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ABSTRACT

Motivation: Metabolite identification from tandem mass spectra is an

important problem in metabolomics, underpinning subsequent meta-

bolic modelling and network analysis. Yet, currently this task requires

matching the observed spectrum against a database of reference

spectra originating from similar equipment and closely matching oper-

ating parameters, a condition that is rarely satisfied in public reposi-

tories. Furthermore, the computational support for identification of

molecules not present in reference databases is lacking. Recent

efforts in assembling large public mass spectral databases such as

MassBank have opened the door for the development of a new genre

of metabolite identification methods.

Results: We introduce a novel framework for prediction of molecular

characteristics and identification of metabolites from tandem mass

spectra using machine learning with the support vector machine.

Our approach is to first predict a large set of molecular properties of

the unknown metabolite from salient tandem mass spectral signals,

and in the second step to use the predicted properties for matching

against large molecule databases, such as PubChem. We demon-

strate that several molecular properties can be predicted to high ac-

curacy and that they are useful in de novo metabolite identification,

where the reference database does not contain any spectra of the

same molecule.

Availability: An Matlab/Python package of the FingerID tool is freely

available on the web at http://www.sourceforge.net/p/fingerid.
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1 INTRODUCTION

In metabolomics, mass spectrometry (MS) provides the key

measurement technology for quantifying and qualifying chemical

signals to provide biological knowledge of cellular processes

(Kell, 2004). An MS measurement of a biological sample results

in a set of peaks representing the mass-to-charge ratios and

intensities of the different compounds of the sample. Identifica-

tion of these molecules through mass spectra is a prerequisite for

further biological interpretation and is the most time-consuming

and laborious step in metabolomics experiments (Werner et al.,

2008). The identification process is still mostly not automatized,

thus requiring extensive manual analysis and expert knowledge

(Neumann and Böcker, 2010).
Some structural information on a given compound can be

obtained by tandem mass spectrometry (MS/MS) through ion-

ization or collision-induced dissociation fragmentation experi-

ments. Tandem mass spectrum contains peaks representing

various fragmentation products of the unknown compound,

including the difficulty to predict rearrangement reaction prod-

ucts. A compound fragments in specific patterns according to its

structure, the collision energy and the experimental configuration

(McLafferty, 1983). Elucidation of tandem spectra is at the core

of molecular identification (Neumann and Böcker, 2010;

Heinonen et al., 2008). The standard method of performing com-

pound identification is to measure the tandem mass spectrum of

the unknown compound and to query the spectrum against

annotated reference libraries of standardized spectra (NIST,

MassBank, Wiley Registry) (Werner et al., 2008), followed by

extensive domain expert analysis. In practice, the reference data-

base requires a closely matching type of equipment and oper-

ational parameters for reliable matching (Horai et al., 2010).
Machine learning approaches for metabolite identification

from MS/MS data have not been widely studied. Early related

work includes STIRS (Dayringer et al., 1976) that uses a nearest

neighbor approach to model the statistical relationships between

spectral features and molecular substructures, the neural network

work of Curry and Rumelhart (1990), and the decision tree

approach by Breiman et al. (1984). However, the impact of

these methods has remained dormant perhaps due to predating

the era of systems biology and limited available data. In contrast,

current state-of-the-art methods are based on combinatorial

algorithms and database searches. The MetFrag software

identifies metabolites by matching candidate metabolites with

closest combinatorially simulated spectrum to the observed one

(Wolf et al., 2010). Analysis of isotopic patterns can give add-

itional clues on the metabolite’s elemental composition (Böcker

et al., 2009).
We introduce a novel two-step pattern-recognition approach

(see Fig. 1) to the metabolite identification problem. Instead of

directly learning a mapping between the spectrum and the me-

tabolite, we first predict a set of characterizing fingerprints of the

metabolite from its tandem mass spectrum using a kernel-based

approach. We learn our fingerprint prediction model from a

large set of tandem mass spectra obtained from public mass

spectral database MassBank (Horai et al., 2010). In the next*To whom correspondence should be addressed.
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step, we match the predicted fingerprints against a large molecu-

lar database to obtain a list of candidate metabolites. The me-

tabolite identification model generalizes to metabolites not

present in reference spectral databases. Due to the machine

learning approach, data from any type of mass spectrometer

are supported.
In Section 2, we review the basics of mass spectrometry and

the current state-of-the-art of metabolite identification through

reference databases. We introduce three classes of mass spectral

features and a probability product kernel over the spectral fea-

tures in Section 3. We also discuss the use of multiple measure-

ments from the same metabolite. We propose a statistical

approach to retrieve candidate metabolites using the predicted

properties in Section 4. In Section 5, we experiment with the

proposed FingerID method in fingerprint prediction and metab-

olite identification. We conclude this article with discussion in

Section 6.

2 METABOLITE IDENTIFICATION THROUGH
TANDEM MASS SPECTROMETRY

A tandem mass spectrum is generated by selecting an unknown

ion band and its mass-to-charge ratio to undergo fragmentation

(see Fig. 1). Under mild fragmentation conditions, the peak cor-

responding to the molecule ion is still visible in the tandem spec-

trum at the same mass-to-charge. During fragmentation, an ion

is often cleaved into two fragments, one of which retains the

charge (Small molecules appear often as singly charged ions.

We assume single-charged ions throughout the paper for clarity.)

and is visible in the tandem mass spectrum. The complementary

fragment is a neutral loss invisible in the spectrum.
The first step in compound identification is to constraint the

mass and elemental composition of the compound through peak

masses. Computational methods utilize the compound’s peak

and its isotope peak masses to compute set of possible elemental

compositions (Böcker et al., 2009). However, mass measurement

accuracy defines the set of compatible compositions through the

scope of error in the mass measurements. High- or

ultra-high-resolution analyzers, such as Time-of-flight and four-

ier transform analyzers, can achieve low mass errors in the range

of 1–5 ppm (Werner et al., 2008).

We distinguish four increasingly challenging cases for annotat-

ing an unknown spectrum measured at specific device through

querying mass spectral databases:

(1) The database contains a spectrum of the molecule, mea-

sured with the same device and experimental parameters

(2) The database contains a spectrum of the molecule, mea-

sured on the same device but with different experimental

parameters (e.g. collision energy)

(3) The database contains a spectrum of the molecule, mea-

sured on a different device

(4) The database does not contain the spectrum. Annotation

requires de novo metabolite identification

In the first Case (a), we expect a simple retrieval of the most

similar spectrum from the reference database to give reliable

identifications, with no need for more complicated prediction

schemes. Cases (b) and (c) are expected to be less suited to

simple retrieval and leave room for improvement through ma-

chine learning approaches. Finally, Case (d) is not possible to

tackle with retrieval from a reference database and can be seen as

the prime motivation for machine learning method development.
The standard query methods rely on a distance function to

compute the best hits of the unknown spectra against a library.

The most common approach is to count the number or propor-

tion of shared peaks. Several methods include peak intensities

with experimentally defined weights (Horai et al., 2010; Wolf

et al., 2010; Dworzanski et al., 2004) or probabilistic measures

(Pavlic et al., 2006; Oberacher et al., 2009).

In our experiments we use retrieval from the MassBank data-

base as the reference database method, giving match scores for

query spectra. (MassBank also has an advanced metabolite iden-

tification service, which however is not available in batch mode.)

The score is the Pearson correlation between weighted peak vec-

tors between query w(q) and target w(t) spectra with elements

wi ¼ int�i �mass�i ;

where �¼ 0.5 and �¼ 2 (Horai et al., 2010; Stein, 1994).

Alignment of the peaks is ensured by allowing some mismatch,

default value at 0.3.

3 KERNELS FOR MASS SPECTRA

In this section, we build three classes of features extracted from

mass spectra that are relevant to the fingerprint prediction task.

The features are used in two families of mass spectral kernels for

SVM classification: an integral mass accuracy kernel and a high

mass accuracy kernel, where the peaks generate a gaussian mix-

ture model densities. Furthermore, we introduce methods to util-

ize multiple collision energy spectra through kernel fusion.

Fig. 1. The overview of the two-step metabolite identification

framework. An example molecule Tryptophan (mass 204.2 Da) produces

a characterizing MS/MS spectra, which is used to predict the original

molecule through fingerprints. The predicted fingerprints, along with neu-

tral mass measurement, are used to filter a molecular repository for

candidates
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We consider mass spectra of molecule as a collection

� ¼ fx1; . . . ;xkg 2 X of k two-dimensional peak tuples xi 2 R
2

(see Fig. 1). (The number of peaks k varies from spectrum to

spectrum in the dataset.) A peak x¼ (mass,int)T represents the

mass-to-charge value and the intensity of the peak measurement.

We normalize all intensities to range [0,1]. Often we have a series

of spectra of a molecule measured with increasing collision ener-

gies as (�10eV, . . .,�50eV ).
A mass spectral kernel K : X � X ! R is a positive

semi-definite similarity function between sets. The kernel K in-

duces a mapping � : X ! H of input to a Hilbert space, such

that K(�,�0)¼h�(�),�(�0)i where �; �0 2 X . The power of kernels
comes from the fact that a simple similarity value can implicitly

construct a rich feature representation of non-vectorial objects.
We learn a function f : X ! f�1; 1gm mapping the tandem

mass spectrum � of an unknown metabolite into the m-

dimensional fingerprint target vector y¼ (yi)i¼ 1
m
2f-1,1}m using a

dataset of n spectra f�1,. . .,�n}.Weopt to use n binary SVM’s each

learning the subtask fi : X ! f�1; 1g. The learning function is

fið�Þ ¼ signðwT
i �ð�ÞÞ ¼ signð

P
j

�jKð�j; �ÞÞ, where wi 2 H.
The main types of fingerprints are topological,

physico-chemical and electrical properties of the molecule

(Steffen et al., 2009). In Section 4, we utilize the fingerprints y

to filter candidates from molecular databases.

3.1 Integral mass kernel

The integral kernel consists of a feature mapping � : X ! R
d.

The feature representation gathers the peak intensities at discrete

intervals, i.e. �peaks (�)¼ (�peaks (�)i)i¼1
d with

�peaksð�Þi ¼
X

ðmass;intÞ2�

�i�0:5ðmassÞ � int;

where �i�0.5(mass) is an indicator function giving 1 if

i� 0.55mass5iþ 0.5, and 0 otherwise. The ‘peaks’ features

gather all intensity of peaks that are rounded to its nearest inte-

gral mass. The dimensionality d of the feature space is equivalent

to the largest feature index with non-zero value, i.e. the mass of

the largest peak in the dataset.
The peak ions are complemented by undetected neutral

loss peaks which indicate the masses of cleaved fragments from

the precursor (mother) ion. The ‘neutral loss’ features �nloss
(�)¼ (�nloss (�)i)i¼1

d are

�nlossð�Þi ¼
X

ðmass;intÞ2�

�i�0:5ðprecð�Þ �massÞ � int;

where we add the intensities of all peaks whose mass difference

to the precursor prec(�) rounds to i. The neutral losses are

invariant of the mother ion mass and allow cleavage detection

of e.g. phosphate group PO4
� which has a standard atomic

weight of 94.97.
In tandem mass spectrometry, the fragment ions themselves

can undergo further fragmentation. We can generalize the notion

of neutral losses to include secondary fragmentation reactions

between non-mother ion peaks by multiplying the intensities of

any two pairs of peaks with a fixed integral mass difference. The

peak ‘difference’ feature representation �diff (�)¼ (�diff (�)i)i¼1
d

consists of

�diffð�Þi ¼
X

ðmass; intÞ 2 �
ðmass0; int0Þ 2 �

�i�0:5ðjmass�mass0jÞ � int � int0:

The kernels utilizing these three classes of features are

Kpeaksð�; �
0Þ ¼ h�peaksð�Þ; �peaksð�

0Þi

Knlossð�; �
0Þ ¼ h�nlossð�Þ; �nlossð�

0Þi

Kdiffð�; �
0Þ ¼ h�diffð�Þ; �diffð�

0Þi:

The full integral kernel Kfull¼KpeaksþKnlossþKdiff corres-

ponds to a concatenation of the feature sets �full¼ (�peaks;
�nloss; �diff).
Polynomial combinations of the features are easily com-

puted by applying a polynomial kernel. We experiment with

linear and quadratic kernels in Section 5. The integral kernel is

directly positive semi-definite (Shawe-Taylor and Christianini,

2004).

3.2 High-resolution mass kernel

The explicit feature representation of the discrete kernel allows

direct inspection of the feature weights. However, it rounds all

peaks to a nearest integer value. The unique peaks with same

rounded mass are erroneously binned together. We can expand

the feature space by narrowing the bin widths; however, this

introduces an alignment problem in the dot product.
Instead, we generalize the feature mapping with a kernel be-

tween distributions by applying the probability product kernel of

Kondor and Jebara (Kondor and Jebara, 2003). We fit probabil-

istic models p(�) and p0(�0) over spectra � and �0 and define the

kernel between spectra as a kernel between the corresponding

probability distributions, K(�,�0) � K(p,p0). We use a probability

product kernel

Kðp; p0Þ ¼

Z
R

2
pðxÞp0ðxÞdx;

which has an interpretation as an expectation of one distribution

under the otherZ
R

2
pðxÞp0ðxÞdx ¼ Ep½p

0ðxÞ� ¼ Ep0 ½pðxÞ�;

called the expected likelihood kernel as in Jebara et al. (2004).
For countable and finite quantities, the probability prod-

uct corresponds to a dot product hp,p0i in ‘2 with a feature

representation �:�! p(�) that collects the probabilities

into a vector. Note that in general K(�,�)6¼1 as the probability

product is not a proper distribution. We normalize all kernels

to [0, 1].

We opt to model the probabilities pð�Þ ¼ 1
k

Pk
i¼1 piðxÞ as gaus-

sian mixture models estimated using maximum likelihood density

estimation separately for the three feature classes. Each feature

(e.g. peaks) xi¼ (massi,inti) corresponds to a non-isotropic

two-variate normal distribution piðxiÞ � ðN Þðxi;�Þ over the

mass and intensity of peak i. We assume zero covariance between

mass and intensity by setting �¼ [�mass, 0; 0,�int ].
The probability product kernel can be computed in closed

form as
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Kð�; �0Þ ¼ Kðp; p0Þ

¼

Z
R

2
pðxÞp0ðxÞdx

¼
1

k

1

k0

Xk;k0
i;j

1

2�j�j
1
2j�0j

1
2j�yj

1
2

�

exp �
1

2
xTi ��1xi þ xj0

T�0�1xj0 þ xT
y

��1
y
xy

� �� �
;

where �y ¼��1 þ�0�1, xy ¼��1xiþ�0�1xj
0, and xi 2� and xj

0

2�0 (cf. (Kondor and Jebara, 2003)).
We compute the feature class specific kernels Kpeaks

� , Knloss
�

and Kdiff
� by iterating over peaks fxi}, neutral losses f[prec(�)�

massi; inti]
T} or peak differences fxi� xj: i5j}, respectively.

The final kernel is Kfull
�
¼Kpeaks

�
þKnloss

�
þKdiff

� . Polynomials
of the kernel measure the tuple products of features analogous to

the integral case. The kernel is a valid positive semi-definite func-
tion (Jebara et al., 2004).

3.3 Multiple collision energies

Databases such as MassBank contain a series of spectra mea-
sured using various collision energies (CE). Complementary

structural information can be attained from spectra of different
collision energies. A higher collision energy places more energy

into the fragmentation process, usually producing more small
secondary and tertiary fragments. Gradually ramping up the col-

lision energy might reveal the gradients of the peaks, which are
related to the energy landscape of the fragments. In practice,

spectra are measured with fixed collision energies, often from
10 to 50 eV. A simple strategy to facilitate learning from various

collision energies is to denote all spectra as independent data
points and use majority voting over all collision energies.

3.3.1 Sum kernels Spectra at different collision energies pro-
vide complementary information on the molecule. Thus, we can

model the process by having CE-specific variables. Let �e be the
feature space of measurements at CE-e. Then, the full feature

space is a concatenation of CE, specific spaces; �¼ (�e1;. . .;�en),
where ei is the ith collision energy. The kernel is computed as the

sum of CE-specific kernels, K¼Ke1
þ ��� þKen

. In this model, we
take all similarity information into account with equal weights.

The method supports natural data where molecules have partial
spectra series with some measurements missing.

3.3.2 Merged spectra It is common practice to merge the dif-
fering collision energy spectra together by summing the intensi-

ties into a single spectrum. This corresponds to summing the
feature values across spectra, i.e. the feature space is

� ¼
P

ei
�ei . This can be computed with kernel matrices by

K ¼
P

e;e0 Ke;e0 , where Ke,e0(i,j) is kernel value of �e(i) and �e0(j).
This formulation corresponds to a sum kernel model with add-
itional similarities between features across different CE added.

4 METABOLITE IDENTIFICATION THROUGH
FINGERPRINTS

The predicted fingerprints can be directly used to characterize the
class and properties of the measured metabolite. However, our

primary interest is to support metabolite identification, which

calls for converting a set of predicted molecular fingerprints

into a score function that can be used to retrieve candidate mol-

ecules from large molecular databases such as PubChem (Wang

et al., 2009).

As different fingerprints can be predicted with varying accur-

acy from the mass spectra, the reliability of the fingerprints in

identification of the molecule varies correspondingly. We de-

velop a probabilistic model to tackle this uncertainty, in such a

manner that the more reliably predicted fingerprints receive more

weight when matching to a large set of candidate molecules.
Let p¼ (pi)i¼1

m
2 [0.5,1]m denote the vector of prediction

accuracies (reliability of fingerprint prediction) of the m finger-

prints y¼ (yi)i¼1
m , obtained, e.g. from a cross-validation experi-

ment. Taking the individual fingerprints as independent, we

obtain a probability for a fingerprint vector y to be the true

fingerprint vector given a predicted vector y0 from the

Poisson-binomial distribution

Pðyjp; y0Þ ¼
Ym
i¼1

p
½½ yi¼y

0
i��

i ð1� piÞ
½½ yi 6¼y

0
i�� : ð1Þ

Now, given a fingerprint vector y0 predicted from a mass spec-

trum, and a setM of candidate molecules M with the true fin-

gerprint vectors y(M) pre-computed, we can use Equation (1) to

score the candidate molecules by

scoreðMÞ ¼ PðyðMÞ j p; y0Þ:

A ranking is established by checking the number of moleculesM0

in the datasetM that have as high score or higher than the given

molecule M:

rankðMÞ ¼ jfM0 2 M j scoreðM0Þ 	 scoreðMÞgj:

Thus, all molecules with the same score receive the same rank.
We, note that scoring and ranking a set of candidate molecules

is efficient. The time complexity of evaluating the probabilities of

database’s fingerprints given a prediction is OðNmÞ operations,

where N is the size of the database and m the number of

fingerprints.
In our experiments, the success of metabolite identification

query is simply determined by rank (M*) of the true molecule

M* among the candidates.
In our experiments, we use in addition to MassBank, the Kegg

database (Kanehisa et al., 2006), which represents over 14 000

common organic molecules, and the PubChem database, which

is the largest open repository of known molecular universe with

over 30 million unique structures. Utilizing special purpose data-

bases such as Kegg act as prior knowledge that our target mol-

ecules are most likely metabolites.

5 EXPERIMENTS

We experiment with our method, called FingerID, in predicting

fingerprints and identifying metabolites with three datasets:

QqQ, Ltq and Lipids. The ‘QqQ’ dataset is of nominal mass

accuracy and contains positive-mode Quadrupole measurements

of 514 metabolites. The metabolites are also measured with five

different collision energies from 10 to 50 eV, however 11.5 % of

the measurements are missing. The ‘Ltq’ dataset is an ultra-high

accuracy positive-mode Orbitrap dataset of 293 miscellaneous
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metabolites. Finally, ‘Lipids’ is an ultra-high-accuracy

negative-mode Orbitrap dataset of 403 internally homogeneous

phophatidylethanolamines. All data are obtained from the

MassBank database (Horai et al., 2010). The average mass off-

sets and standard deviations are computed using MassBank an-

notations and are listed in Table 1.

We initially examined a set of 528 unique structural finger-

prints from OpenBabel (FP3, FP4 and MACCS). However,

many of the fingerprints appear in either all or none of the mol-

ecules in the dataset and are excluded from the set of potentially

useful fingerprints (Table 1). For each dataset, we retain only

non-uniform fingerprints.

5.1 Experimental settings

We used the libSVM implementation with 5-fold cross-validation

over the fingerprints in each dataset. We choose the optimal C

parameter from f100,101,102,103,104}; however, in general it had

a small effect. Each fingerprint was predicted independently as a

binary classification task. The baseline classifier (default) always

blindly votes for the most common fingerprint assignment ac-

cording to the dataset.
Note that due to the cross-validation the method is assessed

with a test set that contains only spectra not seen in learning the

model. This is analogous to the Case (d), where the metabolites

are novel and not previously annotated.
We experimented with various values for the width parameter

�mass of the gaussian kernel (figure not shown). The value of two

times the empirical standard deviation yielded consistently high

results. We set the �int such that the similarity in density between

maximal (1.0) and minimal (0.0) intensity peak is half of the

mode, resulting in �int¼ 0.849.

5.2 Fingerprint prediction performance

The aggregate mean results of the fingerprint prediction experi-

ments are summarized inFigure 2.TheF1¼ 2PR/(PþR),whereR

is the recall and P is the precision, measures the balance of the

model in predicting both positive and negative and improvement

over the default classifier. The high-resolution kernel on all fea-

tures comes out as the best on average. However, ‘peaks’ and

‘neutral loss’ kernel is almost as good. Quadratic kernel helps

prediction on average only in the case of integral kernel on

‘peaks’ or ‘peaksþneutral loss’ features (open markers).

The dataset-specific results are summarized in Tables 2 and 3

denoting the average prediction accuracy and F1, respectively,

over the kernel and dataset. In general, the high-resolution

mass kernels (lower part of the table) achieve better results

than the discrete kernels (upper part). The quadratic

high-resolution kernel over all three feature types achieves best

results in 5 cases out of 9.
The difference in three feature classes is consistent in all data-

sets. In the ‘Ltq’ dataset, the ‘peaks’ features give 86.7%, ‘neutral

losses’ 88.8% and ‘peak differences’ 83.9% accuracies.

Combining ‘peaks’ and ‘neutral losses’ improves the result to

91.1% while combining ‘peak differences’ does not improve the

results. In general, the ‘peak difference’ features are useful only in

the ‘QqQ’ dataset with a single CE dataset.

In the ‘QqQ’ dataset, metabolites are measured with five col-

lision energies. The 40 eV CE is alone the most informative data

source; however, utilizing all spectra of different collision ener-

gies increases the results notably. In the high-resolution kernel,

best results are achieved by merging the spectra (91.1%), while in

the discrete case summing the kernels directly gives best results

(90.7%).
Individual fingerprint prediction performance is depicted in

Figure 3. The figure shows the predictive accuracy for the 150

least accurately predicted fingerprints using the worst single CE

as the sorting criterion. The merged spectrum always surpasses

the predicting made by individual CE’s.
The ‘Lipids’ dataset achieves extremely high-prediction

accuracies of over 97% with almost all kernels. This is in contrast

to the ‘QqQ’ dataset, where utilizing any individual CE measure-

ment gives only small improvements over the baseline predictor.

This is partly explained by the integral measurement accuracy of

the ‘QqQ’ dataset, while the other two datasets come from

ultra-high-resolution analyzers.

40 45 50 55 60 65

88
90

92
94

mean F1

m
ea

n 
ac

cu
ra

cy

Integral mass kernel
High resolution mass kernel

peaks
nloss
diff
peaks+nloss
peaks+diff
full

Fig. 2. Scatter plot of the aggregate average accuracy/F1 across the three

datasets with different kernel features. The open markers represent higher

accuracy/F1 ratio in a quadratic kernel

Table 1. The dataset statistics

Spectral

dataset

Device Size Mode Peak

offset

mean

Peak

error

SD

Effective

fingerprints

QqQ misc 514 Pos 286

API3000 445 Pos 0.128 0.164

QuattroPremier XE 49 Pos �0.092 0.073

TSQ 7000 14 Pos �0.124 0.036

TSQ Quantum AM 3 Pos

Q-TRAP 3 Pos

Ltq LTQ Orbitrap XL 293 Pos 0.0 0.049 128

Lipids LTQ Orbitrap 403 Neg �0.135 0.090 20

Only a subset of fingerprints are exhibited in each dataset’s molecules.
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5.3 Direct spectral matching

We characterize the reference database retrieval performance in

our three datasets (Table 4). In the reference retrieval, we assume

the correct molecule is contained in the reference database (Cases

a–c).
On average (the upper portion of the Table 4), the ‘QqQ’ and

‘Lipids’ datasets achieve almost 100% retrieval rates. We define

the retrieval rate as the proportion of metabolites that are iden-

tified correctly within the first 10 candidates. This is due to the

existence of multiple measurements of the same metabolite in

MassBank: in ‘QqQ’ almost all metabolites have measurements

at five collision energies (Case b), and in ‘Lipids’ almost all me-

tabolites have a duplicate measurement (case a). By limiting our-

selves to spectra measured at the same device but different CE,

the retrieval rate becomes 94% in ‘QqQ’.

In ‘Ltq’ utilizing the duplicate measurements does not increase

the retrieval rates. However, when spectral matches are restricted

to measurements made with different devices, the retrieval drops

from 63.2 to 28.2%. This is an expected drop, as the mass spec-

trometer defines the fragmentation process and thus has a major

impact on the spectral signals.

5.4 Metabolite identification through fingerprints

Herein, we examine the performance of our method in de novo

identification (Case d), where the test set contains only spectra of

molecules not seen in the training set. This is expected to be a

challenging task as the machine learning method needs to gen-

eralize from the spectral signals. Notably, the direct spectral

matching method cannot work in this case.
Table 5 and Figure 4 indicate the de novo metabolite identifi-

cation performance utilizing the predicted fingerprints in the

three datasets. We first search for candidate metabolites match-

ing the measured neutral mass using a mass range of� 0.5 (‘Avg.

hits w/� 0.5 mass’ in Table 5) from either Kegg or PubChem,

followed by fingerprint prediction and metabolite identification.

When querying molecular identification from Kegg, the aver-

age ranks of the correct metabolites are 5.0 and 3.2 for ‘QqQ’

and ‘Ltq’, respectively. The retriaval rates are 85 and 91.8%,

respectively. None of the molecules in the ‘Lipids’ dataset was

found from Kegg. Against PubChem several tens of thousands

of candidates match the mass range on average. The top 10 rank

retrieval rates for PubChem are 29.3, 50.8 and 54.4%, for the

three datasets, even though the average ranks are relatively high.
The P50 value is the normalized median rank, i.e. it indicates

the maximum rank, normalized by the database size, which 50%

of the query molecules attain. For instance, in ‘Ltq’ dataset

against PubChem, the P50 is 3.2� 10�4, which indicates that

the better half of the predictions are able to exclude 99.96% of

the neutral mass matching molecules in PubChem.

Figure 4 indicates the cumulative portions of the datasets at a

given maximum rank. The P50 values correspond to the x-axis

Table 2. The classification accuracies (%). The kernel with best accuracy is highlighted with bold in each dataset column

Kernel QqQ Ltq Lipids

Single spectra (CE eV) Multiple spectra

10 20 30 40 50
P

e Ke merge

Kp, linear 87.8 88.2 88.8 89.3 89.5 89.5 89.2 85.5 98.4

quadr. 87.9 88.3 88.8 89.4 89.6 89.9 89.8 84.4 98.1
Knl 88.4 88.8 88.8 88.7 89.2 89.4 89.0 86.3 98.8

88.4 88.9 88.8 88.9 89.2 89.6 89.3 86.1 98.7

Kdf 87.8 88.0 87.7 87.8 88.2 88.0 87.9 82.6 97.1
87.8 88.0 87.8 87.9 88.3 87.9 87.9 82.9 96.9

Kpþ nl 88.5 89.5 89.9 90.1 90.3 90.7 90.3 88.3 99.5

88.4 89.4 90.0 90.0 90.3 90.5 90.6 88.1 99.3
Kpþ df 88.2 88.6 89.0 89.4 89.6 89.4 89.2 85.6 98.7

88.1 88.7 89.2 89.6 89.8 89.3 89.7 84.8 98.4

Kpþ nlþ df 88.5 89.5 90.1 90.1 90.3 90.5 90.3 88.3 99.5
88.6 89.8 90.3 90.3 90.5 90.3 90.7 87.6 99.3

Kp
u 88.0 88.6 89.1 89.1 89.4 89.3 89.4 86.7 98.6

88.2 89.1 89.5 89.7 89.9 89.3 90.0 85.5 97.3

Knl
u 88.8 89.5 89.3 89.2 89.2 89.8 89.6 88.8 99.1

89.0 89.8 89.7 89.5 89.6 90.0 90.0 88.1 98.0

Kdf
u 88.5 88.9 88.6 88.4 88.4 89.2 89.3 83.7 97.8

88.6 89.0 88.9 88.6 88.6 89.2 89.5 83.9 97.1
Kpþ nl

u 89.0 89.9 90.1 90.1 90.2 90.5 90.5 91.1 99.3

89.2 90.1 90.3 90.3 90.4 90.1 90.8 89.6 97.9

Kpþ df
u 88.8 89.4 89.5 89.5 89.5 90.0 90.0 86.5 98.8

88.9 89.5 89.7 89.8 89.8 89.8 90.4 84.9 97.5

Kpþ nlþ df
u 89.1 90.0 90.3 90.2 90.2 90.6 90.7 90.5 99.3

89.2 90.1 90.4 90.5 90.4 90.2 91.1 88.6 98.0
default 87.3 87.2 87.2 87.2 87.7 87.3 78.7 88.3

Abbreviations: p is peaks, nl is neutral loss and df is difference kernel.
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values at y-axis value of 0.5. Due to the large size of PubChem,

the ranks are in general several orders of magnitude larger.

However, most of the molecules are still within the absolute

rank of 1000.

We experimented with thresholding the set of fingerprints used

based on the bias and accuracy of the fingerprints. By leaving out

some portion of the least accurately predicted and most biased

fingerprints the actual molecule ranks decreased (data not

shown).

In the next experiment, we test the performance of the

FingerID method against the approach of retrieving the closest
matching spectrum from MassBank, under the assumption that

the spectrum of the metabolite is MassBank but measured with a
different collision energy, representing Case (b).
We trained our fingerprint prediction model in a stratified

cross-validation setting where spectra of specific collision
energy (10–50 eV) were chosen to the test fold and the other

collision energies were used in training the model (Table 6). As
the baseline, direct spectral matching from Massbank finds a
match with correct metabolite in 94% of the cases. The perform-

ance of the FingerID method depends on both the molecular
database used for retrieval (Kegg or PubChem) and the CE

used for training and testing. The performance of FingerID
coupled with Kegg is better than direct spectral matching when
retrieving the ‘middle’ collision energy spectra (20–40 eV) but is

weaker in predicting the two extremes, especially 10 eV spectra.
When identifying against PubChem, the retriaval rate differences

become larger from a minimum of 13.1% at 10 eV to a max-
imum of 70% at 30 eV.

5.5 Comparison to MetFrag

MetFrag is a state-of-the-art metabolite identification method,

which assigns a score to candidate metabolite based on the simi-
larity of a simulated spectrum to the observed one (Wolf et al.,
2010). The simulated spectrum is produced by combinatorially

removing bonds from the parent ion and recording the resulting

Table 3. The F1 (%). The kernel with best F1 is highlighted with bold in each dataset column

Kernel QqQ Ltq Lipids

Single spectra (CE eV) Multiple spectra

10 20 30 40 50
P

e Ke merge

Kp, linear 12.4 15.0 20.2 22.9 21.4 23.1 22.0 56.9 89.1

quadr. 13.2 16.4 21.1 23.2 22.2 23.2 25.4 52.6 89.5
Knl 16.4 19.5 18.5 17.3 16.6 21.4 19.7 60.1 90.9

17.9 20.1 19.7 18.1 17.2 21.8 20.8 58.6 90.4

Kdf 14.5 15.5 14.2 12.9 12.6 15.1 15.3 47.4 82.9
13.2 15.7 15.4 13.2 13.2 13.7 15.8 47.1 81.6

Kpþ nl 15.9 20.3 23.9 22.0 22.7 27.0 25.0 64.6 92.7

16.4 20.4 23.0 21.0 22.0 21.7 25.5 63.9 92.7

Kpþ df 15.0 17.0 21.5 21.6 20.4 22.9 22.2 54.2 90.1

15.0 19.0 22.2 23.9 24.0 20.0 25.9 51.0 87.9

Kpþ nlþ df 16.7 20.7 25.8 22.9 23.1 27.0 26.4 64.8 92.7

17.3 22.2 24.8 23.1 23.3 21.1 26.2 60.7 92.1

Kp
u 13.8 18.0 21.4 19.8 19.9 21.3 22.4 58.0 87.6

15.6 18.8 21.0 22.7 22.2 18.4 25.1 54.9 82.6

Knl
u 18.3 21.4 22.4 18.8 17.1 23.9 22.8 65.9 91.9

18.4 20.7 22.5 19.0 18.1 21.6 24.1 61.0 86.1

Kdf
u 15.9 19.9 20.7 15.6 14.6 20.8 22.8 49.0 85.1

15.8 20.0 20.7 17.7 15.7 19.4 22.8 48.3 83.7
Kpþ nl

u 18.9 23.9 25.8 24.1 22.2 26.8 27.4 71.7 91.9

19.6 21.0 22.3 21.7 20.9 19.9 25.6 65.1 85.3

Kpþ df
u 17.4 21.6 23.6 21.8 20.8 24.0 25.7 56.8 89.3

17.2 21.8 23.3 23.9 22.5 19.6 27.2 51.8 83.3

Kpþ nlþ df
u 19.1 23.8 26.7 25.0 22.8 27.0 29.1 70.6 91.8

19.5 22.8 24.8 24.1 22.6 20.7 28.5 62.5 85.2

Abbreviations: p is peaks, nl is neutral loss and df is difference kernel.
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Fig. 3. The fingerprint specific accuracies of the ‘QqQ’ dataset with the

high resolution quadratic full kernel. The bars indicate the accuracy of

the fingerprints when using least informative and most informative colli-

sion energy spectra, and the merged spectra. Only the 150 least accurate

fingerprints are shown. The default classifier is indicated by the bottom of

the bars
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fragments as possible explanations for the observed peaks. This

parallels the idea that a good candidate should be able to pro-

duce all peaks by mostly bond cleavages.
We randomly selected a subset of 20 spectra from both QqQ

and Lipids datasets, respectively. The QqQ represents nominal

mass spectra with an absolute mass error set to 0.5, while Lipids

is a high-resolution dataset with absolute mass error of 0.05. The

appropriate mass errors were used in MetFrag. We queried both

datasets against both Kegg and PubChem in MetFrag.

Analysing the total of 40 spectra took approximately 1 day of

manual work, as MetFrag does not support batch processing.
We measure the rank of the correct metabolite with

both MetFrag and our method. The results are highlighted in

Table 7. FingerID obtains favourable results to MetFrag in most

cases, with significantly more retrieval results with top 10 rank,

and higher overall recall rate. MetFrag found the correct metab-

olite for approximately half of the spectra from Kegg and for

only a couple of spectra from PubChem. This is due to the de-

fault limit of 100 candidate structures, which allows for an ana-

lysis of spectral datasets in appropriate time frames.

6 DISCUSSION

We presented a novel approach for de novo metabolite identifi-

cation through intermediate fingerprint prediction based on

tandem mass spectra. Our results indicate that it is possible to

learn the statistical dependencies between tandem mass spectral

signals and molecular properties, which can be used to score and

rank metabolites, with good identification performance.

Moreover, a sufficiently large set of fingerprint predictions can

give useful clues to the actual metabolite identity to the human

expert, even if exact automatic identification remains elusive.
The machine learning approach widens the utility of mass

spectral databases such as MassBank. Due to the nature of the

Table 5. Statistics of the de novo metabolite identification (Case d) with

FingerID, retrieving candidate metabolites from Kegg and PubChem,

respectively

Spectral dataset

Molecular database QqQ Ltq Lipids

Kegg Avg. hits

w/� 0.5 mass

24.9 26.6

Avg. rank 5.0� 7.3 3.2� 4.8 N/A

rank
 10 85.0% 91.8%

P50 8.0� 10�2 3.8� 10�2

PubChem Avg. hits

w/� 0.5 mass

28 648 27 862 12 928

Avg. rank 5196� 13,168 1981� 8,652 11� 9

rank
 10 29.3% 50.8% 54.4%

P50 5.8� 10�3 3.2� 10�4 7.7� 10�4

Table 4. Statistics of the three metabolite identification cases with the

three datasets

MassBank query (%)

Case QqQ Ltq Lipids

(a)–(c) Match found 100% 92.8% 97.0%

Avg. rank 2.0� 0.1 220� 623 1.9� 0.9

rank
 10 100 63.2 99.5

(a) rank
 10 61.7 63.9 99.5

(b) rank
 10 94.0 – –

(c) rank
 10 94.0 28.2 –

(d) rank
 10 0 0 0

The upper part of the table shows performance of reference queries in general, while

the lower part indicates the performance when utilizing spectra only from the four

different cases (Section 2). By definition, the (d) case gives no identifications.

Fig. 4. The cumulative (log) rank distribution of the three datasets

against Kegg and PubChem. The vertical axis indicates the ratio of mol-

ecules with a maximum rank indicated in the horizontal axis

Table 7. Comparison of metabolite identification against MetFrag on a

subset of 20 spectra from both ‘QqQ’ and ‘Ltq’, respectively

Molecular

database

Spectral

dataset

FingerID MetFrag

match Avg.

rank

rank
 10 match Avg.

rank

rank
 10

Kegg QqQ 17 3.2 16/17 16 5.1 9/11

Ltq 20 3.8 18/20 12 5.6 11/12

PubChem QqQ 11 905 8/16 2 68 0/2

Ltq 20 58 9/20 1 20 0/1

Table 6. Comparison of metabolite identification against MassBank

querying when the measured metabolite is present in a reference database,

measured with different collision energy (Case b)

FingerID MassBank

query

10 eV 20 eV 30 eV 40 eV 50eV

rank
 10 Kegg 76.0% 93.6% 97.6% 95.6% 91.8% 94.0%

PubChem 13.1% 48.2% 70.0% 67.9% 38.8% 94.0%
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method, any type of tandem mass spectral data is applicable.

This also allows us to handle, for example, the rearrangement

reactions, which result in exceptional and difficult-to-predict

fragment products (Heinonen et al., 2008). Utilizing multiple

measurements increases the prediction accuracies through

kernel-based data fusion. Our method can be easily comple-

mented by inferring additional information about the metabol-

ites, such as sum formulas from isotopic patterns (Böcker et al.,

2009) or by performing fragmentation analysis (Wolf et al., 2010)

in addition to fingerprint prediction.
Further research is obviously necessary to bring the machine

learning-based approach towards a practical tool for metabolo-

mics. In de novo metabolite identification, the identification per-

formance depends, on one hand, on the uniqueness of the

fingerprints to particular sets of metabolites, and on the other

hand, the ability to predict these fingerprints from tandem mass

spectra. It is an interesting future research direction to develop

computational methods to identify sets of fingerprints that strike

a good balance between these two qualities. An interesting ma-

chine learning approach for representing the molecular proper-

ties would be to use structured prediction (Bakir, 2007) to model

the statistical dependencies between the fingerprints and the

input spectrum.
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Neumann,S. and Böcker,S. (2010) Computational mass spectrometry for metabo-

lomics: Identification of metabolites and small molecules. Anal. Bioanal. Chem.,

398, 2779–88.

Oberacher,H. et al. (2009) On the instrument and the inter-laboratory transferability

of a tandemmass spectral reference library: 2. optimization and characterization

of the search algorithm. J. Mass Spectrom., 44, 494–502.

Pavlic,M. et al. (2006) Combined use of esi-qqtof-ms and esi-qqtof-ms/ms with

mass-spectral library search for qualittative analysis of drugs. Anal. Bioanal.

Chem., 386, 69–82.

Shawe-Taylor,J. and Christianini,N. (2004) Kernel Methods for Pattern Analysis.

Cambridge University Press, Cambridge, United Kingdom.

Steffen,A. et al. (2009) Comparison of molecular fingerprint methods on the basis of

biological profile data. J. Chem. Inf. Model., 49, 338–347.

Stein,S.E. (1994) Estimating probabilities of correct identification from results of

mass spectral library searches. J. Am. Soc. Mass. Spectrom., 5, 316–323.

Wang,Y. et al. (2009) Pubchem: a public information system for analyzing bioac-

tivities of small molecules. Nucleic Acids Res., 37, W623–W633.

Werner,E. et al. (2008) Mass spectrometry for the identification of the discriminat-

ing signals from metabolomics: current status and future trends. J. Chromatogr.

B, 871, 143–164.

Wolf,S. et al. (2010) In silico fragmentation for computer assisted identification of

metabolite mass spectra. BMC Bioinformatics, 11, 148.

2341

Metabolite identification through machine learning

 by guest on July 5, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/

