME) and FMI for co-simulation (FMI-CS).

In FMI-ME, an FMU only declares a set of variables, equa-
tions, and optional data such as parameter tables or user
interface features. This mode provides a common format
for the exchange of components across different simulation
tools. For instance, one can design a component in Mod-
elica [19], export it as an FMU, and then import and use it
in Simulink1. An FMU for model exchange is a “passive”
component, meaning that the host environment must solve
the equations provided by the FMU. In FMI-CS, on the other
hand, an FMU is a self-contained object that besides the model
description also includes a simulation engine provided by the

1 www.mathworks.com/products/simulink/

http://dx.doi.org/10.1145/2851613.2851677
www.mathworks.com/products/simulink/

design environment in which it was created. For example,
a co-simulation FMU may provide the functionality of an
executable Simulink model.

In either mode, the execution of a collection of FMUs is spec-
ified to be orchestrated according to a master algorithm. In
co-simulation mode this only involves coordinating the ex-
change of data between interconnected FMUs and the ad-
vancement of time, whereas in model-exchange mode the
MA must also solve the equations provided by each FMU.
The FMI standard, however, leaves the MA largely unspec-
ified and describes only on the interface contract between
FMU and MA.

This paper introduces an Integrated Design Environment
(IDE) for FMI called FIDE (FMI-IDE). FIDE allows the mod-
eling and design of systems through co-simulation of FMUs.
FIDE is part of the Ptolemy II framework [11, 22] — an actor-
oriented modeling suite for CPS — and it leverages Ptolemy
II’s graphical user interface (GUI) and code generation pack-
age in order to generate a pure C co-simulation implemen-
tation that is potentially very efficient and, like an FMU, can
run on a wide variety of platforms.

The paper is organized as follows. In the remainder of this
section we discuss related work. In Section 2 we discuss
the API specified by the FMI standard for co-simulation and
we describe the master algorithm we use to orchestrate co-
simulation of FMUs. In Section 3 we describe the architecture
of our IDE. Section 4 demonstrates a practical example of its
use. Finally, in Section 5 we provide our conclusions and a
discuss possible avenues to be explored as future work.

1.1 Related Work
Co-simulation has a wider application than merely integra-
tion of design artifacts that are crafted in different tools.
Metropolis [1], for instance, uses the concept of co-simulation
to define a meta-model that maps functionality to its imple-
mentation on architectural elements. The design flow en-
abled by Metropolis permits analysis and formal verification
to determine how well an implementation satisfies a set of
abstract requirements at each step of refinement towards that
implementation. This is achieved by simulating functional
models and tightly coupling them with a simulation of the
hardware that the functionality is mapped onto. This idea
is leveraged by numerous other tools and various applica-
tion spaces. For instance, the TRes framework [10], models
through co-simulation how the performance of a functional
model is impacted by architectural elements such as schedul-
ing and the execution time delays. In a completely different
domain, the Building Control Virtual Test Bed [26] is used
to model building-heat transfer and HVAC system dynam-
ics in order to simulate the effects of control algorithms and
building parameters.

FMI is an attempt to define a unifying kernel for computer-
aided design artifacts and make them interoperable through
a standardized interface. This standard is evolving — at
time of this writing, the latest version is FMI 2.0. Information
about the standard with a list of compatible tools, the original
specification of the standard, and a list of related publications
can be found on the FMI website2.

2 https://www.fmi-standard.org

The impetus for the development of the presented IDE was
to facilitate prototyping and experimentation with extensions
of the FMI standard. Broman et al., in [6], proposed exten-
sions for the support of co-simulation of FMUs where inputs
and outputs may be hybrid signals, i.e., mixtures of discrete
events and continuous time signals. Importantly, Broman et
al. explain the conditions under which the simulation algo-
rithm produces a deterministic execution trace and show that
each integration step in their algorithm terminates. We imple-
mented the MA described in [6], and using FIDE, successfully
generated code that co-simulates several FMUs. Whereas
Broman et al. provide a neat formal framework, FIDE com-
plements their effort by providing a managed build process
that delivers runnable code amenable to regression tests. The
example we highlight in Section 4 is drawn from [7], a paper
that provides a suite of requirements and test cases for future
hybrid co-simulation standards.

It should be noted that, prior to the publication of this paper,
Bogomolov et al. [5] have already reported success leveraging
our toolchain as a host environment to co-simulate FMUs
exported by two state-of-the-art modeling and verification
tools for hybrid systems, SPACEEX [12] and UPPAAL [15].

Of course, other efforts have been made to develop tools for
FMI. Although this section by no means provides a compre-
hensive survey, the following tools show some overlap with
FIDE in form and function. QTronic developed FMU SDK3,
which is a freely available FMU development kit that allows
basic usage of FMI and provides functionality to test single
FMUs. It supports both FMI-ME and FMI-CS. Yet, the FMU
SDK does not actually “co-simulate” as it can only execute
one single FMU in isolation. The FMI Toolbox for MAT-
LAB/Simulink from Dymola4 offers import and export func-
tionality of FMUs in Simulink for both model exchange and
co-simulation. This allows FMUs to interoperate through the
Simulink execution engine. Bastian et al. in [2] discuss a MA
implementation for FMI-CS that is designed to run on mul-
tiple platforms (MS Windows, Linux, Sun Solaris) and uses
OpenMP to parallelize the execution of FMUs. Their MA is
limited to the use of a fixed communication step size and it re-
quires that the outputs of FMUs do not depend on the current
output of other FMUs. Neema et al. in [21] take a different ap-
proach and use a general purpose architecture for distributed
computer simulation systems called High-Level Architecture
(HLA) [14] as a MA. DACCOSIM [13] is a co-simulator de-
veloped by the RISEGrid institute that can co-simulate FMUs
in parallel on different nodes in a cluster. It features a GUI to
compose FMUs and map segments of the graph to different
cluster nodes. A code generator outputs Java code that wraps
the FMUs in the appropriate master code. Parallel execution
is coordinated using Parallel Python.

Although DACCOSIM claims to handle mixtures of contin-
uous and discrete signals, their implementation is more an
approximation of event handling. Following the definition
in [7], events are instantaneous. Instead, in DACCOSIM,
events happen during a time interval, not at a precise time
instant.

Unlike FIDE, all aforementioned tools operate within the

3 www.qtronic.de/en/fmusdk.html
4 www.modelon.com/products/fmi-toolbox-for-matlab/

https://www.fmi-standard.org
www.qtronic.de/en/fmusdk.html
www.modelon.com/products/fmi-toolbox-for-matlab/

bounds of the FMU-CS 2.0 standard and are therefore unable
to faithfully co-simulate systems that feature both continuous
and discrete dynamics.

Finally, it is in order to mention Tripakis’s recent work [24]
because it discusses how to translate different modeling for-
malisms (untimed and timed state machines, discrete events,
and dataflow models) into FMI 2.0 co-simulation. Ptolemy
II, the framework that FIDE builds on, features each of these
formalisms. The relationships between these formalism and
the semantics of a master algorithm for co-simulation are cru-
cial for answering the question as to whether certain useful
semantic properties can be preserved when a composition of
FMUs in Ptolemy II is translated into FMI co-simulation. Fu-
ture work outlined in Section 5 involves further elaboration
on this question.

2. BACKGROUND

2.1 FMI for Co-Simulation
The FMI standard defines an application programming in-
terface (API) that all components conforming to the standard
must implement. An FMU is implemented as a combination
of XML-files and C code (either compiled, as a DLL/shared
library, or as source code). In an industrial setting, the possi-
bility to share FMUs as shared libraries is particularly useful
to protect intellectual property (IP) as the FMU supplier can
keep the FMU source code hidden. The XML description
file, following an FMI description schema, defines variables
and their attributes such as name, unit, initial value, etc. The
XML file also contains information about the structure of the
model. The ModelStructure section in the FMI description
schema contains information about dependencies between
derivatives, outputs, and inputs. As shown in Section 2.2,
I/O-dependency information is used to determine the I/O up-
date sequence.

Abstractly speaking, an FMU can be seen as a timed Mealy
machine [24], consisting of a set of input variables (ports),
a set of output variables/ports, and collection of internally
kept state, inaccessible from the outside world. The outside
world interacts with the FMU only by means of its API, which
consists primarily of the following methods (as in [6] we use
shorter names for the methods than the ones defined in the
FMI standard, for brevity):

• init, which initializes the FMU given a time instant;
• set, which assigns a given input variable a given value;
• get, which returns the value of a given output variable;
• doStep, which attempts to perform a simulation step on

the FMU, given a time step ∆t (a non-negative real number).
This corresponds to the machine making a transition, i.e.,
updating its internal state. Since the machine is timed, the
transition is also timed, i.e., it depends on the given delay
∆t and corresponds to advancing time by a certain amount.
For reasons having to do with numerical integration and
other simulation issues that are beyond the scope of this
paper, a call to doStep may succeed, in which case the FMU
indeed makes a step of ∆t (we say that the FMU accepts ∆t),
or it may fail, in which case the FMU makes a smaller step
of ∆t′ < ∆t (we say that the FMU rejects ∆t). The success or

failure status is returned by the method, and ∆t′ is returned
in case of failure.

It should be noted that version 2.0 of the FMI standard for-
bids time steps of size 0. However, in this paper we shall not
make this restrictive assumption, since zero-time steps are es-
sential to modeling “cyber” phenomena (discrete transitions,
happening instantaneously) and hybrid systems (see [7, 24,
6] for more extensive discussions on this topic).

Several additional methods apart from the above are defined
in the FMI standard, including methods to save and restore
the internal state of an FMU. These methods are optional
(meaning that an FMU is not required to implement them),
but as we will explain next, they are essential for the opera-
tion of a properly functioning master algorithm.

2.2 Deterministic Master Algorithm
The FMI standard defines the API that FMUs must imple-
ment, but does not define the master algorithm (i.e., the
co-simulation algorithm). The problem of devising a mas-
ter algorithm with “good” characteristics was studied in [6].
That work proposed two master algorithms which achieve
determinism, meaning that the results of the simulation do
not depend on arbitrary factors such as FMU names, cre-
ation times, or any other arbitrary order in which the FMUs
might be chosen during the various iterations used in the al-
gorithms. Our paper relies on these algorithms, so we briefly
describe their basic scheme here.

The input to the algorithm is a model consisting of a set of
interconnected FMUs, as in the diagram shown in Figure 1.
The deterministic master algorithm starts by initializing the
state of all FMUs to time 0 (the start time of the simulation).
Then the algorithm proceeds with a sequence of simulation
steps, up to a given number of steps, or until a given simu-
lation time is reached. Each simulation step consists of two
phases. In the first phase, the values of all input/output ports
are propagated through the model. In the second phase, a
time step ∆t is chosen and all FMUs perform a step with the
chosen ∆t. The current simulation step is then over, and a
new one can begin. Let us next describe these two phases in
more detail.

The first phase consists of a sequence of calls to gets and
sets on the FMUs of the model, until the values of all out-
put ports and input ports of the model are up to date. One
potential problem here is the presence of feedback loops in
the model, which may result in cyclic dependencies. The
method proposed in [6] solves this problem by relying on
the input/output dependency information contained in each
FMU, to ensure that the model is essentially acyclic, in spite
of feedback loops.

For example, consider the model of Figure 1. If in every
FMU of this model, all outputs depend on all inputs, then the
model has cyclic dependencies and cannot be handled by the
method of [6]. This approach is fully compliant with FMI-CS.
Techniques to solve cyclic dependencies, such as the Newton-
Raphson method and the successive substitution method [9],
require multiple iterations among the model equations, i.e.,
multiple calls of get and set without advancing the model
time. However, according to FMI-CS 2.0, cyclic dependencies

Figure 1: A model consisting of FMUs connected in a block
diagram.

can be handled only in “Initialization Mode” (before the sim-
ulation starts); it is not allowed to iterate among the model
equations to solve cyclic dependencies in “Step Mode” (dur-
ing the simulation).

Now consider the model in Figure 1 and assume that outputs
b2 and b4 of FMU B do not depend on input b3. Indeed, the
model is acyclic. The input/output values in this model can
be propagated in the following order: get the value of port
a, set the value of b1, get the values of b2 and b4 (note that
here we use the fact that b2 and b4 only depend on b1, whose
value is already known), set c1 and c3, get c2, set d1, get d2,
and finally, set b3. At this point, all port values are set, and
the first phase is over.

In the second phase, doStep needs to be called on each FMU
in the model. Here, the problem is to choose the right time
step ∆t, such that it is accepted by all FMUs (otherwise, the
FMUs may end up in a desynchronized state, with some
having advanced their local time further than others — this
can obviously lead to wrong simulation results).

The method of [6] (Figure 2) solves this problem as follows.
First, the internal states of all FMUs in the model are saved.
Then, doStep is called on all FMUs with a default time step,
∆tmax. If all FMUs accept it, then the step is successful and
the algorithm can proceed to the next simulation step. Oth-
erwise, the time step is set to the minimum of all ∆t′s returned
by the calls to doStep that failed. This minimum, call it ∆tmin,
corresponds to the maximum time amount which is guaran-
teed to be accepted by all FMUs (the assumption here is that
if an FMU was able to advance by some ∆t > ∆tmin, then it
will also be able to advance by ∆tmin). Then, the saved states
of all FMUs are restored (rollback) and doStep is again called
on all FMUs, with time step ∆tmin. This is guaranteed to suc-
ceed for all FMUs, and the algorithm can proceed to the next
simulation step.

2.3 Ptolemy II
Ptolemy II is an open-source software framework for actor-
oriented modeling, analysis and design of heterogeneous sys-
tems. Actors are components that execute concurrently and
share data with each other by sending messages via ports.
Ptolemy models are hierarchical, and on each level of hierar-
chy the interaction patterns between actors are constrained
by the rules imposed by a director. These interaction rules
constitute a Model of Computation (MoC) [22].

2.3.1 The “cg” Code Generator
The Ptolemy II code generator is a template-based system that
generates code in C [25], Java [23] and other languages. The

Figure 2: Deterministic Master Algorithm proposed in [6].

code generator itself is implemented in Java. The “cg” sys-
tem traverses a Ptolemy II model, analyzes the types and then
reads template files that correspond to key components such
as directors, actors, and parameters. The template files are
typically language-dependent, though some infrastructure
can be shared between similar languages. A small language
defines substitutions that occur to support actor activities
such as reading and writing of ports and parameters. The
template file for the director defines the glue code that up-
dates the values of ports and then executes the actors. The
order in which ports are updated and the actors executed
define the semantics of the director that is preserved during
code generation. After stitching together the templates, files
are generated and compiled.

3. FIDE
FIDE provides the following key abilities:

• Import FMUs as FMU-actors;
• Arrange and interconnect FMU-actors through a GUI;
• Co-simulate a composition of FMUs using an implementa-

tion of the MA described in [6]. The MA is generated as C
code that can be compiled and executed outside Ptolemy II
with benefits in performance and portability.

The design flow of FIDE is outlined in Figure 3. First, the user
selects FMUs from the file system and imports them. The

Ptolemy II

Simulation Results

FMU
#
FMU
#FMU
#N

DLL/shared

Simulation
Tool #1Simulation
Tool #2

Simulation
Tool #N

Compile/Link/
Execute

C-coded
Master Algorithm.c

.csv

Figure 3: FIDE Design flow.

FMUs appear as actors in a diagram, and the user can wire
them together. Different directors (MoCs) are available to
simulate the ensemble using the Ptolemy II execution engine.
FMUs are originally designed to only work with the Contin-
uous Time (CT) [8] director, but FMUs compliant with the
recommendations in [6] can be simulated using the Discrete
Events (DE) [17] director as well. The next step is to generate
C code based on the arrangement of FMUs in the model. As
a result of this process, a folder containing a “.c” file with
an embedded co-simulation execution engine and a set of
support files is generated. Compilation can be done on any
machine, and the FMUs are loaded dynamically at run time.
Finally, execution of the obtained binary results in a “.csv” file
containing a trace of the simulation, comprising the values
of all interface variables of all FMUs at each synchronization
point along the simulation time line.

The following few paragraphs discuss implementation de-
tails of the toolchain.

3.1 FMUs as Actors
In order to embed FMUs in a Ptolemy II model, we use a spe-
cial actor called FMUImport that wraps the FMU and exports
an actor interface. This pattern is very similar to the accessor,
described in [16]. All directors in Ptolemy II implement an
actor abstract semantics (Figure 4) that divides the execution
of a model up into three distinct phases: initialization, execu-
tion, and termination. For reasons beyond the scope of this
paper, Ptolemy II splits up initialization and the firing in two
sub-phases. The actor interface exposed by FMUImport (and
any other actor in Ptolemy II) can be summarized as follows:

• preinitialize, executes higher order functions that build
model structure. It is invoked exactly once during the execu-
tion of the model and is executed before any static analysis;
• initialize, initializes the variables for execution;
• fire, lets the actor reads inputs, perform computation, and

generate outputs;
• postfire, updates the state of the actor;

Figure 4: The actor abstract semantics in Ptolemy II.

• wrapup, terminates the simulation.

The master algorithm from [6], illustrated by Figure 2, shows
a similar division of phases. Indeed, FMUImport establishes a
mapping between the two interfaces. The code segments in
cyan are executed in fire and the code segments in magenta
are executed in postfire. The initialize and termination phase
colored green and red, respectively, are trivially mapped to
their actor-oriented counterpart.

In FMUImport, preinitialize is in charge of linking and in-
stantiating the FMU library. First, the method checks whether
or not the FMU is already compiled, and, if needed, it com-
piles the FMU as shared library. Subsequently, it instantiates
the FMU and parses the ModelDescription XML-schema in or-
der to instantiate corresponding actor ports and parameters.
By double-clicking on the icon of FMUImport the user can cus-
tomize the configuration of the FMU. If changes are made,
the initializemethod will override the default values with
the new user-defined values. The firemethod performs the
computation of a time step. It sets the inputs of the FMU us-
ing set, then it invokes get to trigger the computation of new
outputs and retrieve them, and finally, doStep is invoked to
advance time by a given delta. Note that the FMU may reject
the suggested step size and return a time step ∆t′ < ∆t. In
this case, the state of the actor will not be updated. Instead,
postfire requests a new firing from the director with the ad-
justed step size ∆t′. This sequence continues until the end of
the simulation is reached. When the simulation terminates,
wrapup deallocates the current instance of the FMU.

3.2 Code Generation
Building on Ptolemy II’s “cg” framework (see Section 2.3.1),
to implement C code generation for FMI, we extend the class
ProceduralCodeGenerator to tailor it to the specifics of FMI
and load a template file that outlines the master code. The
structure of this template file corresponds to the layout of
Figure 2. The bulk of the implementation is in FMI-specific
adapters for the Director and TypedCompositeActor classes
that constitute the basic primitives of a Ptolemy II model. The
code generator generates glue code between the FMUs and
then creates a “.c” file that makes calls to a library based on
the Qtronic’s FMU SDK library containing functionality to
link the FMUs and parse their model description schema.

3.3 The Master Code
Next, we discuss the specifics of the template file that imple-
ments the master algorithm.

Initialization.
The initialization code instantiates and configures the FMUs
that appear in the input block diagram that the user composes
in Ptolemy II. This involves parsing the model description
schema of each FMU. In this process, key information is ex-
tracted, including the FMU capability flags. Specifically, the
flags canGetAndSetFMUState and canGetMaxStepSize are re-
quired for the execution of the simulation algorithm (see Sec-
tion 2.2 and Broman et al. [6]). If all FMUs are found to be
compatible, they are instantiated, and the FMU parameters
are set to the values supplied in the Ptolemy II model.

This segment of the template also contains code that deter-
mines the execution order among FMUs. It generates a di-
rected graph based on the input model (the block diagram of
FMUs). The vertices in this graph, however, are input and
output ports — not actors. The arcs represent connections
between ports (relations). We analyze the graph and reject
the model if the graph is not acyclic (if the graph contains
a cycle then the model features an algebraic loop. The di-
rected acyclic graph (DAG) is used to derive a total order
that describes the evaluation order for the I/O ports [6].

1 typedef s t r u c t {
2 FMU* sourceFMU;
3 FMU* sinkFMU;
4 fmi2ValueReference sourcePort;
5 fmi2ValueReference sinkPort;
6 fmi2ValueType sourceType;
7 fmi2ValueType sinkType;
8 } portConnection;

Figure 5: The port connection structure.

For each arc in the DAG we keep a portConnection struct, de-
scribed in Figure 5. Here we store a pointer to the source and
sink FMU at the end-points of a connection. The sourcePort
and sinkPort fields contain value references that indicate
the particular output port and input port associated with the
connection (in FMI, the value reference unequivocally iden-
tifies a variable inside the FMU). The data types of the source
and sink port are stored in the sourceType and sinkType
fields. Knowledge of the data type of a signal is critical in
FMI because the FMI standard defines different API meth-
ods to access the different data types defined in the standard.
The fmi2ValueType field is defined as an enumeration where
the values correspond to the data types defined in FMI. All
instances of PortConnection are ordered in accordance with
the determined evaluation order and stored in an array.

Simulation.
The simulation loop contains a hard-coded version of the co-
simulation algorithm described in Section 2.2 and in [6]. The
input parameters to the simulation algorithm are an array of
pointers to all the FMU instances, the connection list gener-
ated during initialization, and a default value for the step size
∆de f ault. A while-loop iterates the simulation until a variable
containing the current simulation time is greater than the fi-
nal simulation time or an error occurs. At each iteration, the

algorithm updates all the I/O ports, negotiates the maximum
step size that can be accepted by all FMUs, and advances the
state of all the FMUs. Finally it saves the variable containing
the current time and the FMU’s state in a “.csv” file.

Termination.
This section contains hard-coded C functions to terminate and
deallocate the FMUs.

3.4 Extensions to the FMI Standard
Hybrid co-simulation may involve mixtures of discrete events
and continuous time signals. However, FMI-CS has been de-
signed only with continuous time signals in mind: signals
are present at every time instant τ ∈ T (T = R+ represents
time), they can never be absent (x(τ) , ε). A discrete event
signal [18] is present only at some time instants τ ∈ D ⊂ T,
whereD is a discrete set. To rigorously model discrete event
signals, we adopted the superdense model of time [22], as
already supported by FMI-ME. Superdense time τ ∈ T (with
T = R+×N) is a two-tuple τ = (t,n). The real number t repre-
sents a time in the usual Newtonian sense, while n represents
a microstep, the index of an iteration at the same communica-
tion point (at the same Newtonian time t). With superdense
time, we can model value changes of signals happening at
the same Newtonian time t, by only advancing the microstep
index. In FMI-CS, the step size for doStep is constrained to
be ∆t > 0. Every time a state update is performed (doStep
is invoked), the standard imposes that time advances in the
Newtonian sense. To support hybrid co-simulation, we relax
this particular constraint, and we allow ∆t = 0.

The handling of discrete event signals requires an extension
of the current FMI API as it does not support absent values
for get and set. We define new API functions to overcome
this problem:

1 fmi2Status fmi2SetHybridXXX (fmi2Component c,
2 const fmi2ValueReference vr[],
3 size_t nvr, const fmi2XXX value[],
4 const fmi2SignalStatus flag[])
5

6 fmi2Status fmi2GetHybridXXX(fmi2Component c,
7 const fmi2ValueReference vr[],
8 size_t nvr, fmi2XXX value[],
9 fmi2SignalStatus flag[])

Figure 6: FMI API extensions.

These functions extend the original get and set by intro-
ducing an additional argument, fmi2SignalStatus flag[],
that is defined as an enumeration (typedef enum {present,
absent} fmi2SignalStatus;). If (flag == present), the
signal is present, or otherwise (flag == absent) the signal
is absent. The enumerate can be extended to encode other
“special” values such as unknown (⊥), which plays a critical
role in fixed-point computations.

While these extensions are supported by our MA, we also
designed and implemented a library of FMUs that makes use
of them. Finally, even though our implementation does not
strictly obey the standard, our implementation is backward
compatible with FMUs designed for FMI-CS, which do not
rely on the “hybrid” capability.

4. EXAMPLE
We tested the capability of our tool, by implementing the
components (FMUs) and the use cases as described in [7] that
exemplify the need for the extensions to the current FMI-
CS 2.0 standard which are described in section 3.4. From
these use cases, we picked the one that is most challenging to
present here. The model is illustrated in Figure 7. Despite the
deceptively small size of this example, it features intricacies
that FMI-CS 2.0 compliant tools will not be able to cope with.

First of all, there is a Zero-CrossingDetector present. In
simulation environments like Simulink and Ptolemy II, a
Zero-CrossingDetector relies on backtracking for a precise
identification of a time instant at which a zero crossing oc-
curred. Instead of progressing the simulation in small time
steps in order to account for a possible zero-crossing — these
are typically sparse events — the simulation engine adjusts
the step size retroactively, when a zero crossing was detected.
The algorithm from [6] does not support backtracking. In-
stead, we overcome this problem by propagating the deriva-
tives from the IntegratorWithReset through the Adder to
the Zero-CrossingDetector. Based on its current input and
derivative(s), the Zero-CrossingDetector is able to compute
the exact time at which the next zero crossing will occur, and
compute its step size accordingly.

Upon detecting a zero crossing, the Zero-CrossingDetector
also generates a discrete event, which causes the other com-
ponents to iterate in superdense time. The generation of
this event follows the description provided in [7]; at a single
Newtonian time instant the output changes from ε→ 0→ ε.
This is achieved by having the Zero-CrossingDetector pro-
pose a step size ∆t = 0. All the components in the model
react synchronously to the event. This semantics enables the
IntegratorWithReset to catch the reset event and instanta-
neously react by producing an output y0 = 0.

Figure 7: Test model using a Zero-Crossing Detector in a
feedback loop.

y(t,n)

t

1

0
0 1 2 3 4 5 6 7

Figure 8: Output obtained from FIDE after compiling and
running the model in Figure 7.

The graph in Figure 8 shows the output from the
IntegratorWithReset from the model in Figure 7 for a sim-

ulation length of 7 seconds. The IntegratorWithReset inte-
grates the input signal, a constant signal with value c = 1, and
produces a “ramp” with a slope of 1. The initial condition
for the integrator is y0 = 0. From time τ = (0, 0), the inte-
grator starts producing a ramp-signal with the initial value
y0 = 0. When the value of the signal reaches y0 = 1, a zero
crossing is detected by the Zero-CrossingDetector, and, at
the same Newtonian time, the state of IntegratorWithReset
is reset to y0 = 0. More precisely, the output of the
IntegratorWithReset is y0 = 1 at time τ = (1, 0), y0 = 1
at time τ = (1, 1), and y0 = 0 at time τ = (1, 2). At time
τ = (1, 0), the input of the Zero-CrossingDetector becomes
0, but the resulting event is only present at time τ = (1, 1).
The reset of the integrator actually occurs only at microstep
two, because the event associated with the zero crossing de-
tection is delayed by one additional microstep due to the
MicroStepDelay. The role of MicrostepDelay is to break
the causality loop due to the direct dependency of y0 on the
reset input in the IntegratorWithReset. After τ = (1, 2) the
sequence repeats itself until the end of the simulation.

5. CONCLUSION AND FUTURE WORK
FIDE provides a toolchain for conveniently mocking-up ap-
plications using co-simulated FMUs. A graphical user in-
terface facilitates the arrangement of FMUs, after which an
automated process compiles the ensemble into a stand-alone
application. This approach bypasses the Ptolemy II execution
engine, which gives more flexibility for the experimentation
with different master algorithm implementations and possi-
ble extentions to the API as it is defined by the FMI standard.

The “default” master code that coordinates the co-simulation
in FIDE features the API extensions from [6]. The extensions
allow us to co-simulate models that combine continuous and
discrete dynamics, something which other tools, obeying the
FMI-CS 2.0 stadard, are unable to do. The master is modeled
after the Continuous Time director in Ptolemy II, but we have
no proof that their semantics are equivalent. A sound map-
ping from the Continuous Time director to our master code
may be possible on the basis of [24].

We plan to develop a “hybrid” version of the FMUImport
actor in order to co-simulate FMUs using the Ptolemy II exe-
cution engine. As we continue to build our library of regres-
sion tests, we expect to see that our FMI co-simulation mas-
ter will produce the same simulation results as the Ptolemy
II CT director. Preliminary results indicate that the code-
generated co-simulations have a significant performance ad-
vantage over the Ptolemy II execution engine.

As part of the IDE, we supply a library of FMUs and imple-
mentations of the models discussed in [7]. FIDE is embed-
ded in Ptolemy II framework, which is downloadable from
http://ptolemy.eecs.berkeley.edu.

6. ACKNOWLEDGMENTS
We thank Michael Wetter from Lawrence Berkeley National
Laboratory for his contributions to the implementation of the
FMUImport actor and Fabian Stahnke from Technische Uni-
versität München who has contributed to the code gener-
ation framework for FMI. The “cg” framework in Ptolemy

http://ptolemy.eecs.berkeley.edu

II has seen many contributors, among whom, we acknowl-
edge Man-kit (Jackie) Leung, Gang Zhou, Ye Zhou, and Bert
Rodiers.

7. REFERENCES
[1] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. L.

Sangiovanni-Vincentelli, and Y. Watanabe. Metropolis:
an Integrated Electronic System Design Environment.
Computer, 36(4), 2003.

[2] J. Bastian, C. Clauss, S. Wolf, and P. Schneider. Master
for Co-Simulation Using FMI. In 8th Modelica
Conference, pages 115–120, 2011.

[3] T. Blochwitz, M. Otter, et al. The Functional Mockup
Interface for Tool Independent Exchange of Simulation
Models. In Proceedings of the 8th International Modelica
Conference, 2011.

[4] T. Blochwitz, M. Otter, et al. Functional Mock-up
Interface 2.0: The Standard for Tool Independent
Exchange of Simulation Models. In Proceedings of the 9th
International Modelica Conference, 2012.

[5] S. Bogomolov, M. Greitschus, P. G. Jensen, K. G. Larsen,
M. Mikucionis, T. Strump, and S. Tripakis.
Co-Simulation of Hybrid Systems with SpaceEx and
Uppaal. In Proceedings of the 11th International Modelica
Conference, 2015.

[6] D. Broman, C. Brooks, L. Greenberg, E. A. Lee,
M. Masin, S. Tripakis, and M. Wetter. Determinate
Composition of FMUs for Co-Simulation. In Proceedings
of the International Conference on Embedded Software
(EMSOFT 2013). IEEE, 2013.

[7] D. Broman, L. Greenberg, E. A. Lee, M. Masin,
S. Tripakis, and M. Wetter. Requirements for Hybrid
Cosimulation Standards. In Proceedings of 18th ACM
International Conference on Hybrid Systems: Computation
and Control (HSCC), pages 179–188. ACM, 2015.

[8] J. Cardoso, E. Lee, J. Liu, and H. Zheng.
Continuous-time models. In C. Ptolemaeus, editor,
System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014.

[9] F. E. Cellier and E. Kofman. Continuous System
Simulation. Springer, 2006.

[10] F. Cremona, M. Morelli, and M. Di Natale. TRES: A
Modular Representation of Schedulers, Tasks, and
Messages to Control Simulations in Simulink. In
Proceedings of the 30th Annual ACM Symposium on
Applied Computing, SAC ’15, pages 1940–1947, New
York, NY, USA, 2015. ACM.

[11] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
Heterogeneity—the Ptolemy Approach. Proceedings of
the IEEE, 91(2):127–144, 2003.

[12] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, and
O. Maler. SpaceEx: Scalable Verification of Hybrid
Systems. In Computer Aided Verification, pages 379–395.
Springer, 2011.

[13] V. Galtier, S. Vialle, C. Dad, J.-P. Tavella, J.-P.
Lam-Yee-Mui, and G. Plessis. FMI-Based Distributed
Multi-Simulation with DACCOSIM. In Symposium on

Theory of Modeling and Simulation, TMS’15, pages
804–811, Alexandria, VA, USA, April 2015.

[14] F. Kuhl, R. Weatherly, and J. Dahmann. Creating
Computer Simulation Systems: an Introduction to the High
Level Architecture. Prentice Hall PTR, 1999.

[15] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
Nutshell. International Journal on Software Tools for
Technology Transfer, 1(1-2), 1997.

[16] E. Latronico, E. Lee, M. Lohstroh, C. Shaver,
A. Wasicek, and M. Weber. A Vision of Swarmlets.
Internet Computing, IEEE, 19(2):20–28, Mar 2015.

[17] E. A. Lee, J. Liu, L. Muliadi, and H. Zheng.
Dicrete-event models. In C. Ptolemaeus, editor, System
Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014.

[18] E. A. Lee and H. Zheng. Operational semantics of
hybrid systems. In M. Morari and L. Thiele, editors,
Hybrid Systems: Computation and Control (HSCC),
volume LNCS 3414, pages 25–53, Zurich, 2005.
Springer-Verlag.

[19] Modelica Association. Modelica - A Unified
Object-Oriented Language for Physical Systems Modeling -
Language Specification Version 3.3 Revision 1, 2014.
Available from: http://www.modelica.org.

[20] MODELISAR Consortium and Modelica Association.
Functional Mock-up Interface for Co-Simulation,
October 12, 2010. Version 1.0, Retrieved from
https://www.fmi-standard.org.

[21] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits,
G. Karsai, S. Neema, T. Bapty, J. Batteh,
H. Tummescheit, and C. Sureshkumar. Model-Based
Integration Platform for FMI Co-Simulation and
Heterogeneous Simulations of Cyber-Physical Systems.
In 10th International Modelica Conference, pages 10–12,
2014.

[22] C. Ptolemaeus, editor. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, Berkeley, CA,
2014.

[23] M. Schoeberl, C. Brooks, and E. A. Lee. Code
Generation for Embedded Java with Ptolemy. In
Proceedings of the 8th IFIP Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems
(SEUS 2010), October 2010.

[24] S. Tripakis. Bridging the Semantic Gap Between
Heterogeneous Modeling Formalisms and FMI. In
International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation – SAMOS XV,
2015.

[25] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and E. A. Lee.
Compositionality in Synchronous Sata Flow: Modular
Code Generation from Hierarchical SDF Graphs. ACM
Trans. Embed. Comput. Syst., 12(3):83:1–83:26, Mar. 2013.

[26] M. Wetter. Co-simulation of Building Energy and
Control Systems with the Building Controls Virtual
Test Bed. Journal of Building Performance Simulation,
4(3):185–203, 2011.

http://www.modelica.org

	Introduction
	Related Work

	Background
	FMI for Co-Simulation
	Deterministic Master Algorithm
	Ptolemy II
	The ``cg'' Code Generator

	FIDE
	FMUs as Actors
	Code Generation
	The Master Code
	Extensions to the FMI Standard

	Example
	Conclusion and Future Work
	Acknowledgments
	References

