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ABSTRACT

Motivation: Metabolite identification from tandem mass spectrometric

data is a key task in metabolomics. Various computational methods

have been proposed for the identification of metabolites from tandem

mass spectra. Fragmentation tree methods explore the space of pos-

sible ways in which the metabolite can fragment, and base the me-

tabolite identification on scoring of these fragmentation trees. Machine

learning methods have been used to map mass spectra to molecular

fingerprints; predicted fingerprints, in turn, can be used to score can-

didate molecular structures.

Results: Here, we combine fragmentation tree computations with

kernel-based machine learning to predict molecular fingerprints and

identify molecular structures. We introduce a family of kernels capturing

the similarity of fragmentation trees, and combine these kernels using

recently proposed multiple kernel learning approaches. Experiments on

two large reference datasets show that the new methods significantly

improve molecular fingerprint prediction accuracy. These improve-

ments result in better metabolite identification, doubling the number

of metabolites ranked at the top position of the candidates list.

Contact: huibin.shen@aalto.fi

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Metabolomics deals with the analysis of small molecules and

their interactions in living cells. A central task in metabolomics

experiments is the identification and quantification of the metab-

olites present in a sample. This is mandatory for subsequent

analysis steps such as metabolic pathway analysis and flux ana-

lysis (Pitk€anen et al., 2010). Mass spectrometry (MS) is one of

the two predominant analytical technologies for metabolite iden-

tification. Identification is done by fragmenting the metabolite,

for example, by tandem MS (MS/MS), and measuring the mass-

to-charge ratios of the resulting fragment ions. The measured

mass spectra contain information about the metabolite, but ex-

tracting the relevant information is a highly non-trivial task.
Several computational methods have been suggested to iden-

tify the metabolites from MS/MS spectra. Mass spectral data-

bases (spectral libraries) have been created (e.g. Hisayuki et al.,

2010; Oberacher et al., 2009; Smith et al., 2005; Tautenhahn

et al., 2012), which allow us to search measured mass spectra.

Unfortunately, this approach can only identify ‘known un-

knowns’ where a reference measurement is available.
Fragmentation trees are combinatorial models of the MS/MS

fragmentation process. B €ocker and Rasche (2008) suggested

fragmentation trees for identifying the molecular formula of an

unknown compound. Later, fragmentation trees were shown to

contain valuable structural information about the compound

(Rasche et al., 2011, 2012).

The relation between spectral and structural similarities has

been studied by Demuth et al. (2004). A kernel-based machine

learning approach for metabolite identification was recently

introduced by Heinonen et al. (2012), relying on predicting the

molecular fingerprints as an intermediate step. Molecular finger-

prints are given as bit vectors with each bit describing the exist-

ence of certain molecular property such as substructures in the

molecule. After the prediction, imposing some scoring strategy,

the predicted molecular fingerprints are used for searching some

chemical database and finally the ranked list of candidates are

generated (Heinonen et al., 2012; Shen et al., 2013).
Besides these two approaches, methods have been suggested

for predicting MS/MS spectra from molecular structures (Allen

et al., 2013; Kangas et al., 2012); commercial software packages

also exist for this task. Such simulated spectra can be used to

replace the notoriously incomplete spectral libraries by molecular

structure databases (Hill et al., 2008). Combinatorial fragmenta-

tion of molecular structure serves the same purpose (Gerlich and

Neumann, 2013; Wolf et al., 2010). Finally, we can search spec-

tral libraries for similar compounds, by comparing either MS/

MS spectra (Demuth et al., 2004; Gerlich and Neumann, 2013)

or fragmentation trees (Rasche et al., 2012). See Scheubert et al.

(2013) and Hufsky et al. (2014) for recent reviews.
We propose a joint strategy that combines fragmentation trees

and multiple kernel learning (MKL) to improve molecular fin-

gerprint prediction and, subsequently, the metabolite identifica-

tion. We first outline the metabolite identification framework

and introduce fragmentation trees and their computation.

Next, we introduce a family of kernels for fragmentation trees,

consisting of simple node and edge statistics kernels as well as

path and subtree kernels that use dynamic programming (DP)

for efficient computation. We then describe state-of-the-art

methods for MKL. In these experiments, we evaluate different

MKL algorithms with regards to the fingerprint prediction and

the metabolite identification.

2 METHODS

Figure 1 gives an overview for our metabolite identification framework

through MKL. Fragmentation trees are computed first, followed by the

computation of kernels. MKL approaches are used to integrate different

kernels for molecular fingerprint prediction. The final step of the frame-

work is to query molecular structure databases with the predicted mo-

lecular fingerprint using a probabilistic scoring function.*To whom correspondence should be addressed.
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The advantages of the kernel-based machine learning framework are:

that it easily allows incorporating the combinatorial fragmentation trees

by kernelizing the model; that it can query molecular structure databases

which are much larger than MS/MS spectral libraries; and that molecular

fingerprints can help to characterize the unknown metabolite and may

shed light for de novo identification.

2.1 Fragmentation trees

B €ocker and Rasche (2008) introduced fragmentation trees to predict the

molecular formula of an unknown compound using its MS/MS spectra.

A fragmentation tree annotates the MS/MS spectra of a compound via

assumed fragmentation processes. Nodes are molecular formulas, repre-

senting the unfragmented molecule and its fragments. Edges represent

fragmentation reactions between fragments, or the unfragmented mol-

ecule and a fragment. Details on the computation can be found in

B €ocker and Rasche (2008) and Rasche et al. (2011); here, we quickly

recapitulate the method. We assume that MS/MS spectra recorded at

different collision energies have been amalgamated into a single spectrum,

as described in Section 3. We decompose all peaks in the amalgamated

spectrum, finding all molecular formulas that are within the mass accur-

acy of the measurement. For each decomposition of the parent peak, we

build a fragmentation graph which contains all possible explanations for

each peak, where nodes are colored by the peaks they originate from. We

insert all edges between nodes that are not ruled out by the molecular

formulas: that is, a product fragment can never gain atoms of any element

through the fragmentation. Edges of this graph are then weighted, taking

into account the intensity and mass accuracy of the product fragment, the

mass of the loss and prior knowledge about the occurrence of certain

losses.

Under the parsimony assumption, we then compute a colorful subtree

of this graph with maximum weight. Unfortunately, finding this tree is an

NP-hard problem (Rauf et al., 2012). Nevertheless, we can compute op-

timal trees in a matter of seconds using Integer Linear Programming

(Rauf et al., 2012). For each peak, this tree implicitly decides whether

it is noise or signal and, in the later case, assigns the molecular formula of

the corresponding fragments and the fragmentation reaction it resulted

from. The score of the tree is the sum of its edge weights. Candidate

molecular formulas of the parent peak are ranked by this score, which

is the maximum score of any tree that has this molecular formula as its

root.

Different from B€ocker and Rasche (2008) and Rasche et al. (2011), we

used a modified weighting function for the edges of the fragmentation

graph. With these new weights, the above optimization can be interpreted

as a maximum a posteriori estimator of the observed data. We weight

edges by the logarithmic likelihood that a certain fragmentation reaction

occurs: for this, we consider the intensity and mass deviation of the prod-

uct fragment peak, the loss mass and chemical properties of the molecular

formula as proposed in Kind and Fiehn (2007): namely, the ring double

bond equivalent and the hetero atoms and carbon atoms ratio.

Furthermore, we favor a few common losses that were learned from

the data, and penalize implausible losses and radicals. Such weights

have already been used in B €ocker and Rasche (2008) and Rasche et al.

(2011); different from there, we did not choose parameters ad hoc but

rather learned them from the data. Details about these new weights will

be published elsewhere.

2.2 Kernels for fragmentation trees and MS/MS spectra

2.2.1 Probability product kernel Heinonen et al. (2012) compared

several kernels that can be computed directly from the MS/MS spectra

without the knowledge of the fragmentation trees. In their studies, simple

peak and loss matching kernels were found inferior to the probability

product kernel (PPK). Thus, we use the PPK as the baseline comparison

with the fragmentation tree kernels. The idea of the PPK is the following:

each peak in a spectrum is modeled by a 2D Gaussian distribution with

the mass-to-charge ratio as one dimension, and the intensity as the other.

All-against-all matching between the Gaussians is performed to avoid

problems arising from alignment errors.

Formally, a spectrum is defined as �=f�ð1Þ; . . . ; �ð‘�Þg, a set of ‘�
peaks �ðkÞ= �ðkÞ; �ðkÞð Þ 2 R

2; ðk=1; . . . ; ‘�Þ consisting of the peak mass

�(k) and the normalized peak intensity �(k). The k-th peak of the mass

spectrum � is represented by p�ðkÞ=Nð�ðkÞ;SÞ centered around the peak

measurement and with covariance shared with all peaks

S=
�2� 0

0 �2�

" #

where the variances �2� for the mass is estimated from data and �2� is

tuned by cross-validation. No covariance is assumed between peak dis-

tributions. The spectrum � is finally represented as a mixture of its peak

distributions p�=
1
‘�

X‘�

k=1
p�ðkÞ.

The PPK Kpeaks (Jebara et al., 2004) between the peaks of two spectra

�, �0 is given by:

Kpeaksð�; �
0Þ=Kðp�; p�0 Þ

=

Z
R

2
p�ðxÞp�0 ðxÞdx

=
1

‘�‘�0

X‘�;‘�0
k;k0=1

1

4�����
expð�

1

2

ð�ðkÞ � �0ðk0ÞÞTS
�1
ð�ðkÞ � �0ðk0ÞÞÞ:

Fig. 1. The metabolite identification framework through MKL. First, we

construct the fragmentation tree from the MS/MS spectrum. Second, we

compute kernels for both MS/MS data and fragmentation trees. Third,

MKL is used to combine kernels and predict molecular fingerprints.

Finally, fingerprints are used for molecular structure database retrieval

i158

H.Shen et al.

 by guest on July 5, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

to 
e
,
-
;
the Results 
,
i
,
probability product kernel
to
probability product kernel
two-dimensional
&chi;
 and
&chi;
probability product kernel (
)
&chi;,&chi;&prime;
http://bioinformatics.oxfordjournals.org/


The precursor ion is the compound selected in the first round of MS/

MS and further fragmented in the second round. As a result, the differ-

ence (loss) between the peak �(k) and the precursor ion prec(�)= (�(p),0)

is also important, where �(p) is the mass of the precursor ion. We can

model the difference with distribution p�̂ðkÞ=Nð�̂ðkÞ;SÞ, where

�̂ðkÞ=jprecð�Þ � �ðkÞj. This feature is denoted as loss and corresponding

kernel matrix as Kloss. Experiments in Heinonen et al. (2012) and Shen

et al. (2013) showed that the combined kernel Kpeaks+Kloss achieved best

accuracy and computational efficiency among the spectral kernels.

2.2.2 Fragmentation tree kernels Fragmentation trees can be con-

sidered as an annotated representation of the original MS/MS spectra.

Recent advancement (Rasche et al., 2012; Rojas-Chert �o et al., 2012) in

comparing and aligning the fragmentation trees enables similarity metrics

to be defined between fragmentation patterns for small molecules. Rasche

et al. (2012) introduced fragmentation tree alignments, and showed align-

ment scores to be correlated with chemical similarity. However, alignment

scores of this type do not, in general, yield positive semidefinite kernels.

In the following, we define a set of kernels for fragmentation trees that

will allow us to transfer the power of the fragmentation tree approach to

the kernel-based learning algorithms for molecular fingerprint prediction

and metabolite identification.

A fragmentation tree T=(V, E) consists of a nodes set V of molecular

formulas (corresponding to the fragments) and an edges set E � V�V

(corresponding to the losses). Let r denote the root of T. For an edge

e=ðu; vÞ 2 E let �ðeÞ=�ðu; vÞ :=u� v be the molecular formula of the

corresponding loss. Clearly, different edges may have identical losses; let

�(E) be the multiset of all losses. For some loss molecular formula l, let

N(l) be the number of edges e 2 E with �(e)= l. Each path from the root

r to a node v implies a root loss r� v; let E : =fr� v : v 2 Vg be the set of

all root losses. For a MS/MS spectrum x, let Tx=(Vx,Ex) be the corres-

ponding fragmentation tree, with root losses Ex and loss multiplicities

Nx(�). For any node v 2 Vx let �x(v) be the corresponding peak intensity;

for an edge e=ðu; vÞ 2 Ex let �x(e) be the intensity of the terminal node v.

For the loss- and node-based kernels, feature vectors � are constructed

and the kernel function is just a simple dot product between two feature

vectors. Path-based kernels are more complicated, and details on their

computation will be given below.

Loss-based kernels: edges in the fragmentation trees represent the losses

from the parent node to the child node. The following feature vectors are

devised based on the losses in a fragmentation tree Tx:

� LB: Loss binary, indicates the presence of a loss l in a fragmentation

tree Tx, that is, �
LB
l ðxÞ=1l2�ðExÞ.

� LC: Loss count, counts the number of occurrences of a loss l in a

fragmentation tree Tx, that is, �
LC
l ðxÞ=NxðlÞ.

� LI: Loss intensity, uses the average intensity of the terminal

nodes with loss l in a fragmentation tree Tx, that is,

�LIl ðxÞ=
1

NxðlÞ

P
e2Ex�ðeÞ=l �xðeÞ.

� RLB: Root loss binary, indicates the presence of a root loss l in a

fragmentation tree Tx, that is, �
RLB
l ðxÞ=1l2Ex .

� RLI: Root loss intensity uses the intensity of the terminal node of a

root loss if it is present in a fragmentation tree Tx. For root r we set

�RLIl ðxÞ=�xðr� lÞ if r� l 2 Vx, and �
RLI
l ðxÞ=0 otherwise.

Node-based kernels: the nodes in the fragmentation tree explain peaks in

the MS/MS by some chemical formula of the hypothetical fragment. The

nodes are unique in a fragmentation tree T, and so are the root losses. To

this end, we can omit root losses from the feature vectors.

� NB: Nodes binary, indicates the presence of a node v in a fragmen-

tation tree Tx, that is, �
NB
v ðxÞ=1v2Vx

.

� NI: Nodes intensity, uses the intensity of the node if it is presented

in a fragmentation tree Tx; that is, �NIv ðxÞ=�xðvÞ for v 2 Vx, and

�NIv ðxÞ=0 otherwise.

Path-based kernels: these kernels are count common path between two

fragmentation trees—here, ‘common path’ refers to an identical sequence

of losses in the two trees. We use DP to efficiently count the number of

common paths, that is, the dot product of two feature vectors which are

not explicitly constructed. For two fragmentation trees T1= (V1,E1) and

T2= (V2,E2) we compute a DP table D[u,v] for all u 2 V1 and v 2 V2. In

all cases, the number of common paths is D[r1,r2] where ri is the root of

Ti. We initialize

D½u; v�=0; 8u 2 LðT1Þ; v 2 T2

D½u; v�=0; 8u 2 T1; v 2 LðT2Þ

where LðTÞ denotes the leaves of a tree T. Let C(v) be the children of a

node v.

� Common path counting (CPC). The DP table entryD[u,v] records the

count of common path for the subtrees rooted in u and v, respect-

ively. This leads to the following recurrence:

D½u; v�=
X

a2CðuÞ;b2CðvÞ
�ðu;aÞ=�ðv;bÞ

ð1+D½a; b�Þ:

� Common paths of length 2 (CP2). In this case, only common losses

for paths of length two are considered:

D½u; v�=
X

x2CðuÞ;a2CðxÞ;y2CðvÞ;b2CðyÞ
�ðu;xÞ=�ðv;yÞ;�ðx;aÞ=�ðy;bÞ

ð1+D½a; b�Þ:

� Common path with Kpeaks (CPK). Instead of simply counting the

common paths, we use the PPK Kpeaks to score the terminal peaks.

We omit the straightforward but somewhat tedious details.

� Common subtree counting (CSC). In this case, we count the number

of ‘common subtrees’ between T1 and T2, which can be defined

analogously to the common paths above. Entry D[u,v] now counts

the number of common subtrees for the two subtrees rooted in u of

T1, and v of T2. We have to consider three cases: for each pair of

children a 2 CðuÞ and b 2 CðvÞ with �(u,a)=� (v,b) we can either

attach the subtrees rooted in a and b; we can use solely the edges

(u, a) and (v, b) as a common subtree; or, we can attach no common

subtree for this pair of children. But if we choose no subtree for all

matching pairs of children, the result would be a tree without edges

and, hence, not a valid common subtree. Thus, we have to correct for

this case by subtracting one. Hence, the recurrence is:

D½u; v�=
Y

a2CðuÞ;b2CðvÞ
�ðu;aÞ=�ðv;bÞ

ð2+D½a; b�Þ � 1:

2.3 MKL

In many applications, multiple kernels from different kernel functions or

multiple sources of information are available. MKL becomes a natural

way to combine information contained in the kernels. Instead of choosing

the best kernel via cross-validation as in Heinonen et al. (2012) and Shen

et al. (2013), MKL seeks a linear, convex or even non-linear combination

of the kernels. An overview of MKL algorithms can be found in a survey

by G €onen and Alpaydin (2011).

In practice, it is often difficult for MKL algorithms to outperform the

uniform combination of the kernels (UNIMKL) where the weights for ker-

nels are equal. However, in some cases, some methods have seen improve-

ments over the uniform combinations. Three algorithms coupled with

SVM are considered in the following: centered alignment-based algorithms
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(Cortes et al., 2012), quadratic combination of the kernels (Li and Sun,

2010) and ‘p-norm P41 for the kernel weights (Kloft et al., 2011).

For all the three algorithms, the input will be a set of kernels

K=fKkjKk 2 R
n�n; k=1; . . . ; qg computed from n data points. The

output is a set of m fingerprint properties Y 2 f�1;+1gn�m which is a

multi-label prediction task and each label is trained independently in the

experiments.

2.3.1 Centered alignment-based MKL The centered alignment-

based MKL algorithms are based on the observation that the centered

alignment score with the target kernel KY=yyT correlates very well with

the performance of the kernel, where y is a single label. Experiments by

Cortes et al. (2012) show consistent improvements over the uniform com-

bination. In the molecular fingerprint prediction setting, the target kernel

is defined as KY=YYT.

Two-stage model are considered in which the kernel weights are

learned first and then can be applied to all kernel-based learning algo-

rithms (SVM in this work). The centered kernel matrices are defined by

Equation (1):

Kc= I�
eeT

n

� �
K I�

eeT

n

� �
ð1Þ

where I is the identity matrix and e is the vector with all ones.

8A;B 2 R
n�n, let h�; �iF denotes the Frobenius product and jj � jjF denotes

the Frobenius norm which are defined by

hA;BiF=Tr½ATb� and jjAjjF=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA;AiF

p
:

Let now K 2 R
n�n and K0 2 R

n�n be two kernel matrices such that

jjKcjjF 6¼ 0 and jjK0cjjF 6¼ 0. Then the centered alignment between K

and K0 is defined by

	̂ðK;K0Þ=
hKc;Kc

0iF

jjKcjjFjjK
0
cjjF

: ð2Þ

The simple independent centered alignment-based algorithm (ALIGN)

(Cortes et al., 2012) computes the alignment score between each kernel

matrix Ki and the target kernel matrix KY and combine the kernels as

K� /
Xq
k=1

	̂ðKk;KYÞKk

=
1

jjKYjjF

Xq
k=1

hKk;KYiF

jjKkjjF
Kk:

The alignment maximization algorithm (ALIGNF) (Cortes et al., 2012)

jointly seeks the weight �i to maximize the alignment score defined by

Equation (2) between the convex combination of the kernel in K and the

target kernel KY=yyT, that is, the following optimization problem:

max
�2M

hK�;KYiF

jjK�jjF

whereM=� : jj�jj2=1; � � 0.

2.3.2 Quadratic combination MKL In this setting, the quadratic

combination of kernels (QCMKL) is included in the formulation and the

MKL problem is solved by semidefinite programming (Lanckriet et al.,

2002; Li and Sun, 2010). The kernels in K are enriched to a new set
~K=f ~Ktjt=1; . . . ; qðq+1Þ=2g by the following transformation:

~Ktði;jÞ=
Ki *Kj i 6¼ j

Ki i=j

(

where i,j=1, . . . ,q and * denotes the Hadamard product.

The convex combinations of the kernels is given by ~K�=
Xqðq+1Þ=2

t=1
�t

~Kt with � � 0 and eT�=1. Adapting the soft margin SVM formula-

tion reveals the following dual problem (in epigraph form) (Li and

Sun, 2010):

max

;u

u

s:t: u � 
Te�
1

2

TGð~K�Þ
;

0 	 
 	 Ce; 
Ty=0;

� � 0; eT�=1:

The derived Lagrangian for the problem is (Li and Sun, 2010):

Lð
; �; �; 
Þ=
Te�
1

2

TGð~K�Þ
+�

T


+

Ty+�ðCe� 
Þ

with 
; � � 0; � � 0; 
 as dual variables, and GðKÞ=diagðyÞKdiagðyÞ.

Applying Schur’s lemma to convert the first inequality constraint to

Linear Matrix Inequality (LMI) unveils the following semidefinite pro-

gram (SDP) (Li and Sun, 2010):

min

;u

u

s:t:
Gð~K�Þ e+�+
y� �

ðe+�+
y� �ÞT u� 2C�Te

0
@

1
Af0

� � 0; eT�=1; � � 0; � � 0:

Many standard SDP solvers can be used to find the optimal solutions

such as cvx (http://cvxr.com/).

2.3.3 ‘p-norm MKL While ‘1 norm on the kernel weights

� produces sparse solutions, higher norms p41 produces non-

sparse solutions which may be beneficial. A general framework

for ‘p-norm MKL (‘p-MKL) was proposed by Kloft et al. (2011).

The q kernels correspond to q feature mappings

�k : �!Hk; k=1; . . . ; q and l is some convex loss function and the

primal problem is then:

min
w;b;�

C
Xn
i=1

lð
Xq
k=1

hwk; kðxiÞiHk
+b; yiÞ+

1

2

Xq
k=1

jjwkjj
2
Hk

�k

s:t: � � 0; jj� jj2p 	 1:

when the optimization is coupled with hinge loss, the problem has a

simple dual form (Kloft et al., 2011):

max




Te�
1

2
jjð
TGð ~Ki Þ
Þ

q
k=1jjp
 ;

where all the variables are all as defined before but p
= p
p�1.

The optimization problem can be solved by alternating the dual vari-

ables 
 and the kernel weights � via the squared norm on w by the

following equations:

jjwkjj
2=�2

k

TKk
; 8k=1; . . . ; q: ð3Þ

�k=
jjwkjj

2

ð
Xq
k0=1

jjwk0 jj
2p
p+1Þ

1
p

; 8k=1; . . . ; q: ð4Þ

Based on the above equations, a simple alternating algorithm has been

proposed by Kloft et al. (2011) as Algorithm 1.
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Algorithm 1 Wrapper algorithm for ‘p-norm MKL

Input feasible 
 and �

while optimization conditions are not satisfied do

Solve 
 with current � using standard SVM.

Compute jjwkjj
2 with equation (3).

Update � by equation (4).

end while

The optimization conditions can be the difference of objective function

or the duality gap between two subsequent iterations. More detailed,

theoretical results and a faster chunking-based algorithm are also pre-

sented in Kloft et al. (2011).

2.4 Probabilistic scoring of candidate metabolites

Given a predicted fingerprint associated with a mass spectrum, for me-

tabolite identification, we need to retrieve metabolites with similar finger-

prints from a molecular database. Assume ŷ 2 f�1;+1gm is a predicted

fingerprint and an arbitrary fingerprint y 2 f�1;+1gm for some molecule

in some molecular database, one can score the y by the following equa-

tion as used in FingerID (Heinonen et al., 2012; Shen et al., 2013):

PPBðyj
; ŷÞ=
Ym
j=1



1yj=ŷ j

j ð1� 
 jÞ
1yj=ŷ j

that is, the Poisson binomial probability for the fingerprint vector y where

the cross-validation accuracies ð
 jÞ
m
j=1 2 ½0:5; 1�

m of the fingerprints pre-

diction are taken as the reliability scores.

3 RESULTS

Two MS/MS datasets, 978 compounds downloaded from
METLIN (Tautenhahn et al., 2012) and 402 compounds from

MassBank (Hisayuki et al., 2010), both measured by QTOF
MS/MS instruments are tested. For each compound, mass spec-

tra recorded at different collision energies were amalgamated
before further processing: we normalize MS/MS spectra such

that intensities sum up to 100%. We merge peaks from different
collision energies withm/z difference at most 0.1, using them/z of

the highest peak and summing up intensities. We discard all but
the 30 highest peaks, as well as peaks with relative intensity
50.5%.

Next, we compute the fragmentation tree. We assume that we
can identify the correct molecular formula from the data: limit-

ing candidate molecular formulas to those present in KEGG
(Kanehisa and Goto, 2000), which is used for searching molecu-
lar structures below, the best scoring fragmentation tree identi-

fied the correct molecular formula of the compound in 97.1%
(96.0%) of the cases for the METLIN (MassBank) dataset.

Integrating other sources of information such as MS1 isotope
patterns (B €ocker et al., 2009) or retention times would reach

even better identification rates. To allow for a meaningful com-
parison of the power of the different kernels, we therefore use the
best scoring fragmentation tree of the correct compound molecu-

lar formula.
All 11 fragmentation tree kernels proposed in the previous

section were computed, along with PPK used in Heinonen
et al. (2012) and Shen et al. (2013) computed directly from

MS/MS, resulting in 12 kernels to be evaluated.
Molecular fingerprints were generated using OpenBabel

(O’Boyle et al., 2011) which contains four types of fingerprints

(http://openbabel.org/wiki/Tutorial:Fingerprints). FP3, FP4 and

MACCS fingerprints (528 bits in total) were generated based on

the software predefined SMARTS patterns. In our dataset, more

than half of the fingerprint properties have high-class bias rate,

with a large majority of the dataset belonging to the positive class

(most compounds match the property) or respectively the nega-

tive class (most compounds do not match the property). For

such fingerprints, the default classifier, one that always predicts

the majority class, has high accuracy, although the model is not

meaningful. For our performance comparisons, we opted to only

include fingerprints with class bias rate50.9.
For each fingerprint property, we separately trained a SVM;

for all properties, we used identical training and testing com-

pounds. Five-fold cross-validation was performed and the

SVM margin softness parameter (C 2 f2�3; 2�2; . . . ; 26; 27g)
was tuned based on the training accuracy.

3.1 Fingerprint prediction performance

The micro-average (simultaneous average over fingerprint prop-

erties and compounds) accuracy and F1 of the individual kernels

on the predictions of fingerprint properties with bias rate50.9

are shown in Table 1 with the SDs computed from different

cross-validation folds. The kernel NB achieves the best accuracy

and F1 on both METLIN and MassBank. Compared with the

PPK, the fragmentation tree kernels are markedly more accurate

on average.
The improvement of MKL approaches over single kernel

SVMs are clear. The t-test between NB and ALIGNF shows the

differences of mean accuracy and F1 are indeed very significant

with P-values of 4� 10�6 and 1.7� 10�3, respectively. The kernel

weights learned by different MKL algorithms are shown in the

supplementary file.
The micro-average accuracy and F1 of the MKL algorithms

on the fingerprint properties predictions are shown in Table 2,

where it can be concluded that averaged overall fingerprints of

the MKL methods are quite close. We conducted further pair-

wise difference testing, where the performance difference of each

method on each individual fingerprint property is evaluated.

Table 3 shows the significance level of the sign test on the

Table 1. Micro-average performance of individual kernels

METLIN MassBank

Acc (%) F1 (%) Acc (%) F1 (%)

LB 79.5� 0.5 69.9� 0.9 78.9� 1.0 69.0� 2.2

LC 79.4� 0.3 69.6� 0.4 78.5� 1.2 68.4� 2.7

LI 77.8� 0.5 66.8� 0.7 77.4� 1.0 66.7� 2.0

RLB 81.6� 0.8 73.2� 1.1 78.6� 1.0 68.4� 1.2

RLI 78.4� 0.6 68.5� 0.8 76.7� 0.9 65.4� 1.6

NB 81.9� 0.4 73.9� 0.3 81.4� 0.7 73.2� 1.2

NI 80.3� 0.7 71.1� 0.8 79.8� 1.0 70.5� 0.9

CPC 80.6� 0.5 71.6� 0.7 78.7� 1.4 68.9� 2.4

CP2 78.7� 0.7 68.4� 1.2 76.4� 1.0 65.5� 1.1

CPK 72.9� 0.3 58.8� 0.5 72.2� 0.6 57.9� 0.5

CSC 74.9� 0.4 61.9� 0.8 77.8� 0.8 67.2� 2.0

PPK 76.7� 0.6 64.0� 0.7 72.9� 1.1 58.6� 1.2

PPK is the method from Heinonen et al. (2012), which we compare against.
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accuracy and F1 on the METLIN and MASSBANK datasets using

the different MKL methods. The sign test describes whether one

of the methods has higher probability of success (better than the

other on a fingerprint) than the other (alternative hypothesis) or

not (null hypothesis). From the table, we can deduce that ALIGN
and ALIGNF rise slightly above the competition whereas ‘2-MKL
and QCMKL are slightly inferior to the rest. The performance of

UNIMKL is also respectable. The scatter plots of accuracy and F1

between every pair of the MKL algorithms are shown in the

supplementary file.

3.2 Metabolite identification performance

The molecular fingerprint prediction can serve as an intermediate

step for metabolites identification, and can be used to search a

molecular structure database (Heinonen et al., 2012; Shen et al.,

2013). We want to evaluate whether improvements in fingerprint

prediction propagate to better metabolites identifications. We will

search for molecular structures from the KEGG database. As we

assume to know the correct molecular formula, we may filter

based on this information to generate our candidate lists. But it

turns out that this filter is too strict for a meaningful evaluation,

as the number of candidates for each MS/MS spectrum becomes

very small and, hence, all kernels show good performance. For a

Table 3. Sign test for the performance of MKL algorithms on the METLIN and MassBank datasets

Acc UNIMKL ALIGN ALIGNF QCMKL ‘2-MKL ‘3-MKL ‘4-MKL ‘5-MKL

METLIN UNIMKL �� � ++ ++ �� ��

ALIGN ++ ++ ++ + ++

ALIGNF + ++ ++ +

QCMKL �� �� �� ++ �� �� ��

‘2-MKL �� �� �� �� �� �� ��

‘3-MKL � ++ ++

‘4-MKL ++ ++ ++

‘5-MKL ++ �� � ++ ++

MassBank UNIMKL � �� + + +

ALIGN + �� + ++ ++ ++

ALIGNF ++ ++ ++ ++ ++ ++ ++

QCMKL � � �� � �� �

‘2-MKL � �� �� � �

‘3-MKL �� + +

‘4-MKL �� �� ++ + �

‘5-MKL � �� �� + +

F1 UNIMKL ALIGN ALIGNF QCMKL ‘2-MKL ‘3-MKL ‘4-MKL ‘5-MKL

METLIN UNIMKL � + �� �� ��

ALIGN + ++ ++

ALIGNF + ++

QCMKL �� � + �� ��

‘2-MKL – �� �� � �� �� ��

‘3-MKL ++ ++ ++

‘4-MKL ++ ++ ++

‘5-MKL ++ ++

MassBank UNIMKL � +

ALIGN + ++ ++

ALIGNF ++ ++

QCMKL �� �� �� �� –

‘2-MKL �� ��

‘3-MKL ++

‘4-MKL ++

‘5-MKL – +

‘+’ indicates the method in the row is better than the method in the column (‘�’ otherwise) with significance P-value between 0.01 and 0.05; blank indicates no significance.

Similarly, ‘++’ and ‘��’ indicate significance with P-value50.01. Upper table is for accuracy and lower table is for F1.

Table 2. Micro-average performance of MKL algorithms

METLIN MassBank

Acc (%) F1 (%) Acc (%) F1 (%)

UNIMKL 85.0� 0.6 78.3� 0.7 82.2� 0.6 73.9� 1.5

ALIGN 85.2� 0.6 78.6� 0.7 82.4� 0.7 74.4� 1.4

ALIGNF 85.0� 0.5 78.6� 0.4 82.8� 0.4 75.2� 1.2

QCMKL 84.9� 0.5 77.8� 0.5 82.1� 0.6 74.0� 0.7

‘2-MKL 84.7� 0.5 77.5� 0.5 82.2� 0.5 74.0� 0.9

‘3-MKL 85.2� 0.6 78.5� 0.7 82.4� 0.6 74.4� 1.3

‘4-MKL 85.2� 0.6 78.5� 0.8 82.3� 0.6 74.2� 1.0

‘5-MKL 85.1� 0.6 78.5� 0.7 82.3� 0.6 74.1� 1.3
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more discriminative evaluation of the kernels, we artificially

enlarge the set of candidates: we use all molecular structures in

KEGG with mass accuracy window ½�M � "; �M+"� as

candidates, where �M is the true mass of the unknown

molecule. For sufficiently large mass accuracy ", this results

in candidate lists that allow a meaningful comparison of the

kernels.

For identification, we want the true molecular structure to be

ranked as high as possible in the candidates list. Figure 2a and b

shows the fraction of compounds that were ranked higher than

certain rank for the two datasets, when searching KEGG with

300 ppm mass inaccuracy to generate the candidates for the two

datasets.
We notice that the NB kernel is consistently more accurate than

PPK. In addition, MKL clearly improves the identification

performance, especially the number of top-ranked identifications

increases significantly. T-test between the ranks of the ALIGNF

and PPK shows a P-value of 0.06 which verifies the

improvements in identification by ALIGNF over the PPK is

indeed significant. ALIGNF comes on top of the MKL

approaches, which is in line with its good fingerprint prediction

accuracy and F1 score.
The effect of mass accuracy windows during the database re-

trieval are shown in Figure 2c and d. A narrower 20-ppm mass

search window filters out many false candidates, and thus sig-

nificantly elevates the identification accuracies to 60% on

METLIN dataset and 40% on MassBank dataset. However,

the effect of improved molecular fingerprint prediction is sof-

tened due to the fewer but possibly more similar candidates.

An extreme case is observed in Figure 2d in which all the meth-

ods shrink to the same result when searching with 20-ppm mass

accuracy window.

(a) (b)

(c) (d)

Fig. 2. (a and b) show the performance for identification when searching KEGG using 300-ppm mass window with predicted molecular fingerprints,

with fingerprints trained with METLIN and MassBank datasets, respectively. NUM denotes the number of candidate molecules returned per query.

(c and d) show the proportion of data that were correctly identified in the top 1 rank against a series of mass windows
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4 DISCUSSION

The present work combines the combinatorial fragmentation tree
approach with machine learning through a kernel-based ap-

proach. We suggest several kernels for fragmentation trees, and
show how to fuse their information through MKL. The result
significantly enhances molecular fingerprint prediction and me-

tabolite identification.
The closest analogs to our fragmentation tree kernels in litera-

ture are those defined for parse trees in natural language pro-
cessing (Collins and Duffy, 2001); our fragmentation trees can be

seen as parses of the MS/MS spectra. DP techniques similar to
ours are used there for computing kernels between trees (Collins
and Duffy, 2001; Kuboyama, 2007). However, fragmentation

trees have important differences to the trees defined between
parses of natural language and to kernels comparing molecular
structures (Mah�e and Vert, 2009). Differently from natural lan-

guage parses, the node labels have partial order (via their mo-
lecular weights) and also the edges have labels. Differently from
kernels for molecular graphs, the label spaces of both nodes and

edges are vast (subsets of molecular formulae).
The comparison with the PPK employed by the FingerID

(Heinonen et al., 2012) software shows that the fragmentation
tree kernels are able to extract more information out of the MS/

MS spectra. Improvements are seen in both the prediction ac-
curacy and the F1 score. Comparing with FingerID (PPK), the
uniform combination of the kernels (UNIMKL) improves the

molecular fingerprint prediction significantly in accuracy and
F1. As witnessed by many MKL applications, the UNIMKL al-
gorithm is hard to beat. In our result, several MKL algorithms

such as ALIGNF and ‘3-norm can give slightly better result than
UNIMKL. The improvements in the molecular fingerprint predic-
tion translate to improved metabolite identification.
There are several possible routes forward with the current me-

tabolite identification framework. First, post-processing on the
candidates list, such as the one proposed by Allen et al. (2013), is
necessary when searching a large compound database such as

PubChem, because the returned candidates (hundreds to thou-
sands) may share the same fingerprints and there is no way to
differ them based only on molecular fingerprints. Second, train-

ing a separate SVM for each fingerprint property is clearly an
aspect that can be improved upon, for example, by a multi-label
classification approach. A still more tempting yet challenging

direction would be to replace the two-step identification by an
integrated prediction approach. Such an approach would poten-
tially learn to predict the fingerprint properties that are import-
ant for discriminating metabolites from each other.
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