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Abstract—Trends show the underlying structure of the time-
series data. Trend estimation is a commonly used tool for finan-
cial market movement prediction. In traditional approaches,
such as Hodrick-Prescott (HP) and L1 filtering, the trend is
considered as a smoothed version of the time-series, including
rare significant hills that are smoothed in the same way as usual
noise. The goal of this paper is to allow the estimated trend
to be more complex and detailed in the intervals of significant
changes while making a smooth estimate in all other parts.
This will be our main criteria for trend estimation. We present
a modified version of HP weighted heuristic that provides the
best trend according to the abovementioned criteria. Gaussian
Mixture Models (GMMs) on the preliminary estimated trend
are used in the weighted HP heuristic to decrease the penalty in
the objective function for turning-point intervals. We conducted
a set of experiments on financial datasets and compared the
results with those obtained from the standard HP filtering with
weighted heuristic. The results indicate an improvement in the
cycling component using our proposed criteria compared to
the HP filtering approach.

Keywords-HP Trend; L1 Trend; HP Weighted Heuristic;
Time-Series

I. INTRODUCTION

Trend extraction is an important step in understanding
the underlying structure of time-series data. The applica-
tion areas of it are diverse, including finance and eco-
nomics [4], signal-processing [6], ecology [8], etc. The
main trend extraction approaches currently used are: model-
based (ARIMA), nonparametric linear filtering (Henderson,
LOESS, Hodrick - Prescott) [3], singular spectrum analy-
sis [2] and wavelet-based methods [3]. Particularly in finan-
cial time-series, L1 [12], Kalman [16] and HP filtering [10]
are used.

A trend is viewed as a smoothed version of the time series
that depicts global changes. It is not supposed to take into
account seasonal changes and noise. During trend extraction,
excessive smoothing can happen, wherein not only noise
but sharp slopes are smoothed. We aim to find such trends
that will smooth globally important changes less than the
noise. Meinl [13] proposed these criteria for trend analysis.
In his approach, turning-point intervals were detected using
wavelet coefficients and later, approximated in detail using

local linear scaling approximation. We use the term turning-
point in our paper as the local minimum or maximum point
of the curve. The rest of the coordinates in the time series
vector are smoothed using the usual linear filter.

The main goal of this paper is to modify the HP filtering
weighted heuristic so that it keeps its general smoothing
property while emphasizing larger structural changes in the
time-series. These changes, that can denote, for example,
crisis or growth, are an integral part of the process and
they may not be regarded as noise. This motivates applying
adaptive smoothing over the different periods. We chose HP
filtering due to the small number of assumptions needed
for constructing the model, linear computational complexity,
and the ability to emphasize turning-point intervals by
controlling the weight.

Hodrick and Prescott [10] introduced the HP filter for
finding trends. One of the major drawbacks of the filter is
that it smooths the entire time-series equally, which results
in excessive smoothing of deep structural recessions or
growths. Hence, a reweighting scheme is required to control
the level of smoothing over different periods of time. During
the recessions, it is favorable to avoid excessively penalizing
smoothing in the intervals of high variations, while during
the normal periods, a stronger smoothing is more desirable.

In [5] an iterative weighted heuristic for the HP filter was
introduced. They used the weights in the regularization part
of the objective function of L1 trend filtering that penalizes
the model complexity through second order differences.
Weights are updated in each iteration, eventually yielding
a lower RMSE than the usual L1-filtering. Our method
was inspired by the idea of reweighting the second order
differences in the objective function, that we will refer to
as the weighted heuristic in the algorithm description. This
weighted heuristic helps manage the the level of approxima-
tion for trend at different periods of time.

The outline of the paper is the following. In Section 2, we
provide a brief recap of L1 and Hodrick-Prescott filtering
and iterative weighted heuristic. Then, in Section 3, we
describe how important turning-points are detected and how
weights for HP filtering are constructed. Section 4 provides
implementation details and experimental results on financial



Figure 1: Kink-points for the S&P500 dataset

data. The concluding remarks are made in Section 5.

II. L1 AND HODRICK-PRESCOTT TREND FILTERING

We begin by providing two important definitions.
Turning-point is the local maximum or the local minimum

of the curve.
Kink-point is the point where piecewise-linear function

changes its slope.
Kink-points are illustrated in Fig. 1. The figure illustrates

all the kink-points that were detected by L1 trend estimation
on one of our experimental datasets. It can be observed that
not all of the points seem to be so important, however points
1, 2, 4 and 5 seem to be very significant, showing growth
and recession, respectively. With blue dots, we indicate the
examples of turning-points that we regard as important ones.
We see that by detecting kink-points on the trend, it is
possible to find the important turning-points.

In the financial datasets that we use for our experiments,
there exist several turning-points. However, we are interested
only in the points indicating recession or growth. There
is no exact definition which points to consider important.
Nonetheless, the human eye can recognize such points that
have unexpected low or high values for a certain period of
time, assuming that there exist no outliers in the data. Later,
we will show how L1 trend estimation can help detect these
points through its kink-points.

A. Hodrick-Prescott Filtering

Hodrick-Prescott filtering [12] has been extensively used
in business literature for extracting the trend component to
find ’cycles’. It divides the time series into trend and cycle
components. Despite the fact that HP filters theoretically

give the cycling component for infinitely large signals, it
has been proved in [7] that it gives suboptimal solutions for
time series where only a part of the cycle is presented.

HP filter provides a smooth estimate of the trend, delib-
erately penalizing kink-points. The objective function to be
minimized is defined as follows:

f(x, y, λ) =
1

2

n∑
t=1

(yt − xt)2 + λ

n−1∑
t=2

(xt−1 − 2xt + xt+1)
2.

(1)
We denote by y, the input variable that is our original

time-series vector and by x, we define the output variable
of length n that is our estimated trend. We denote by D, the
(n− 2)× n matrix of the second-order operator,

D =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1

 .
Using the vector of second-order differences of x, denoted

by Dx, we can reformulate the problem in a more compact
form as follows:

min
x
f(x, y, λ) = min

x

1

2
||y − x||22 + λ||Dx||22. (2)

Tibshirani [17] extended trend filtering to k-th order dif-
ferences. For example, first order difference gives piecewise
constant functions, first order piecewise-linear functions and
second-order quadratic functions. He showed that the k-
th order difference gives k-th order piecewise polynomials,
which provide high flexibility in trend estimation along with
a linear computational complexity.

The objective of this model is to find the trade-off between
its complexity and the approximation error. Point xt is a
kink-point if xt−1 − 2xt + xt+1 6= 0, i.e., the second order
difference is not zero. The larger the slope, the larger its
second order difference. Since both functions are convex,
the resulting model ends up with a smooth trend estimate.

The trend found by HP filtering has a closed form solution
and the complexity is linear O(n):

xHP = (I + 2λDTD)−1y. (3)

B. L1 trend Filtering

L1 trend filtering proposed in [12], as a variation of
Hodrick-Prescott filtering, has the following objective func-
tion f(x, y, λ) to be minimized:

1
2

∑n
t=1(yt − xt)2 + λ

∑n−1
t=2 |xt−1 − 2xt + xt+1|

= 1
2 ||y − x||

2
2 + λ||Dx||1.

(4)

L1 trend is a piecewise-linear function due to the L1
norm in the objective function. Unlike HP filtering, L1
filtering has no exact analytical solution. However, the
average complexity is also linear [12].



L1 trend filtering was extended with the iterative weighted
L1 heuristic in [5]. Reweighting the second part of the
objective function, we can decrease the penalty for kink-
points, where second order difference is non-zero.

The objective function to be minimized of L1 filtering
takes the form:

f(x, y, λ) =
1

2
||y − x||22 + λ||WDx||1 , (5)

where,
W = diag(w). (6)

The weight vector is defined in the following way:

wt =
1

ε+ |Dxt|
, t = 1, 2, ..., n− 2 (7)

The strength of this reweighting scheme is in its ability
to control kink-points. ε is chosen to be a small value. The
weights for non-kink-points become so large that only kink-
points can be controlled. Each iteration of the reweighting
scheme consists of solving (5) and updating the weight
vector w for the next iteration. In [5], the authors state
that a choice of ε should be close to the expected second
order difference of the estimated trend. They claim that the
method is robust to the choice of ε. In practice, ε = 0.1
works well. In the next section, we give the intuition behind
our suggested algorithm, describe how we use both L1 and
HP filtering and explain the modification of the iterative
weighted heuristic using Gaussian Mixture Models.

III. MODIFIED WEIGHTED HEURISTIC FOR HP
FILTERING

The motivation of this paper is to be able to decrease
the penalty for intervals around important turning-points.
For that, we need some method for turning-point detection.
Finding these points based on the original time-series can
be uninformative, since there are a lot of local minima
or maxima and not all of them are significant on the
global level. Applying L1 trend estimation in the first stage
will result in a piecewise linear trend, from which, it is
easier to detect significant kink-points. Indeed, L1 trend
estimation with a predefined λ gives us an approximation
that captures changes linearly within a certain range of
resolution, specified by the number of kink points. This
means that small fluctuations will not be captured and
kink-points for piecewise linear L1 trend estimates serve
as the turning-points. Hence, intervals around kink-points
can be represented in greater detail in the corresponding
trend through proper initialization of the weights in HP
filtering with a suitable reweighting scheme. HP filtering
in the second stage will be a better choice due to its
ability to provide smooth non-linear results and make better
approximations. The algorithm for HP filtering using GMMs
for reweighting is outlined in the following steps:

Step 1. Find the first approximate solution x by L1
trend filtering using (4). Start with λ = λ0, where λ0
is sufficiently large. Find the point where the error is the
largest. Set λi+1 = λi/2 until the largest approximation
error decreases significantly or the number of iterations i
exceeds a predefined value (e.g., 5 iterations).

Step 2. Set λ′ = gal ∗ λ, where gal is the global
approximation level. Average values for gal lie in the range
[100, 1000] and are determined experimentally.

Step 3. Apply HP filtering with λ′ using (1). Find trend x
and calculate the weight vector w using (12). Turning-points
are found using (14).

Step 4. Use calculated weight vector w in the proposed
weighted heuristic with HP filter from (12) using a single
iteration and evaluate resulting trend y.

In Step 1, we aim to find a λ such that the point of
recession or growth is approximated better than obtained
by the initial value λ0. If such a λ can not be achieved, we
will stop after a number of iterations. Then, in Step 2, we
need to increase λ, found by L1 trend estimation for HP
trend estimation. HP filtering needs higher values of λ, than
L1 trend filtering to avoid excessive smoothing.

We apply HP weighted heuristic in Steps 3 and 4. In Step
3, initial HP filtering with weight vector w = 1, where, 1 is
the all-one vector and λ′ from Step 2 are applied. Using the
trend x and the weight vector w from Step 3, we apply the
weighted heuristic and obtain the final solution in Step 4 .

Computational complexity of the constructed algorithm is
linear, as it consists of several runs of L1 and HP filtering.
The issue of complexity is especially taken into account in
High-Frequency trading systems, where time-series size is
extremely large.

Now after providing the outline, we discuss the details of
the calculation of the reweighting vector in Step 3.

A. Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a parametric prob-
ability density function represented as a weighted sum of
Gaussian component densities [14]. This function has the
following form:

p(x|θ) =
M∑
i=1

πiN (x|µi, σi) , (8)

where,
θ = {πi, µi, σi}Mi=1 (9)

Here, N (x|µ, σ) is a Gaussian probability density func-
tion,

N (x, µi, σi) =
1√
2πσi

exp
− (x−µi)

2

2σ2
i , (10)

π is the weight vector, such that
∑M

i=1 πi = 1 and M is
the number of components. GMMs are able to approximate
any arbitrarily form of density function up to any desired



Figure 2: The example of the Gaussian Mixture Model in
the discrete form

precision. Fig. 2 represents a mixture of 3 Gaussians. GMM
is used for constructing weight vector in iterative weighted
heuristic. Points that are situated closer to the turning-
points should have gradually decreasing weight penalty in
the objective function (5). This allows us to show not only
the turning-points in more detail, but also the intricacies
in the surrounding intervals. The smooth gradual decrease
can be approximated by the Gaussian function with its
mean centered at the turning-point. We allow the complexity
to grow around the kink-points as well. Coordinate i is
the abscissa of the turning-point xi (for L1 trend); σi is
estimated by fitting Gaussian distribution to vector v around
the kink/turning-point xi within a predefined band :

v = (xi−band, ..., xi, ..., xi+band). (11)

This vector v represents the turning-point interval around xi.
Instead of the vector with the absolute second differences
|Dx| as in the traditional approach, we now have a GMM
with unnormalized weights σ.

w =
1

1 + lal
∑K

kinki=1 σkinkiN ∗(x, µkinki , σkinki)
(12)

N ∗(xj , θi) =

{
N (xj , θi), j = i− band, ..., i+ band.

0, otherwise.
(13)

In (13), N ∗(xj , θi) = N ∗(x, µkinki , σkinki) denotes the
truncated vector of Gaussian probability density function of
input time series x = (x1, ..., xn) for the kink-point kinki.
That is, each Gaussian is evaluated only within some band
around the kink-point, i.e., i− band, ..., i+ band , and the
value in all other points outside band is set to zero.

In the Gaussian distribution, the smaller the standard
deviation, the larger the values of the probabilities towards
the center of the distribution. That is, if we want to keep
the weights approximately in the same scale for time series
with different y-scaling, it is beneficial to multiply the values

of the probability densities by the standard deviation σ of
this Gaussian. Hence, the scale of the values in the y-axis
constraints the weight vector w to be in the same order of
magnitude. Standard deviation σ serves as the weight of
the Gaussian, however,

∑K
i=1 σi 6= 1. For points xj outside

kink-point interval, wj = 1.
Parameter lal, called the local approximation level, con-

trols the extent to which we want to approximate jumps.
We found that lal ∈ [10, 100] provides a good approxima-
tion. Higher lal values result in better approximations. As
opposed to the local approximation level, the global approxi-
mation level gal is responsible for the overall approximation
of the time series. A commonly used range for the param-
eter gal is [100, 1000]. These two parameters provide us
flexibility on the local and global scales, respectively. The
mean of the Gaussian µ is the kink-point and the standard
deviation is calculated by fitting kink-point interval v within
a predefined band (band) of the Gaussian distribution. We
must emphasize here that not every point with non-zero
second order difference is an important kink-point. Indeed,
important kink-points should have significantly larger second
order difference than average value for all the points. In
order to determine which points are kinks, we employed the
z-score, thereby assuming that the second order differences
are normally distributed.

zi =
Dxi −Dx

σ
, i = 2, ..., n− 1 (14)

Z-score is one of the outlier detection methods. Points xi
with zi > 3 are considered to be outliers or important
kink-points in our case [9]. This is because the second-
order difference for kink-points is much larger than that for
other points. We should note that turning-point detection for
curves is a particularly difficult problem [18] and does not
have an exact solution. The decision about what points are
significant on the global level depends on the user. Z-score
statistics provide fairly good solutions, as our experiments
suggest.

IV. EXPERIMENTAL RESULTS

In this section, we provide experimental results on two
financial datasets. Datasets of different sizes were chosen:
Euro Dollar Exchange Rate and S&P 500 Index. We ran
our experiments on an Intel Core-i7 processor, 1.90-2.40
GHz. Code was written in Matlab using the CVX library
for Disciplined Convex Programming tasks 1 developed at
Stanford University.

A. Comparison with Standard HP Filtering

We used the aforementioned datasets to compare our
proposed trend filtering to HP filtering and to demonstrate
its robustness. In our experiments, we demonstrate that HP
filtering using Gaussian Mixture Models is able to detect

1cvxr.com



and approximate certain important intervals, such as strong
recession and growth periods.

The S&P 500 dataset is a calculated index based on the
market capitalization of 500 companies in leading industries
of the U.S. economy, which are publicly held on either
the NYSE or NASDAQ. It has been commonly used as a
benchmark for finding trends [12]. We used weekly data
and the logarithm of opening values from March 1999 until
March 2007 for comparison with experiments performed
in [12]. The dataset was downloaded from Yahoo Finance
database 2.

The Euro Dollar Exchange Rate is a dataset with daily
conversion rates. Values from the period of June 2011 to
March 2014 were chosen. The dataset was chosen for its
high-frequency fluctuations.

In the first set of experiments we compared our proposed
method to the standard HP filtering. In all experiments
we used band = 10 and λ0 = 50. Local and global
approximation levels were different. The default level for
local approximation level lal was set to 30 and gal = 500,
unless otherwise stated. The maximum number of iterations
during Step 1 of the algorithm was 5. The parameter λ stated
in the figures’ caption denotes the value that was used in the
final HP filtering in Step 4 of the algorithm.

In Fig. 3(a) and 3(b), we observe how the proposed
modified HP filtering results in better approximations of
important turning-points while leaving the rest of the time-
series untouched. Especially in the S&P 500 dataset, the area
of deep recession is shown very prominently unlike in usual
filtering, shown in a blue. For the EUR/USD dataset, more
intervals are found due to an inherently more volatile price
structure.

Our proposed method is robust towards scaling on the y-
axis. Particularly, that means that means that if we scale the
y-axis by multiplying by constant c, the resulting trend will
not change. This flexibility is achieved by the reweighting
scheme, where each Gaussian Probability Density vector is
multiplied by the mean standard deviation σ using (12).
Both trends are almost the same before and after the scal-
ing. Another important criterion was to decrease the large
deviation between the original time series and its trend and
to improve the cycling component. As we already men-
tioned, HP filtering gives a suboptimal ’cycle’ solution. By
capturing big jumps better, the cycling component becomes
more cyclic and prevents large deviations of the trend from
the original time series. The complexity of the model does
not increase much because other parts of the time series
are approximated in the same way as usual filtering. The
resulting cycling component can be seen in Fig. 6(b). On
the S&P500 index dataset, we see that high deviation peaks
exceeding 0.1, were reduced in cycle so that locally, they
are not outliers.

2http://finance.yahoo.com/

The advantage of our proposed filtering method is in its
ability to control the level of detail globally, through the
whole time series and locally, in important turning-points.
The local approximation level lal can not be defined in stan-
dard HP filtering. It controls how exact the approximation
will be in important intervals.

In Fig. 5(a) and 5(b), we compared the trends with lal =
100 to lal = 30, obtained in the previous examples. Higher
lal values gave us better approximation of deep recession
periods.

Trend selection can not be done easily using standard
criteria such as AIC [1] or BIC [11], that do not consider
the number of parameters and error - the reason being that
the number of parameters in the model can not be clearly
described. If we had a piecewise linear trend, then we could
take the number of kink-points into consideration. However,
when the approximated function is non-linear, then, second-
order differences do not estimate the complexity well enough
because, almost all points are kink-points. Therefore, second
order differences are mostly non-zero. That is why, we prefer
to have the user choose the model by defining local and
global approximation levels. Choosing parameters provides
flexibility and the ability to describe the data in the most ap-
propriate form. For short term approximation, for example,
we would like to have a lower global approximation level
which results in trends that are more detailed.

V. CONCLUSION

In this paper, we proposed new criteria for trend esti-
mation and modified the existing HP weighted heuristic
filtering. Weights were constructed using GMMs on the
estimated trend, providing a flexible smoothing of the trend.
Our smoothing scheme is able to emphasize important
turning-points more precisely in the trend component while
improving the cycling component by decreasing extremely
high or low deviations. It also provides users the flexibility in
trend filtering. Our model takes into account the preferences
of the users regarding global and local approximation levels,
instead of using statistical criteria. In future work, we aim
to improve important turning-point detection and evaluate
the effect of using a higher order difference matrix in the
objective function.
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