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ABSTRACT

Motivation: Metabolite identification from tandem mass spectra is an
important problem in metabolomics, underpinning subsequent meta-
bolic modelling and network analysis. Yet, currently this task requires
matching the observed spectrum against a database of reference
spectra originating from similar equipment and closely matching oper-
ating parameters, a condition that is rarely satisfied in public reposi-
tories. Furthermore, the computational support for identification of
molecules not present in reference databases is lacking. Recent
efforts in assembling large public mass spectral databases such as
MassBank have opened the door for the development of a new genre
of metabolite identification methods.

Results: We introduce a novel framework for prediction of molecular
characteristics and identification of metabolites from tandem mass
spectra using machine learning with the support vector machine.
Our approach is to first predict a large set of molecular properties of
the unknown metabolite from salient tandem mass spectral signals,
and in the second step to use the predicted properties for matching
against large molecule databases, such as PubChem. We demon-
strate that several molecular properties can be predicted to high ac-
curacy and that they are useful in de novo metabolite identification,
where the reference database does not contain any spectra of the
same molecule.

Availability: An Matlab/Python package of the FingerID tool is freely
available on the web at http://www.sourceforge.net/p/fingerid.
Contact: markus.heinonen@cs.helsinki.fi
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1 INTRODUCTION

In metabolomics, mass spectrometry (MS) provides the key
measurement technology for quantifying and qualifying chemical
signals to provide biological knowledge of cellular processes
(Kell, 2004). An MS measurement of a biological sample results
in a set of peaks representing the mass-to-charge ratios and
intensities of the different compounds of the sample. Identifica-
tion of these molecules through mass spectra is a prerequisite for
further biological interpretation and is the most time-consuming
and laborious step in metabolomics experiments (Werner et al.,
2008). The identification process is still mostly not automatized,

*To whom correspondence should be addressed.

thus requiring extensive manual analysis and expert knowledge
(Neumann and Bocker, 2010).

Some structural information on a given compound can be
obtained by tandem mass spectrometry (MS/MS) through ion-
ization or collision-induced dissociation fragmentation experi-
ments. Tandem mass spectrum contains peaks representing
various fragmentation products of the unknown compound,
including the difficulty to predict rearrangement reaction prod-
ucts. A compound fragments in specific patterns according to its
structure, the collision energy and the experimental configuration
(McLafferty, 1983). Elucidation of tandem spectra is at the core
of molecular identification (Neumann and Bocker, 2010;
Heinonen ez al., 2008). The standard method of performing com-
pound identification is to measure the tandem mass spectrum of
the unknown compound and to query the spectrum against
annotated reference libraries of standardized spectra (NIST,
MassBank, Wiley Registry) (Werner et al., 2008), followed by
extensive domain expert analysis. In practice, the reference data-
base requires a closely matching type of equipment and oper-
ational parameters for reliable matching (Horai ef al., 2010).

Machine learning approaches for metabolite identification
from MS/MS data have not been widely studied. Early related
work includes STIRS (Dayringer et al., 1976) that uses a nearest
neighbor approach to model the statistical relationships between
spectral features and molecular substructures, the neural network
work of Curry and Rumelhart (1990), and the decision tree
approach by Breiman ez al. (1984). However, the impact of
these methods has remained dormant perhaps due to predating
the era of systems biology and limited available data. In contrast,
current state-of-the-art methods are based on combinatorial
algorithms and database searches. The MetFrag software
identifies metabolites by matching candidate metabolites with
closest combinatorially simulated spectrum to the observed one
(Wolf et al., 2010). Analysis of isotopic patterns can give add-
itional clues on the metabolite’s elemental composition (Bocker
et al., 2009).

We introduce a novel two-step pattern-recognition approach
(see Fig. 1) to the metabolite identification problem. Instead of
directly learning a mapping between the spectrum and the me-
tabolite, we first predict a set of characterizing fingerprints of the
metabolite from its tandem mass spectrum using a kernel-based
approach. We learn our fingerprint prediction model from a
large set of tandem mass spectra obtained from public mass
spectral database MassBank (Horai et al., 2010). In the next
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Fig. 1. The overview of the two-step metabolite identification
framework. An example molecule Tryptophan (mass 204.2 Da) produces
a characterizing MS/MS spectra, which is used to predict the original
molecule through fingerprints. The predicted fingerprints, along with neu-
tral mass measurement, are used to filter a molecular repository for
candidates

step, we match the predicted fingerprints against a large molecu-
lar database to obtain a list of candidate metabolites. The me-
tabolite identification model generalizes to metabolites not
present in reference spectral databases. Due to the machine
learning approach, data from any type of mass spectrometer
are supported.

In Section 2, we review the basics of mass spectrometry and
the current state-of-the-art of metabolite identification through
reference databases. We introduce three classes of mass spectral
features and a probability product kernel over the spectral fea-
tures in Section 3. We also discuss the use of multiple measure-
ments from the same metabolite. We propose a statistical
approach to retrieve candidate metabolites using the predicted
properties in Section 4. In Section 5, we experiment with the
proposed FingerID method in fingerprint prediction and metab-
olite identification. We conclude this article with discussion in
Section 6.

2 METABOLITE IDENTIFICATION THROUGH
TANDEM MASS SPECTROMETRY

A tandem mass spectrum is generated by selecting an unknown
ion band and its mass-to-charge ratio to undergo fragmentation
(see Fig. 1). Under mild fragmentation conditions, the peak cor-
responding to the molecule ion is still visible in the tandem spec-
trum at the same mass-to-charge. During fragmentation, an ion
is often cleaved into two fragments, one of which retains the
charge (Small molecules appear often as singly charged ions.
We assume single-charged ions throughout the paper for clarity.)
and is visible in the tandem mass spectrum. The complementary
fragment is a neutral loss invisible in the spectrum.

The first step in compound identification is to constraint the
mass and elemental composition of the compound through peak

masses. Computational methods utilize the compound’s peak
and its isotope peak masses to compute set of possible elemental
compositions (Bocker ez al., 2009). However, mass measurement
accuracy defines the set of compatible compositions through the
scope of error in the mass measurements. High- or
ultra-high-resolution analyzers, such as Time-of-flight and four-
ier transform analyzers, can achieve low mass errors in the range
of 1-5 ppm (Werner et al., 2008).

We distinguish four increasingly challenging cases for annotat-
ing an unknown spectrum measured at specific device through
querying mass spectral databases:

(1) The database contains a spectrum of the molecule, mea-
sured with the same device and experimental parameters

(2) The database contains a spectrum of the molecule, mea-
sured on the same device but with different experimental
parameters (e.g. collision energy)

(3) The database contains a spectrum of the molecule, mea-
sured on a different device

(4) The database does not contain the spectrum. Annotation
requires de novo metabolite identification

In the first Case (a), we expect a simple retrieval of the most
similar spectrum from the reference database to give reliable
identifications, with no need for more complicated prediction
schemes. Cases (b) and (c) are expected to be less suited to
simple retrieval and leave room for improvement through ma-
chine learning approaches. Finally, Case (d) is not possible to
tackle with retrieval from a reference database and can be seen as
the prime motivation for machine learning method development.

The standard query methods rely on a distance function to
compute the best hits of the unknown spectra against a library.
The most common approach is to count the number or propor-
tion of shared peaks. Several methods include peak intensities
with experimentally defined weights (Horai et al., 2010; Wolf
et al., 2010; Dworzanski et al., 2004) or probabilistic measures
(Pavlic et al., 2006; Oberacher et al., 2009).

In our experiments we use retrieval from the MassBank data-
base as the reference database method, giving match scores for
query spectra. (MassBank also has an advanced metabolite iden-
tification service, which however is not available in batch mode.)
The score is the Pearson correlation between weighted peak vec-
tors between query w and target w” spectra with elements

w; = int - mass?,

where «=0.5 and B=2 (Horai et al., 2010; Stein, 1994).
Alignment of the peaks is ensured by allowing some mismatch,
default value at 0.3.

3 KERNELS FOR MASS SPECTRA

In this section, we build three classes of features extracted from
mass spectra that are relevant to the fingerprint prediction task.
The features are used in two families of mass spectral kernels for
SVM classification: an integral mass accuracy kernel and a high
mass accuracy kernel, where the peaks generate a gaussian mix-
ture model densities. Furthermore, we introduce methods to util-
ize multiple collision energy spectra through kernel fusion.
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We consider mass spectra of molecule as a collection
x = {X1,...,Xx} € X of k two-dimensional peak tuples x; € R?
(see Fig. 1). (The number of peaks k varies from spectrum to
spectrum in the dataset.) A peak x = (mass,inf)? represents the
mass-to-charge value and the intensity of the peak measurement.
We normalize all intensities to range [0,1]. Often we have a series
of spectra of a molecule measured with increasing collision ener-
gies as (X10ev, - - - X50e7 )-

A mass spectral kernel K: X x X — R is a positive
semi-definite similarity function between sets. The kernel K in-
duces a mapping ¢ : X — H of input to a Hilbert space, such
that K(x,x') = (¢(x).¢(x')) where x, x' € X. The power of kernels
comes from the fact that a simple similarity value can implicitly
construct a rich feature representation of non-vectorial objects.

We learn a function f/: X — {—1, 1}”" mapping the tandem
mass spectrum x of an unknown metabolite into the m-
dimensional fingerprint target vector y = (y;);21€{-1,1}"" using a
dataset of n spectra {x1,. . .. x,.}. We opt to use n binary SVM’s each
learning the subtask f; : X — {—1, 1}. The learning function is
fix) = sign(w] ¢(x)) = sign(3_ o;K(x;, X)), where w; € H.

The main types of/ fingerprints are topological,
physico-chemical and electrical properties of the molecule
(Steffen et al., 2009). In Section 4, we utilize the fingerprints y
to filter candidates from molecular databases.

3.1 Integral mass kernel

The integral kernel consists of a feature mapping ¢ : X — RY.
The feature representation gathers the peak intensities at discrete
intervals, ie. d’peaks (X): (d’peaks (X)iﬂ:l with

Z 8i+0.5(mass) - int,

(mass,int)€ x

¢peaks()()i =

where ;10 s(mass) is an indicator function giving 1 if
i—0.5<mass<i+0.5, and 0 otherwise. The ‘peaks’ features
gather all intensity of peaks that are rounded to its nearest inte-
gral mass. The dimensionality d of the feature space is equivalent
to the largest feature index with non-zero value, i.e. the mass of
the largest peak in the dataset.

The peak ions are complemented by undetected neutral
loss peaks which indicate the masses of cleaved fragments from
the precursor (mother) ion. The ‘neutral loss’ features @pioss

(X) = (¢nloss (X)I);{ZI are

(bnloss(X)i = Z SiiOAS(preC(X) - mass) : ints

(mass,int)€ x

where we add the intensities of all peaks whose mass difference
to the precursor prec(yx) rounds to i. The neutral losses are
invariant of the mother ion mass and allow cleavage detection
of e.g. phosphate group PO,  which has a standard atomic
weight of 94.97.

In tandem mass spectrometry, the fragment ions themselves
can undergo further fragmentation. We can generalize the notion
of neutral losses to include secondary fragmentation reactions
between non-mother ion peaks by multiplying the intensities of
any two pairs of peaks with a fixed integral mass difference. The
peak ‘difference’ feature representation ¢d“‘[‘(x):(¢diﬂ‘(x),’)ldzl
consists of

dairr(X); = Z 8i+0.5(|mass — mass’|) - int - int’.

(mass, int) € x
(mass’, int’) € x

The kernels utilizing these three classes of features are

erakS(X7 x) = <¢peaks(X)a ¢peaks(X/))
Kuioss(X: X)) = (Pntoss(0) ¢nloss(X/))
Kaier(x, X) = (bain(x), baine(x'))-

The full integral kernel K= Kpeaks + Knloss + Kairr corres-
ponds to a concatenation of the feature sets ¢pu=(Ppeaks:
d’nloss; d’diff)-

Polynomial combinations of the features are easily com-
puted by applying a polynomial kernel. We experiment with
linear and quadratic kernels in Section 5. The integral kernel is
directly positive semi-definite (Shawe-Taylor and Christianini,
2004).

3.2 High-resolution mass kernel

The explicit feature representation of the discrete kernel allows
direct inspection of the feature weights. However, it rounds all
peaks to a nearest integer value. The unique peaks with same
rounded mass are erroneously binned together. We can expand
the feature space by narrowing the bin widths; however, this
introduces an alignment problem in the dot product.

Instead, we generalize the feature mapping with a kernel be-
tween distributions by applying the probability product kernel of
Kondor and Jebara (Kondor and Jebara, 2003). We fit probabil-
istic models p(x) and p'(x') over spectra y and x’ and define the
kernel between spectra as a kernel between the corresponding
probability distributions, K(x,x') = K(p,p'). We use a probability
product kernel

Ko = [ ptor/ (s,

which has an interpretation as an expectation of one distribution
under the other

A PP (0)dx = Ey[p' ()] = By [p(x)],

called the expected likelihood kernel as in Jebara et al. (2004).

For countable and finite quantities, the probability prod-
uct corresponds to a dot product (p,p') in £, with a feature
representation  ¢:x — p(x) that collects the probabilities
into a vector. Note that in general K(y,x)#1 as the probability
product is not a proper distribution. We normalize all kernels
to [0, 1].

We opt to model the probabilities p(x) = %ZL] pi(X) as gaus-
sian mixture models estimated using maximum likelihood density
estimation separately for the three feature classes. Each feature
(e.g. peaks) x;=(mass;int;) corresponds to a non-isotropic
two-variate normal distribution p;(x;) ~ (N)(x), £) over the
mass and intensity of peak i. We assume zero covariance between
mass and intensity by setting ¥ = [0ass, 05 0,0in¢ ]-

The probability product kernel can be computed in closed
form as
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exp(—% (xl-TE"x,- +xT2 x; + X%E%IXT)>,
where X =y 431 X =>"'x,+ E’_lx/, and x; ex and x/
€y (cf. (Kondor and Jebara, 2003)).

We compute the feature class specific kernels ngaks, K&
and K% by iterating over peaks {x;}, neutral losses {[prec(y)—
mass; int;]”} or peak differences {x; —x; i<}, respectively.

The final kernel is K&y = ngaks + K oss + K&r. Polynomials
of the kernel measure the tuple products of features analogous to
the integral case. The kernel is a valid positive semi-definite func-
tion (Jebara et al., 2004).

3.3 Multiple collision energies

Databases such as MassBank contain a series of spectra mea-
sured using various collision energies (CE). Complementary
structural information can be attained from spectra of different
collision energies. A higher collision energy places more energy
into the fragmentation process, usually producing more small
secondary and tertiary fragments. Gradually ramping up the col-
lision energy might reveal the gradients of the peaks, which are
related to the energy landscape of the fragments. In practice,
spectra are measured with fixed collision energies, often from
10 to 50 eV. A simple strategy to facilitate learning from various
collision energies is to denote all spectra as independent data
points and use majority voting over all collision energies.

3.3.1  Sum kernels Spectra at different collision energies pro-
vide complementary information on the molecule. Thus, we can
model the process by having CE-specific variables. Let ¢, be the
feature space of measurements at CE-e. Then, the full feature
space is a concatenation of CE, specific spaces; ¢ = (¢.;. . .;0e,)
where ¢; is the ith collision energy. The kernel is computed as the
sum of CE-specific kernels, K=K, + - + K, . In this model, we
take all similarity information into account with equal weights.
The method supports natural data where molecules have partial
spectra series with some measurements missing.

3.3.2  Merged spectra It is common practice to merge the dif-
fering collision energy spectra together by summing the intensi-
ties into a single spectrum. This corresponds to summing the
feature values across spectra, i.e. the feature space is
¢=>_, ¢, This can be computed with kernel matrices by
K=73",, Ko, where K, (i) is kernel value of ¢.(i) and ¢ ().
This formulation corresponds to a sum kernel model with add-
itional similarities between features across different CE added.

4 METABOLITE IDENTIFICATION THROUGH
FINGERPRINTS
The predicted fingerprints can be directly used to characterize the

class and properties of the measured metabolite. However, our
primary interest is to support metabolite identification, which

calls for converting a set of predicted molecular fingerprints
into a score function that can be used to retrieve candidate mol-
ecules from large molecular databases such as PubChem (Wang
et al., 2009).

As different fingerprints can be predicted with varying accur-
acy from the mass spectra, the reliability of the fingerprints in
identification of the molecule varies correspondingly. We de-
velop a probabilistic model to tackle this uncertainty, in such a
manner that the more reliably predicted fingerprints receive more
weight when matching to a large set of candidate molecules.

Let p=()Z; € [0.5,1]" denote the vector of prediction
accuracies (reliability of fingerprint prediction) of the m finger-
prints y =(y;)iZ,, obtained, e.g. from a cross-validation experi-
ment. Taking the individual fingerprints as independent, we
obtain a probability for a fingerprint vector y to be the true
fingerprint vector given a predicted vector y from the
Poisson-binomial distribution

P(ylp, y/) — l_[pE[,\"i:}’/]] (1 _pi)ﬂ}’i#}’;]] . (1)
i=1

Now, given a fingerprint vector y’ predicted from a mass spec-
trum, and a set M of candidate molecules M with the true fin-
gerprint vectors y(M) pre-computed, we can use Equation (1) to
score the candidate molecules by

score(M) = P(y(M) | p,y).

A ranking is established by checking the number of molecules M’
in the dataset M that have as high score or higher than the given
molecule M:

rank(M) = |{M’ € M |score(M') > score(M)}|.

Thus, all molecules with the same score receive the same rank.

We, note that scoring and ranking a set of candidate molecules
is efficient. The time complexity of evaluating the probabilities of
database’s fingerprints given a prediction is O(Nm) operations,
where N is the size of the database and m the number of
fingerprints.

In our experiments, the success of metabolite identification
query is simply determined by rank (M*) of the true molecule
M* among the candidates.

In our experiments, we use in addition to MassBank, the Kegg
database (Kanehisa et al., 2006), which represents over 14 000
common organic molecules, and the PubChem database, which
is the largest open repository of known molecular universe with
over 30 million unique structures. Utilizing special purpose data-
bases such as Kegg act as prior knowledge that our target mol-
ecules are most likely metabolites.

5 EXPERIMENTS

We experiment with our method, called FingerID, in predicting
fingerprints and identifying metabolites with three datasets:
0qQ, Ltq and Lipids. The ‘QqQ’ dataset is of nominal mass
accuracy and contains positive-mode Quadrupole measurements
of 514 metabolites. The metabolites are also measured with five
different collision energies from 10 to 50 eV, however 11.5 % of
the measurements are missing. The ‘Ltq’ dataset is an ultra-high
accuracy positive-mode Orbitrap dataset of 293 miscellaneous
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metabolites. Finally, ‘Lipids’ is an ultra-high-accuracy
negative-mode Orbitrap dataset of 403 internally homogeneous
phophatidylethanolamines. All data are obtained from the
MassBank database (Horai et al., 2010). The average mass off-
sets and standard deviations are computed using MassBank an-
notations and are listed in Table 1.

We initially examined a set of 528 unique structural finger-
prints from OpenBabel (FP3, FP4 and MACCS). However,
many of the fingerprints appear in either all or none of the mol-
ecules in the dataset and are excluded from the set of potentially
useful fingerprints (Table 1). For each dataset, we retain only
non-uniform fingerprints.

5.1 Experimental settings

We used the 1ibSVM implementation with 5-fold cross-validation
over the fingerprints in each dataset. We choose the optimal C
parameter from {100,101,102,103,104}; however, in general it had
a small effect. Each fingerprint was predicted independently as a
binary classification task. The baseline classifier (default) always
blindly votes for the most common fingerprint assignment ac-
cording to the dataset.

Note that due to the cross-validation the method is assessed
with a test set that contains only spectra not seen in learning the
model. This is analogous to the Case (d), where the metabolites
are novel and not previously annotated.

We experimented with various values for the width parameter
O mass Of the gaussian kernel (figure not shown). The value of two
times the empirical standard deviation yielded consistently high
results. We set the oy, such that the similarity in density between
maximal (1.0) and minimal (0.0) intensity peak is half of the
mode, resulting in oy, = 0.849.

5.2 Fingerprint prediction performance

The aggregate mean results of the fingerprint prediction experi-
ments are summarized in Figure 2. The F; =2PR/(P + R), where R
is the recall and P is the precision, measures the balance of the
model in predicting both positive and negative and improvement
over the default classifier. The high-resolution kernel on all fea-
tures comes out as the best on average. However, ‘peaks’ and
‘neutral loss’ kernel is almost as good. Quadratic kernel helps

Table 1. The dataset statistics

Spectral Device Size Mode Peak  Peak Effective
dataset offset  error fingerprints
mean SD
QqQ misc 514 Pos 286
API3000 445 Pos 0.128 0.164
QuattroPremier XE 49 Pos —0.092 0.073
TSQ 7000 14 Pos  —0.124 0.036
TSQ Quantum AM 3 Pos
Q-TRAP 3 Pos
Ltq LTQ Orbitrap XL 293 Pos 0.0 0.049 128
Lipids  LTQ Orbitrap 403 Neg —0.135 0.090 20

Only a subset of fingerprints are exhibited in each dataset’s molecules.

prediction on average only in the case of integral kernel on
‘peaks’ or ‘peaks+neutral loss’ features (open markers).

The dataset-specific results are summarized in Tables 2 and 3
denoting the average prediction accuracy and F;, respectively,
over the kernel and dataset. In general, the high-resolution
mass kernels (lower part of the table) achieve better results
than the discrete kernels (upper part). The quadratic
high-resolution kernel over all three feature types achieves best
results in 5 cases out of 9.

The difference in three feature classes is consistent in all data-
sets. In the ‘Ltq’ dataset, the ‘peaks’ features give 86.7%, ‘neutral
losses’ 88.8% and ‘peak differences’ 83.9% accuracies.
Combining ‘peaks’ and ‘neutral losses’ improves the result to
91.1% while combining ‘peak differences’ does not improve the
results. In general, the ‘peak difference’ features are useful only in
the ‘QqQ’ dataset with a single CE dataset.

In the ‘QqQ’ dataset, metabolites are measured with five col-
lision energies. The 40 eV CE is alone the most informative data
source; however, utilizing all spectra of different collision ener-
gies increases the results notably. In the high-resolution kernel,
best results are achieved by merging the spectra (91.1%), while in
the discrete case summing the kernels directly gives best results
(90.7%).

Individual fingerprint prediction performance is depicted in
Figure 3. The figure shows the predictive accuracy for the 150
least accurately predicted fingerprints using the worst single CE
as the sorting criterion. The merged spectrum always surpasses
the predicting made by individual CE’s.

The ‘Lipids’ dataset achieves extremely high-prediction
accuracies of over 97% with almost all kernels. This is in contrast
to the ‘QqQ’ dataset, where utilizing any individual CE measure-
ment gives only small improvements over the baseline predictor.
This is partly explained by the integral measurement accuracy of
the ‘QqQ’ dataset, while the other two datasets come from
ultra-high-resolution analyzers.

A peaks
S Vv nloss
o diff *®
< peaks+nloss
o peaks+diff &3
* full v
5 )
[$]
3
c |
3
€&
|
® |
@ —— Integral mass kernel
—— High resolution mass kernel
40 45 50 55 60 65
mean F1

Fig. 2. Scatter plot of the aggregate average accuracy/F, across the three
datasets with different kernel features. The open markers represent higher
accuracy/F; ratio in a quadratic kernel
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Table 2. The classification accuracies (%). The kernel with best accuracy is highlighted with bold in each dataset column

Kernel QqQ Ltq Lipids
Single spectra (CE eV) Multiple spectra
10 20 30 40 50 > K. merge
K, linear 87.8 88.2 88.8 89.3 89.5 89.5 89.2 85.5 98.4
quadr. 87.9 88.3 88.8 89.4 89.6 89.9 89.8 84.4 98.1
K 88.4 88.8 88.8 88.7 89.2 89.4 89.0 86.3 98.8
88.4 88.9 88.8 88.9 89.2 89.6 89.3 86.1 98.7
Ky 87.8 88.0 87.7 87.8 88.2 88.0 87.9 82.6 97.1
87.8 88.0 87.8 87.9 88.3 87.9 87.9 82.9 96.9
Ky i 88.5 89.5 89.9 90.1 90.3 90.7 90.3 88.3 99.5
88.4 89.4 90.0 90.0 90.3 90.5 90.6 88.1 99.3
Kyiar 88.2 88.6 89.0 89.4 89.6 89.4 89.2 85.6 98.7
88.1 88.7 89.2 89.6 89.8 89.3 89.7 84.8 98.4
Kyt ar 88.5 89.5 90.1 90.1 90.3 90.5 90.3 88.3 99.5
88.6 89.8 90.3 90.3 90.5 90.3 90.7 87.6 99.3
Ky 88.0 88.6 89.1 89.1 89.4 89.3 89.4 86.7 98.6
88.2 89.1 89.5 89.7 89.9 89.3 90.0 85.5 97.3
K 88.8 89.5 89.3 89.2 89.2 89.8 89.6 88.8 99.1
89.0 89.8 89.7 89.5 89.6 90.0 90.0 88.1 98.0
K 88.5 88.9 88.6 88.4 88.4 89.2 89.3 83.7 97.8
88.6 89.0 88.9 88.6 88.6 89.2 89.5 83.9 97.1
Ky i 89.0 89.9 90.1 90.1 90.2 90.5 90.5 91.1 99.3
89.2 90.1 90.3 90.3 90.4 90.1 90.8 89.6 97.9
Ky ar 88.8 89.4 89.5 89.5 89.5 90.0 90.0 86.5 98.8
88.9 89.5 89.7 89.8 89.8 89.8 90.4 84.9 97.5
KD s it ar 89.1 90.0 90.3 90.2 90.2 90.6 90.7 90.5 99.3
89.2 90.1 90.4 90.5 90.4 90.2 91.1 88.6 98.0
default 87.3 87.2 87.2 87.2 87.7 87.3 78.7 88.3

Abbreviations: p is peaks, n/ is neutral loss and df'is difference kernel.

5.3 Direct spectral matching

We characterize the reference database retrieval performance in
our three datasets (Table 4). In the reference retrieval, we assume
the correct molecule is contained in the reference database (Cases
a—).

On average (the upper portion of the Table 4), the ‘QqQ’ and
‘Lipids’ datasets achieve almost 100% retrieval rates. We define
the retrieval rate as the proportion of metabolites that are iden-
tified correctly within the first 10 candidates. This is due to the
existence of multiple measurements of the same metabolite in
MassBank: in ‘QqQ’ almost all metabolites have measurements
at five collision energies (Case b), and in ‘Lipids’ almost all me-
tabolites have a duplicate measurement (case a). By limiting our-
selves to spectra measured at the same device but different CE,
the retrieval rate becomes 94% in ‘QqQ’.

In ‘Ltq’ utilizing the duplicate measurements does not increase
the retrieval rates. However, when spectral matches are restricted
to measurements made with different devices, the retrieval drops
from 63.2 to 28.2%. This is an expected drop, as the mass spec-
trometer defines the fragmentation process and thus has a major
impact on the spectral signals.

5.4 Metabolite identification through fingerprints

Herein, we examine the performance of our method in de novo
identification (Case d), where the test set contains only spectra of

molecules not seen in the training set. This is expected to be a
challenging task as the machine learning method needs to gen-
eralize from the spectral signals. Notably, the direct spectral
matching method cannot work in this case.

Table 5 and Figure 4 indicate the de novo metabolite identifi-
cation performance utilizing the predicted fingerprints in the
three datasets. We first search for candidate metabolites match-
ing the measured neutral mass using a mass range of +0.5 (‘Avg.
hits w/+0.5 mass’ in Table 5) from either Kegg or PubChem,
followed by fingerprint prediction and metabolite identification.

When querying molecular identification from Kegg, the aver-
age ranks of the correct metabolites are 5.0 and 3.2 for ‘QqQ’
and ‘Ltq’, respectively. The retriaval rates are 85 and 91.8%,
respectively. None of the molecules in the ‘Lipids’ dataset was
found from Kegg. Against PubChem several tens of thousands
of candidates match the mass range on average. The top 10 rank
retrieval rates for PubChem are 29.3, 50.8 and 54.4%, for the
three datasets, even though the average ranks are relatively high.

The Ps, value is the normalized median rank, i.e. it indicates
the maximum rank, normalized by the database size, which 50%
of the query molecules attain. For instance, in ‘Ltq’ dataset
against PubChem, the Psy is 3.2 x 107, which indicates that
the better half of the predictions are able to exclude 99.96% of
the neutral mass matching molecules in PubChem.

Figure 4 indicates the cumulative portions of the datasets at a
given maximum rank. The Psq values correspond to the x-axis
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Table 3. The F; (%). The kernel with best F; is highlighted with bold in each dataset column

Kernel QqQ Ltq Lipids
Single spectra (CE eV) Multiple spectra
10 20 30 40 50 > Ke merge
K, linear 12.4 15.0 20.2 229 21.4 23.1 22.0 56.9 89.1
quadr. 13.2 16.4 21.1 23.2 222 232 25.4 52.6 89.5
K 16.4 19.5 18.5 17.3 16.6 214 19.7 60.1 90.9
17.9 20.1 19.7 18.1 17.2 21.8 20.8 58.6 90.4
Ky 14.5 15.5 14.2 12.9 12.6 15.1 15.3 47.4 82.9
13.2 15.7 15.4 13.2 13.2 13.7 15.8 47.1 81.6
Ky 15.9 20.3 239 22.0 22.7 27.0 25.0 64.6 92.7
16.4 20.4 23.0 21.0 22.0 21.7 25.5 63.9 92.7
Ky ar 15.0 17.0 21.5 21.6 20.4 22.9 222 54.2 90.1
15.0 19.0 222 23.9 24.0 20.0 25.9 51.0 87.9
Kyinivar 16.7 20.7 25.8 229 23.1 27.0 26.4 64.8 92.7
17.3 222 24.8 23.1 23.3 21.1 26.2 60.7 92.1
Ky 13.8 18.0 214 19.8 19.9 21.3 224 58.0 87.6
15.6 18.8 21.0 22.7 222 18.4 25.1 54.9 82.6
K 18.3 21.4 224 18.8 17.1 23.9 22.8 65.9 91.9
18.4 20.7 22.5 19.0 18.1 21.6 24.1 61.0 86.1
K 159 19.9 20.7 15.6 14.6 20.8 22.8 49.0 85.1
15.8 20.0 20.7 17.7 15.7 19.4 22.8 48.3 83.7
K 18.9 239 25.8 24.1 222 26.8 274 71.7 91.9
19.6 21.0 223 21.7 20.9 19.9 25.6 65.1 85.3
Ky 17.4 21.6 23.6 21.8 20.8 24.0 25.7 56.8 89.3
17.2 21.8 233 23.9 22.5 19.6 27.2 51.8 83.3
KD it ar 19.1 23.8 26.7 25.0 22.8 27.0 29.1 70.6 91.8
19.5 22.8 24.8 24.1 22.6 20.7 28.5 62.5 85.2

Abbreviations: p is peaks, n/ is neutral loss and df is difference kernel.
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Fig. 3. The fingerprint specific accuracies of the ‘QqQ’ dataset with the
high resolution quadratic full kernel. The bars indicate the accuracy of
the fingerprints when using least informative and most informative colli-
sion energy spectra, and the merged spectra. Only the 150 least accurate
fingerprints are shown. The default classifier is indicated by the bottom of
the bars

values at y-axis value of 0.5. Due to the large size of PubChem,
the ranks are in general several orders of magnitude larger.
However, most of the molecules are still within the absolute
rank of 1000.

We experimented with thresholding the set of fingerprints used
based on the bias and accuracy of the fingerprints. By leaving out
some portion of the least accurately predicted and most biased
fingerprints the actual molecule ranks decreased (data not
shown).

In the next experiment, we test the performance of the
FingerID method against the approach of retrieving the closest
matching spectrum from MassBank, under the assumption that
the spectrum of the metabolite is MassBank but measured with a
different collision energy, representing Case (b).

We trained our fingerprint prediction model in a stratified
cross-validation setting where spectra of specific collision
energy (10-50 eV) were chosen to the test fold and the other
collision energies were used in training the model (Table 6). As
the baseline, direct spectral matching from Massbank finds a
match with correct metabolite in 94% of the cases. The perform-
ance of the FingerID method depends on both the molecular
database used for retrieval (Kegg or PubChem) and the CE
used for training and testing. The performance of FingerID
coupled with Kegg is better than direct spectral matching when
retrieving the ‘middle’ collision energy spectra (2040 eV) but is
weaker in predicting the two extremes, especially 10 eV spectra.
When identifying against PubChem, the retriaval rate differences
become larger from a minimum of 13.1% at 10 eV to a max-
imum of 70% at 30 eV.

5.5 Comparison to MetFrag

MetFrag is a state-of-the-art metabolite identification method,
which assigns a score to candidate metabolite based on the simi-
larity of a simulated spectrum to the observed one (Wolf et al.,
2010). The simulated spectrum is produced by combinatorially
removing bonds from the parent ion and recording the resulting
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Table 4. Statistics of the three metabolite identification cases with the
three datasets

MassBank query (%)

Case QqQ Ltq Lipids
(a)—(c) Match found 100% 92.8% 97.0%
Avg. rank 2.0+0.1 220£623 1.9+0.9
rank < 10 100 63.2 99.5
(a) rank < 10 61.7 63.9 99.5
(b) rank < 10 94.0 - -
(c) rank < 10 94.0 28.2 —
(d) rank < 10 0 0 0

The upper part of the table shows performance of reference queries in general, while
the lower part indicates the performance when utilizing spectra only from the four
different cases (Section 2). By definition, the (d) case gives no identifications.

Table 5. Statistics of the de novo metabolite identification (Case d) with
FingerID, retrieving candidate metabolites from Kegg and PubChem,
respectively

Spectral dataset

Molecular database QqQ Ltq Lipids
Kegg Avg. hits 249 26.6
w/£0.5 mass
Avg. rank 50+73 32+48 N/A
rank < 10 85.0% 91.8%
Py, 8.0x 1072 3.8x 1072
PubChem Avg. hits 28 648 27 862 12 928
w/£0.5 mass
Avg. rank 5196 £13,168 1981 +£8,652 11+£9
rank < 10 29.3% 50.8% 54.4%
Py, 58x107° 32x107%  77x107*

fragments as possible explanations for the observed peaks. This
parallels the idea that a good candidate should be able to pro-
duce all peaks by mostly bond cleavages.

We randomly selected a subset of 20 spectra from both QqQ
and Lipids datasets, respectively. The QqQ represents nominal
mass spectra with an absolute mass error set to 0.5, while Lipids
is a high-resolution dataset with absolute mass error of 0.05. The
appropriate mass errors were used in MetFrag. We queried both
datasets against both Kegg and PubChem in MetFrag.
Analysing the total of 40 spectra took approximately 1 day of
manual work, as MetFrag does not support batch processing.

We measure the rank of the correct metabolite with
both MetFrag and our method. The results are highlighted in
Table 7. FingerID obtains favourable results to MetFrag in most
cases, with significantly more retrieval results with top 10 rank,
and higher overall recall rate. MetFrag found the correct metab-
olite for approximately half of the spectra from Kegg and for
only a couple of spectra from PubChem. This is due to the de-
fault limit of 100 candidate structures, which allows for an ana-
lysis of spectral datasets in appropriate time frames.

0 ° :
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T ° ”,—"
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9o o
g7 j : QqQ K
I —— QqQ Kegg
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& a1 [ o Rl —— Ltq Kegg
. v ---- QqQ PubChem
7 [ ---- Ltq PubChem
~ o ---- Lipids PubChem
s 7 | I
1 10 10° 10° 10" 10°

Rank

Fig. 4. The cumulative (log) rank distribution of the three datasets
against Kegg and PubChem. The vertical axis indicates the ratio of mol-
ecules with a maximum rank indicated in the horizontal axis

Table 6. Comparison of metabolite identification against MassBank
querying when the measured metabolite is present in a reference database,
measured with different collision energy (Case b)

FingerID MassBank

query

10eV  20eV 30eV 40eV 50eV

rank <10 Kegg 76.0% 93.6% 97.6% 95.6% 91.8% 94.0%
PubChem 13.1% 48.2% 70.0% 67.9% 38.8% 94.0%

Table 7. Comparison of metabolite identification against MetFrag on a
subset of 20 spectra from both ‘QqQ’ and ‘Ltq’, respectively

Molecular Spectral
database  dataset

FingerID MetFrag

match Avg. rank <10 match Avg. rank <10

rank rank
Kegg QqQ 17 32 16/17 16 5.1 9/11
Ltq 20 38 18/20 12 56 11/12
PubChem QqQ 11 905 8/16 2 68 0/2
Ltq 20 58 9/20 1 20 0/1

6 DISCUSSION

We presented a novel approach for de novo metabolite identifi-
cation through intermediate fingerprint prediction based on
tandem mass spectra. Our results indicate that it is possible to
learn the statistical dependencies between tandem mass spectral
signals and molecular properties, which can be used to score and
rank metabolites, with good identification performance.
Moreover, a sufficiently large set of fingerprint predictions can
give useful clues to the actual metabolite identity to the human
expert, even if exact automatic identification remains elusive.
The machine learning approach widens the utility of mass
spectral databases such as MassBank. Due to the nature of the
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method, any type of tandem mass spectral data is applicable.
This also allows us to handle, for example, the rearrangement
reactions, which result in exceptional and difficult-to-predict
fragment products (Heinonen ez al., 2008). Utilizing multiple
measurements increases the prediction accuracies through
kernel-based data fusion. Our method can be easily comple-
mented by inferring additional information about the metabol-
ites, such as sum formulas from isotopic patterns (Bocker et al.,
2009) or by performing fragmentation analysis (Wolf ez al., 2010)
in addition to fingerprint prediction.

Further research is obviously necessary to bring the machine
learning-based approach towards a practical tool for metabolo-
mics. In de novo metabolite identification, the identification per-
formance depends, on one hand, on the uniqueness of the
fingerprints to particular sets of metabolites, and on the other
hand, the ability to predict these fingerprints from tandem mass
spectra. It is an interesting future research direction to develop
computational methods to identify sets of fingerprints that strike
a good balance between these two qualities. An interesting ma-
chine learning approach for representing the molecular proper-
ties would be to use structured prediction (Bakir, 2007) to model
the statistical dependencies between the fingerprints and the
input spectrum.
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