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ABSTRACT
Runtime enforcement (RE) is a technique to ensure that the (un-
trustworthy) output of a black-box system satisfies some desired
properties. In RE, the output of the running system, modeled as
a stream of events, is fed into an enforcement monitor. The mon-
itor ensures that the stream complies with a certain property, by
delaying or modifying events if necessary. This paper deals with
predictive runtime enforcement, where the system is not entirely
black-box, but we know something about its behavior. This a-priori
knowledge about the system allows to output some events imme-
diately, instead of delaying them until more events are observed,
or even blocking them permanently. This in turn results in better
enforcement policies. We also show that if we have no knowledge
about the system, then the proposed enforcement mechanism re-
duces to a classical non-predictive RE framework. All our results
are formalized and proved in the Isabelle theorem prover.
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1. INTRODUCTION
Runtime enforcement (RE) is a technique [12, 6, 7] to monitor the
execution of a system at runtime and ensure its compliance against
a set of formal requirements. Using an enforcement monitor (EM),
an (untrustworthy) input execution (in the form of a sequence of
events) is modified into an output sequence that complies with a
property (e.g., a safety requirement). RE aims to ensure that: (i)
the output sequence must comply with the property (soundness)
and (ii) if the input already complies with the property, it should
be left unchanged (transparency). We focus on online enforcement
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Figure 1: Enforcement monitor context.

of regular properties. For a given property ϕ, we synthesize an
enforcement monitor that operates at runtime. The general context
is depicted in Figure 1, where an enforcement monitor is placed
between an event emitter and an event receiver. The emitter and
receiver execute asynchronously. An enforcement monitor takes a
sequence of events σ as input and transforms it into a sequence of
events o that is correct with respect to property ϕ. The monitor
stores input events and releases them as output only when certain
conditions warrant it. For example, consider a property formalizing
some desired transactional behavior. Then, the monitor stores and
delays some input events (not releasing them immediately) as long
as the transaction is not properly completed.

Existing RE mechanisms (cf. [12, 6, 7, 10]) make no assumption
on the input sequence σ, which can be any sequence of events over
some alphabet Σ, i.e., σ ∈ Σ∗. This can be seen as considering the
event emitter to be a black box, i.e., its behavior to be completely
unknown. In this paper, we study RE for grey box systems, i.e.,
when we know something about the behavior of the event emitter.
In particular, instead of letting σ range over Σ∗, we suppose that it
ranges over some given property ψ ⊆ Σ∗.

In the domain of network security, one can use an EM as a fire-
wall or a Network Intrusion Detection (NID) system to detect and
prevent some attacks. Some network flows may not be interpreted
in the same manner at different end-points, and may deceive fire-
walls and NID’s. TCP/IP scrubber eliminates ambiguities from net-
work flows enabling firewall systems to correctly predict end-host
response [8]. The knowledge of the system ψ can be considered
as a protocol scrubber such as a TCP/IP scrubber [8] that models
well-behaved protocol behavior.

A priori knowledge of the system behavior may help to improve
monitoring mechanisms. This paper is a study on how enforcement
mechanisms can benefit from a model of the system already avail-
able, or built using some static-analysis techniques. For non-safety
properties (in our setting, these are non prefix-closed regular lan-
guages), input events are blocked (stored in the EM’s memory) until
receiving all the events that allow to satisfy the desired property. If
we have some knowledge of the system, we can sometimes react



more quickly, for instance, if we can predict that the input will in-
evitably satisfy the property in the future. Prediction thus allows to
avoid delaying the output of events unnecessarily, and thus provides
better Quality of Service. Moreover, in some particular scenarios
where the actions in the input alphabet are dependent, without pre-
diction, blocking some events (in case of non-safety properties) can
lead the system into a deadlock situation, and thus non-safety prop-
erties can not be enforced [5, 4]. For example, a requirement such
as “Every request should be followed by an acknowledgement” can
not be enforced in practice, and only having some knowledge of the
system will allow to enforce such requirements. Our predictive en-
forcement framework allows to circumvent such situations and to
enforce non-safety properties over dependent actions.

Concretely, the predictive runtime enforcement problem is, given
two regular languages ϕ (modeling the property to enforce) and ψ
(modeling the assumptions on system behavior), to automatically
synthesize an enforcement monitor which operates as in Figure 1.
As in standard (non-predictive) RE [12, 6, 10], the monitor must
satisfy: (i) soundness (the output o satisfies ϕ), (ii) transparency
(o is a prefix of the input σ). But in addition, we require a new
constraint: (iii) urgency, which states that the observed input se-
quence σ must be released immediately (i.e., o = σ), if either σ
already satisfies ϕ, or every possible extension of σ (that can be ob-
tained from the knowledge of ψ) will result in the input satisfying
ϕ. Urgency ensures that input events are released as soon as possi-
ble. We provide a functional definition of an enforcement monitor
as a function that transforms words, and prove that it satisfies the
desired properties described above. We also propose an algorithm
implementing the enforcement function. Our results are formalized
and proved in the Isabelle theorem prover [9]. The Isabelle theories
are available at:

https://github.com/isabelle-theory/PredictiveRuntimeEnforcement

2. PRELIMINARIES AND NOTATIONS
A (finite) word over a finite alphabet Σ is a finite sequence w =
a1a2 · · · an of elements of Σ. The length ofw is n and is noted |w|.
The empty word over Σ is denoted by εΣ, or ε when clear from the
context. The concatenation of two words w and w′ is noted w ·w′.
A word w′ is a prefix of a word w, noted w′ 4 w, whenever there
exists a wordw′′ such thatw = w′ ·w′′, andw′ ≺ w if additionally
w′ 6= w; conversely w is said to be an extension of w′. The sets
of all words and all non-empty words are denoted by Σ∗ and Σ+,
respectively. A language or a property over Σ is any subset L of
Σ∗. L is prefix-closed if all prefixes of all words from L are also in
L: L = {w | ∃w′ ∈ L : w 4 w′}. Similarly, a language L over Σ
is extension-closed if all extensions of all words from L are in L:
L = {w | ∃w′ ∈ L : w′ 4 w}.

Given an n-tuple of symbols e = (e1, . . . , en), for i ∈ [1, n],

Πi(e) is the projection of e on its i-th element (Πi(e)
def
= ei).

A deterministic and complete automatonA = (Q, q0,Σ, δ, F ) is a
tuple where, Q is the set of locations, q0 ∈ Q is the initial location,
Σ is the alphabet, δ : Q × Σ → Q is the transition function and
F ⊆ Q is the set of accepting locations. In this paper we work only
with deterministic and complete automata (and often simply use
the term “automata”). If incomplete or non-deterministic automata
arise, we can determinize and complete them first.

Function δ is lifted to words by setting δ(q, ε) = q, and δ(q, a·σ) =
δ(δ(q, a), σ). A word σ is accepted byA starting from location q if
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Figure 2: Property to enforce: ϕ

δ(q, σ) ∈ F , and σ is accepted by A if σ is accepted starting from
the initial location q0. The language of A starting from location
q is L(A, q) = {σ | δ(q, σ) ∈ F}. The language of A, denoted
L(A), is L(A, q0).

Let A = (Q, q0,Σ, δ, F ) and A′ = (Q′, q′0,Σ, δ
′, F ′) be two au-

tomata over the same alphabet Σ. The product of A and A′, de-
noted byA×A′, is defined as (Q×Q′, (q0, q′0),Σ, δ×δ′, F×F ′),
where (δ × δ′)((q, q′), a) = (δ(q, a), δ′(q′, a)). The complement
ofA denotedA, is defined as (Q, q0,Σ, δ, Q\F ). We have L(A×
A′, (q, q′)) = L(A, q) ∩ L(A′, q′) and L(A, q) = Σ∗ \ L(A, q).

A regular property is a language accepted by an automaton. In
the sequel, we consider only regular properties and we refer to
them as just properties. Safety (resp. co-safety) properties are
sub-classes of regular properties 1. Safety (resp. co-safety) prop-
erties are the prefix-closed (resp. extension-closed) regular lan-
guages. An automaton A = (Q, q0,Σ, δ, F ) is a safety automaton
if ∀a ∈ Σ, ∀q ∈ Q \F : δ(q, a) /∈ F , and a co-safety automaton if
∀a ∈ Σ, ∀q ∈ F : δ(q, a) ∈ F .

3. MOTIVATING EXAMPLE
As motivating example, we consider the enforcement of file format
requirements. Consider a scenario where an application writes to a
file, using multiple write operations. At the end of the sequence of
writes, the file must obey a required format. The required format
constraint might not hold in the middle of the sequence of writes
(so, the property is not prefix-closed).

Let us now consider a specific requirement. Consider a simple ap-
plication (say application 1) that allows to write a string containing
characters from the set {a, b, c}. We also have special end-of-string
characters {!, ?}: the string should end with one of these characters,
which cannot occur elsewhere in the string. The string is valid only
if this required format condition holds. The automaton in Figure 2
defines this requirement. Its alphabet is Σ = {a, b, c, !, ?}. Loca-
tion l0 is initial, and the only accepting location is l3.

Consider another application (say application 2) that makes use of
application 1. If we have no knowledge about the sequence of write
operations application 2 will perform (where each write operation
writes a character), then the EM must buffer all the writes without
saving to disk until one of the special characters is received. Once
it receives a special character, it can “flush” its buffer.

Input ψ1: Suppose that we have some knowledge of application
2, and we know what strings it can produce. Consider the automa-
ton in Figure 3 modeling strings that application 2 can output (that
will be given as input to the EM). So, we now know that the input
that the EM receives is three characters (each of them belonging
to {a, b, c}) ending with the special character !. Thus, the input
sequences that the EM will receive are ψ = {abc!, aac!, . . .}.
Suppose that the input is σ = abc!. Without prediction, the EM

1Similarly to some monitoring frameworks [11, 10], we consider
safety and co-safety properties over finite words.
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will buffer events a, b, and c in its memory until it sees an !. But
with prediction, each event will be output (written) immediately
after it is read.
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Figure 4: Possible input sequences: ψ2

Input ψ2: In the predictive setting, it is not always possible to out-
put events immediately, and in some situations we may require to
buffer some events in the memory of the EM. For example, instead
of ψ1, consider ψ2 (defined by the automaton in Figure 4) defining
possible input sequences. Here, if the second character is “a”, then
the third character should also be an “a”, and a special character at
the end is not necessary for such strings. So, here when the EM
sees the first character, it cannot output it immediately. It has to
wait until it receives the second character, and if the second char-
acter is not an “a”, then it outputs the first character followed by
the second character. If the third character is not an “a”, it can be
output immediately (without waiting for a special character).

4. PREDICTIVE RUNTIME ENFORCEMENT
In this section, we formalize the predictive runtime enforcement
problem. Roughly speaking, the purpose of enforcement monitor-
ing is to read some (possibly incorrect) sequence produced by a
running system (input to the enforcement monitor), and to trans-
form it into an output sequence that is correct w.r.t. a property ϕ
that we want to enforce. At an abstract level, an enforcement mon-
itor can be seen as a function that transforms words. An enforce-
ment function for a given property ϕ takes as input a word over Σ
and outputs a word over Σ that belongs to ϕ.

Now in the predictive case, instead of considering Σ∗ as the lan-
guage of possible inputs, we consider ψ ⊆ Σ∗, that defines the set
of possible sequences that the EM receives at runtime as input. ψ
can be obtained from an abstract model of the system, or can be
built from some knowledge we can extract from an existing system
using static-analysis.

Similar to enforcement monitoring mechanisms in [12, 6, 7, 10],
several constraints are required on how an enforcement function
transforms words. Our EM cannot insert (or suppress) events, and
cannot change their order, and is allowed to block when a violation
is detected. The notions of soundness and transparency are similar
to the non-predictive case [6, 12], where soundness expresses that
the output must satisfy property ϕ, and transparency generally aims
at preventing the input sequence from being modified unnecessar-

ily.

In our predictive setting, we introduce an additional requirement
called urgency, expressing that if the input sequence received so
far does not satisfy the property, it is still released as output imme-
diately if all possible input events that the EM will receive in the
future, will allow to satisfy ϕ.

Formally, given properties ϕ,ψ ⊆ Σ∗, an enforcement function
Eψ,ϕ : Σ∗ → Σ∗, should satisfy the following constraints:

Soundness

∀σ ∈ ψ : Eψ,ϕ(σ) 6= ε =⇒ Eψ,ϕ(σ) ∈ ϕ (Snd)

Transparency

∀σ ∈ Σ∗ : Eψ,ϕ(σ) 4 σ (Tr1)

∀σ ∈ Σ∗ : σ ∈ ϕ =⇒ Eψ,ϕ(σ) = σ (Tr2)

Monotonicity

∀σ, σ′ ∈ Σ∗ : σ 4 σ′ =⇒ Eψ,ϕ(σ) 4 Eψ,ϕ(σ′) (Mo)

Urgency

∀σ ∈ Σ∗ : (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ =⇒
∃σ′ ∈ Σ∗ : σ′ 4 σcon ∧ σ · σ′ ∈ ϕ) =⇒ Eψ,ϕ(σ) = σ

(Ur)
A function satisfying these constraints is called a predictive en-
forcement monitor. As we shall show later in Section 5, for any
ϕ,ψ, a predictive EM always exists (Theorem 1), and can be com-
puted using the algorithm described in Section 6.

Before giving more intuition about the constraints above, let us note
that soundness and transparency are similar to non-predictive set-
ting, except that here we restrict soundness to input words that be-
long to ψ.

Soundness: (Snd) means that for any input word belonging to ψ,
if the output of the EM is not empty (ε), then it must satisfy ϕ.

Note that the condition that the output be non-empty is unavoid-
able. The output of the EM may be ε, and ε may not belong to
the language accepted by some properties such as some non-safety
properties. For example, ε does not belong to the language ac-
cepted by the automaton in Figure 2. If instead we had formalized
soundness as ∀σ ∈ ψ : Eψ,ϕ(σ) ∈ ϕ, then if the output for some
non-safety property is ε, then this soundness condition cannot be
satisfied. For example, let the automaton in Figure 2 define the
property ϕ we want to enforce, and the automaton in Figure 4 de-
fine the set of input sequences. The sequence baa is a valid input
sequence. But, none of the prefixes of this sequence (including ε)
satisfy the property ϕ, and the output of the EM will be ε in such
cases.

Transparency: (Tr1) expresses that, the output of the EM should
be a prefix of the input. This constraint corresponds to the fact that
the EM is allowed only to block events, but it is not allowed to
insert (or suppress) events, and also cannot change their order.

(Tr2) expresses that, if the input already satisfies the property, then
the output should be equal to the input. (Tr1) is not enough to
ensure that, as for some properties (safety for example), blocking
everything (producing ε output for any input sequence) will satisfy
both (Snd) and (Tr1) constraints.

Monotonicity: (Mo) expresses that the output of the EM for an



extended input word σ′ of an input word σ, extends the output pro-
duced by the EM for σ.

Urgency: (Ur) expresses that an input word σ should be output
immediately (Eψ,ϕ(σ) = σ) if we know that any continuation of σ
which can be generated by ψ will at some point satisfy ϕ.

Constraints (Mo) and (Ur) are related to online behavior of the EM,
releasing events as output as soon as possible.

LEMMA 1. (Tr2) is a consequence of (Ur): (Ur) =⇒ (Tr2).

REMARK 1. When we have no knowledge about the system (i.e.,
ψ = Σ∗), soundness and transparency constraints reduce to non-
predictive case. Urgency in this case becomes equivalent to (Tr2):

LEMMA 2. When ψ = Σ∗, (Ur) is equivalent to (Tr2).

We also expect that, if ψ ⊆ ϕ (i.e., if every behavior that can be
generated by the system already satisfies ϕ), then the EM should
immediately output everything that it receives.

LEMMA 3. ψ ⊆ ϕ =⇒ (∀σ ∈ Σ∗ : Eψ,ϕ(σ) = σ).

5. FUNCTIONAL DEFINITION
In this section, we provide a definition of an enforcement func-
tion that incrementally builds the output. This functional defini-
tion presents an abstract view, describing how to transform an input
word according to the propertyϕ. We also prove that this functional
definition satisfies all the constraints of an enforcement mechanism.

DEFINITION 1 (ENFORCEMENT FUNCTION). Given proper-
ties ϕ,ψ ⊆ Σ∗, the enforcement function is Eψ,ϕ : Σ∗ → Σ∗, and
is defined as:

Eψ,ϕ(σ) = Π1

(
storeψ,ϕ(σ)

)
.

where:
- κψ,ϕ(σ) is defined as:

κψ,ϕ(σ) = (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ =⇒ ∃σ′ ∈ Σ∗ :

σ′ 4 σcon ∧ σ · σ′ ∈ ϕ)

- storeψ,ϕ : Σ∗ → Σ∗ × Σ∗ is defined as:

storeψ,ϕ(ε) = (ε, ε)

storeψ,ϕ(σ · a) =

(σs · σc · a, ε) if κψ,ϕ(σs · σc · a),

(σs, σc · a) otherwise

with (σs, σc) = storeψ,ϕ(σ).

The enforcement function takes a word over Σ as input, and pro-
duces a word over Σ as output. The function store takes a word
over Σ as input, and computes a pair of words over Σ. The first
component of the output of function store (extracted by Π1) is the
output of the enforcement function.

The first element of the output of the function store is a prefix of
the input that will be the output of the enforcement function (the
property is satisfied by this prefix followed by any continuation of
the input including ε); the second element is the suffix of the input
which the enforcer cannot output yet. The function store is defined
inductively: initially, for an empty input, both elements are empty;

if σ is read, storeψ,ϕ(σ) = (σs, σc), and another new event a ∈ Σ
is observed, there are two possible cases based on whether function
κψ,ϕ returns true or not.

The function κψ,ϕ takes a word over Σ as input and returns a
Boolean as output. This function tests the hypothesis of the ur-
gency constraint, (Ur). κψ,ϕ returns true if for every continuation
σcon such that σ · σcon ∈ ψ, if there is a prefix σ′ of σcon such that
σ · σ′ ∈ ϕ. Thus, if the sequence σ provided as input to this func-
tion satisfies ϕ, then this condition will be satisfied since for every
continuation σcon, ε is a prefix of σcon such that σ · ε ∈ ϕ. The
function κψ,ϕ returns false if the input sequence σ does not satisfy
ϕ, and there is a continuation of σ that will not allow to satisfy ϕ.

REMARK 2. When ψ = Σ∗, following Lemma 2, κψ,ϕ(σ) can
be simplified, and defined as κψ,ϕ(σ) = (σ ∈ ϕ).

THEOREM 1. Given two properties ψ, and ϕ, the enforcement
function Eψ,ϕ as per definition 1 satisfies the (Snd), (Tr1), (Tr2),
(Ur) and (Mo) constraints.

REMARK 3 (SAFETY PROPERTIES). Using knowledge of the
input and predicting future extensions of the input is useful when
the property ϕ is not prefix closed. In case if the property ϕ is a
safety property (i.e. prefix closed), then having knowledge of the
input has no advantage (as the enforcer does not need to buffer any
event in its memory, also in the case when ψ = Σ∗).

6. ENFORCEMENT ALGORITHM
In Section 5, we provided an abstract view of our enforcement mon-
itoring mechanism, defining it as a function that transforms words.
However, it is not immediate to see how this function can be im-
plemented. In particular, how the component function κψ,ϕ can be
implemented is not straightforward. In this section, we provide al-
gorithms that implement κψ,ϕ, as well as the overall enforcement
functions.

Let automaton Aϕ = (Qϕ, qϕ,Σ, δϕ, Fϕ) define property ϕ =
L(Aϕ, qϕ), and automatonAψ = (Qψ, qψ,Σ, δψ, Fψ) define prop-
erty ψ = L(Aψ, qψ). We recall that ϕ models the property that we
want to enforce, and ψ models the property of possible input se-
quences.

We devise an on-line algorithm, with input Aϕ and Aψ , which is
an infinite loop that waits for input events (letters of the alphabet).
We know that any input sequence that we get satisfies ψ eventually.
An iteration of the algorithm is triggered by an input event. If the
sequence of events obtained already followed by the current event
does not satisfy κψ,ϕ then we hold this event. Otherwise we out-
put all events held by earlier iterations. We start by implementing
function κψ,ϕ.

Implementation of κψ,ϕ: We first introduce an automaton Bϕ
based on Aϕ. Let Bϕ = (Qϕ, qϕ,Σ, δ

′
ϕ, Fϕ), where δ′ϕ is defined

as

δ′ϕ(q, a) =

δϕ(q, a) if q 6∈ Fϕ
q otherwise

InBϕ we retain all the transitions inAϕ that are from non-accepting
locations. Any transition from an accepting location in Aϕ is di-
rected to the same accepting location. Thus, in automaton Bϕ, we
will not have transitions from accepting to non accepting locations.
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Figure 5: Automaton Bϕ

LEMMA 4. If q ∈ Qϕ then

∀σ ∈ Σ∗ : σ ∈ L(Bϕ, q) ⇐⇒ (∃σ′ ∈ Σ∗ : σ′ 4 σ∧
σ′ ∈ L(Aϕ, q))

Intuitively, a word σ is accepted by Bϕ starting from q ∈ Qϕ if it
is an extension of a word accepted by Aϕ starting also from q. We
can see also that the property L(Bϕ, q) is a co-safety property (i.e.,
extension-closed).

EXAMPLE 1. Let Aϕ be the automaton in Figure 2. In Fig-
ure 5, we can see the automaton Bϕ that we obtain from Aϕ. The
only transition in Aϕ from an accepting to a non-accepting loca-
tion is the transition from location l3 to location l2. In automaton
Bϕ this transition is replaced with a self-loop in location l3. All the
other transitions that are in Aϕ remain in Bϕ.

THEOREM 2. If σ ∈ Σ∗, p = δψ(qψ, σ), and q = δϕ(qϕ, σ)

then κψ,ϕ(σ) ⇐⇒ L(Aψ × Bϕ, (p, q)) = ∅

Theorem 2 shows that testing κψ,ϕ(σ) is equivalent to checking
emptiness of a regular language.

Enforcement algorithm: Let us now see the algorithm in detail,
that requires automata Aψ and Aϕ as input. Algorithm Enforcer
(see Algorithm 1) is an infinite loop that scrutinizes the system
for input events. In the algorithm, p holds the current state of au-
tomaton Aψ and q holds the current state of Aϕ. Initially p, q are
assigned the initial states of automata Aψ and Aϕ, respectively.
Sequence σc corresponds to σc in the functional definition, and
contains the sequence of events that are already received, and not
released as output yet. Automaton C is the product of automata
Aψ , and Bϕ. Primitive await_event is used to wait for a new input
event. Function release takes a sequence of events, and releases
them as output of the enforcer.

Algorithm 1 Enforcer

1: σc ← ε

2: p, q ← qψ, qϕ

3: C ← Aψ × Bϕ
4: while true do
5: a← await_event()
6: p, q ← δψ(p, a), δϕ(q, a)

7: if L(C, (p, q)) = ∅ then
8: release(σc · a)
9: σc ← ε

10: else
11: σc ← σc · a

The algorithm proceeds as follows. The memory σc is initialized
to ε, and the current state information ofAϕ andAψ are initialized

with their initial states. It then enters an infinite loop where it waits
for an input event. Upon receiving an action a, the current states
of Aϕ and Aψ are updated, with the state that we reach in these
automata, from their current state, reading action a. Later, the al-
gorithm checks whether the language accepted by the automaton
C from state (p, q) is empty. If the language accepted by the au-
tomaton C from state (p, q) is empty, then all the events that are in
the memory of the enforcer σc followed by the event received a is
released as output, and the memory of the enforcer is emptied (σc
is set to ε). Otherwise the event a is added to the memory of the
enforcer.

LEMMA 5. If σ = a1 · · · an is the sequence of events received
so far by the enforcement algorithm, and if σ1, . . . , σk are the se-
quences released by the algorithm for σ, then

Eψ,ϕ(σ) = σ1 · · · · · σk and σ = Eψ,ϕ(σ) · σc

where σc corresponds to σc in the algorithm, equivalent to σc in
the definition of Eψ,ϕ.

Lemma 5 states that for input σ, if we concatenate the output se-
quences released by the enforcement algorithm, it will be equal
to the output of the enforcement function Eψ,ϕ(σ). The input se-
quence σ is equal to the output of the enforcement functionEψ,ϕ(σ)
followed by the sequence in the memory of the enforcer σc.

REMARK 4 (COMPLEXITY). The predictive runtime enforce-
ment method has an off-line and an on-line component. In particu-
lar, the product automaton C computed in line 3 of Algorithm 1 can
be computed off-line, before the actual on-line monitoring starts.
In fact, the test for emptiness in line 7 of the algorithm can also
be computed off-line, for every possible pair of states (p, q) in the
product (how to check emptiness is well-known in automata the-
ory). Then the results can be stored in a table with size the number
of states in the product state space, i.e., the product of the states
in Aψ and in Bϕ. This results in quadratic space complexity, but
constant time complexity for the on-line emptiness check. The 1-
step reaction implemented in line 6 can also be done in constant
time, by storing the transition tables of the two automata (these
can be stored separately for each automaton, therefore requiring
less space than the product). Overall, this gives a constant time
on-line complexity for Algorithm 1.

7. RELATED WORK
Runtime enforcement was initiated by of Schneider [12] and has
been extensively studied since. According to how a monitor is
allowed to correct the input sequence, several enforcement mod-
els have been proposed. Security automata [12] focus on safety
properties, and block the execution as soon as an illegal sequence
of actions (not compliant with the property) is recognized. Sup-
pression automata [7] allow to suppress events from the input se-
quence. Insertion automata [7] allow to insert events to the input
sequence. Edit-automata [7] or so-called generalized enforcement
monitors [6] allow to perform any of these primitives. In all these
approaches, the system is considered as a black-box. In our ap-
proach, we make use of available knowledge about the system, and
we do not allow to suppress or insert events.

Recently, Bloem et al. [1] presented a framework to synthesize en-
forcement monitors for reactive systems, called shields, from a set
of safety properties. This work focuses on reactive systems, and
it is not possible to block actions and to release them later (or to



halt the system). The shield must always act instantaneously (upon
erroneous input, some output must be produced instantaneously).
In some cases, when a property violation is unavoidable, the shield
allows deviation for k consecutive steps. In case if a second viola-
tion occurs within k steps, then the shield enters a fail-safe mode,
where it ensures only correctness, and no longer minimizes devia-
tion. In our approach, when it is not possible to act instantaneously,
we allow to buffer input events. Moreover, we release some events
as output only after being sure that the property will be satisfied
eventually with subsequent output events.

Another recent approach by Dolzehnko et al in [4] introduces Manda-
tory Result Automata (MRAs). MRAs extend edit-automata [7] by
refining the input-output relationship of an enforcement mechanism
and thus allow a more precise description of the enforcement abil-
ities of an enforcement mechanism. In order to handle such sce-
narios, their approach makes use of knowledge about the actions
and their effect on the monitored system (i.e., the input alphabet is
split into actions and results). Moreover, the MRA model assumes
synchronizable actions (i.e., after receiving an action another ac-
tion cannot be received until the previous action returned a result).
In our approach, we consider actions that are transmitted between
(asynchronous) event emitter and receiver and hence do not con-
sider the effect of actions.

All the previously mentioned approaches do not consider any model
of the system (system is considered as a black-box). In [13], Zhang
et al. propose predictive semantics for runtime verification, en-
abling verification monitor to foresee property satisfaction or vio-
lation before the observed execution satisfies or violates it.

Some recent work by Chabot et al. [3] uses knowledge of the pro-
gram to extend enforcement. In their approach, the monitor’s en-
forcement power is extended by giving it access to statically gath-
ered information about the program’s possible behavior. The ap-
proach of [3] works for safety properties, but, as the authors explic-
itly state, there is no guarantee that it would work for non-safety
properties. Our approach works for any regular property. More-
over, as discussed in Remark 3, having knowledge of the input has
no advantage for safety properties. Furthermore, we also make use
of knowledge of the system to also predict possible futures, and to
output events earlier whenever possible.

Our work is related to supervisory control [2], where a new “con-
trolled” system is obtained by composing a system with a controller
in closed-loop. The controlled system must meet a given specifica-
tion and does not produce illegal actions as output. In supervisory
control the controller controls the system, because it feeds-back
into the system, in closed loop. But in our case, the loop remains
open. The enforcement monitor does not feed-back into the sys-
tem. Moreover, it is not mandatory to have a model of the system
in our approach. Remark 1 discusses that our constraints reduce to
non-predictive case when ψ = Σ∗.

8. CONCLUSION AND FUTURE WORK
This paper extends existing work in runtime enforcement by propos-
ing a predictive RE framework. The framework generalizes RE
from black-box to grey-box systems, that is, systems for which
some a-priori knowledge is available. We show how knowledge
about a system’s behavior can benefit enforcement, by allowing a
monitor to anticipate (“predict”) future input events and as a result
become more responsive at its output. Compared to earlier works
on enforcement, this is achieved by introducing an additional con-

straint called urgency. Urgency ensures that monitors react as soon
as possible, often outputting events immediately after they are re-
ceived, instead of buffering them indefinitely. The property to be
enforced as well as the knowledge about the system are modeled as
deterministic automata (i.e., regular languages). We show how to
synthesize enforcement mechanisms for any regular property and
provide algorithms implementing these mechanisms in polynomial
memory and constant online time.

Several interesting extensions and alternatives remain to be ex-
plored in the future. There are some recent works [10] related to
enforcement for real-time systems. For real-time systems, if it is
possible to output earlier (using prediction), it is certainly benefi-
cial. We believe it is important to study whether similar approach
for prediction can be used for enforcing real-time properties. In
the future, we also plan to extend our work experimentally, imple-
menting the proposed algorithms, and further study the feasibility
of applying our approach in some particular scenarios.
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