
Efficient detection of zero-day Android Malware using Normalized Bernoulli Naive
Bayes

Luiza Sayfullina∗, Emil Eirola†, Dmitry Komashinsky‡, Paolo Palumbo‡, Yoan Miche¶,
Amaury Lendasse§ and Juha Karhunen∗

∗ Aalto University, Espoo, Finland, Email: name.lastname@aalto.fi
†Arcada Univerity of Applied Sciences, Helsinki, Finland, Email: emil.eirola@arcada.fi

‡F-Secure Corporation, Helsinki, Finland, Email: name.lastname@fsecure.com
§The University of Iowa, Iowa, USA, Email: amaury-lendasse@uiowa.edu
¶Nokia Networks, Espoo, Finland, Email: yoan.miche@nokia.com

Abstract—According to a recent F-Secure report, 97% of
mobile malware is designed for the Android platform which has
a growing number of consumers. In order to protect consumers
from downloading malicious applications, there should be
an effective system of malware classification that can detect
previously unseen viruses. In this paper, we present a scalable
and highly accurate method for malware classification based
on features extracted from Android application package (APK)
files. We explored several techniques for tackling independence
assumptions in Naive Bayes and proposed Normalized Bernoulli
Naive Bayes classifier that resulted in an improved class sepa-
ration and higher accuracy. We conducted a set of experiments
on an up-to-date large dataset of APKs provided by F-Secure
and achieved 0.1% false positive rate with overall accuracy of
91%.

Keywords-Malware Classification; Naive Bayes; Security in
Android;

I. INTRODUCTION

The market of Android applications continues to grow
despite the fact that it is one of the most likely sources of
malware among other mobile platforms. Detected malware
applications are usually grouped into families that perform
similar types of hazards. According to a report, provided by
an F-Secure, a leading anti-virus vendor, 88% of malware
families are profit-oriented [1]. In 2014 most of the detected
Android malware belonged to the Trojan family. Premium
SMS-sending is one of the most common malicious activi-
ties. Trojan threats also include bank frauds and data theft,
that occurred in 10% of the detected malware.

According to statistics provided by in Kaspersky Security
Bulletin 2014 [2], 4,643,582 malicious Android installation
packages were detected during the period from November
2013 to the end of October 2014. Out of them, 12,100 were
mobile banking Trojans. 19% of Android users of Kaspersky
products encountered a threat at least once during the year.
Similarly to the F-Secure report, the most common threat
was Trojan-SMS.AndroidOS.Stealer.a that occurred in 18%
of the threats along with other SMS-sending Trojans.

Despite the fact that new malware types and variations are
created, they can be efficiently classified as malicious due to
similarities with existing malware. In this paper we present
in detail an improved Naive Bayes classifier [3], [4] to detect
malicious Android applications based only on the features
from APKs. It is highly important to have a low false
malicious rate not to block users from downloading clean
software and not to irritate customers much with security
alerts. In addition blocking clean applications can lead to
revenue loss of the application owner. At the same time
we should try to keep a low false benign rate to provide
high level of security. We refer to a malicious class as to
a positive class, so true malicious rate means true positive
rate (TPR), true benign rate means true negative rate (TNR),
false malicious and false benign rates are FPR and FNR
respectively. In our paper, we focus on achieving low FPR.

In Section II, we describe the content of APK files and
what features were used from those files for classification.
Section III is dedicated to outlining the existing approaches
for tackling Naive Bayes independence assumptions and
presenting the experimental results on our dataset. In the
next section, we introduce Normalized Bernoulli Naive
Bayes, that outperforms Bernoulli Naive Bayes with lower
FPR and better classification boundary. In Section V, we
make an overview of recent publications in Android malware
classification and state our contribution to existing work in
this area.

II. DATA DESCRIPTION

In the proposed approach we make a static analysis
of the application through its APK installation package.
Now we briefly explain the structure of an APK package
and the groups of features we extracted. Every Android
installation package has three main files: AndroidMani-
fest.xml, classes.dex and resources.arsc. First file Android-
Manifest.xml [17] contains general information about the
application to be installed. It provides the summary of the
resources, permissions needed to run the application and



Figure 1: The histogram of APK file sizes, totally 120,000
files.

its components, including services, activities, libraries, entry
points, their capabilities, etc. All the elements in Android-
Manifest.xml file, except <manifest> and <application>
are optional. Practically this means that one should expect
diversity of features across files. If a fixed set of features is
used, we should be sure that those are highly representative
features of malware and that they can be found at least in
malware APKs. However, this cannot be always guaranteed
due to the diversity of malware families. In addition, while
aiming at high performance and reliability, we use a large
set of features, but still apply feature selection heuristics to
reduce the number of features and to omit irrelevant ones.

The second obligatory file classes.dex contains compiled
Java byte-code of the application. Data from classes.dex
header gives us the opportunity to extract the arrays of
strings. These strings include parts of the Java code, specif-
ically classes, methods, types, etc. Hence the analysis of
Java code is partially performed as well. The third file
resources.arsc consists of precompiled resources in a binary
format. It may include images, icons, strings, or other data
used by the application. DEX (Dalvik Executable) [18] is a
file format that contains compiled code written for Android
and can be interpreted by the Dalvik virtual machine. DEX
files can be created manually or by automatically translating
compiled Java programs. Multiple DEX files are zipped into
a single APK, which serves as the final Android application
file.

Files from res, META-INF folders and root folders are
described only by their names and hashes. At the same
time, items from AndroidManifest.xml, resources.arsc and
classes.dex are used as features more extensively. In Table
I we list what entries from APK files are taken as features
for the classifier.

Data for the experiments was provided by F-Secure. We
have more than 120,000 files with trustworthy information
about the class (benign or malicious) from 2014. The his-
togram of file sizes is shown in Figure 1. We can observe that
larger files are less likely to be malicious. Besides that, there
is a huge number of small files, less than 1000 Kb, most of

File Groups of features

AndroidManifest.xml
entries, packages,
permissions, strings

classes.dex
classes, fields, methods,
prototypes, types, strings

resources.arsc strings

other files hashes, names

Table I: Features selected from APK files

which are malicious. So both the file sizes and the feature set
sizes show large variation. In the following subsection, we
proceed with the explanation of the Naive Bayes Classifier
and its existing modifications.

III. NAIVE BAYES CLASSIFIER AND ITS EXISTING
MODIFICATIONS

The Naive Bayes Classifier (NB) has been applied in
diverse fields, especially in language processing and bioin-
formatics, including text genre classification and authorship
attribution [19], sentiment analysis [20], predicting diseases
from genome data [21]. The classifier is called “naive”, as
it assumes that all features are independent, conditional on
the class label. Then the class conditional densities can be
presented as follows:

p(w|c,φ) =
D∏
i=1

p(wi|c, φic) , (1)

where D is the dimension of the feature vector w =
(w1, w2, ..., wD), φic ∈ φ is a maximum-likelihood estimate
of the feature wi for a class c. Features extracted from
APK packages are very likely to be dependent, at least, the
Java code features. We elaborate on how to tackle naive
independence assumptions in the next section.

Malware classification, as text classification, involves
high-dimensional samples. However, unlike in text, features
taken from APKs are not restricted to some small vocabu-
lary, but rather consist of code strings, various languages,
hashes, names and other meta information. The number of
features in our problem is larger than in most languages due
to the presence of different spoken languages, programming
language strings, hashes, etc. Some of these features are
most likely independent, some of them are irrelevant for the
classification. Moreover, due to diversity of file sizes, there
is a big spread in the amount of available features for each
file. In the next section we aim to show already existing
approaches in text classification to tackle independence
assumptions and different number of features across the files.

A. Bernoulli Naive Bayes
A Bernoulli NB model was chosen due to the relevance of

using binary features in a two class classification problem.



This is because most of the features occur only once and
malware can most probably be characterized by the presence
of a feature, rather than its quantity. In Bernoulli setting the
class conditional density is as follows:

p(w|y = c,φ) =

D∏
i=1

Ber(wi|φic)

=

D∏
i=1

φwi
ic (1− φic)

1−wi ,

(2)

where y is the output vector with class labels for N files.

The classification problem in our context is to predict
whether the file is malicious or benign, so c = {mal, ben}.
File is represented by a binary vector w = (w1, w2, ..., wD),
where wi = 1 if the ith feature present in the file.

At the same time we can estimate likelihood without
modeling absence terms:

p(w|y = c,φ) =

D∏
i=1

φwi
ic (3)

Modeling term absence in high dimensional feature space
is not always practical or beneficial. One of the reasons is
that the absence probability estimate 1 − φic can dominate
significantly over the low presence probability estimate φic
for most of the features. It can occur due to extremely
sparse dataset. We present in section B the experiments on
modeling the absence features and show that they reduce the
quality of the Bernoulli NB for our problem.

Now we present the posterior as a ratio of the probability
of a file to belong to a malicious class to the probability of
belonging to a benign class. This formula takes into account
only present features and can be found in [22]. So, in order
to determine a class for a file f , we need to evaluate the
following formula:

p(y = mal|f)
p(y = ben|f)

=
p(mal)

p(ben)
·

F∏
i=1

p(wi = 1|mal)
p(wi = 1|ben)

, (4)

where F denotes the number of features in the file f that
intersect with the training set features.

We change the formulas to log scale to avoid arithmetic
overflow and for better interpretation. The Naive Bayes rule
can be reformulated using log-likelihood ratios as follows:

θi = log
p(wi = 1|mal)
p(wi = 1|ben)

(5)

and the posterior ratios as:

log
p(y = mal|f)
p(y = ben|f)

= log
p(mal)

p(ben)
+

F∑
i=1

θi. (6)

In log scale a positive ratio shows that a feature occurs more
in the malicious class than benign.

B. Existing techniques for tackling independence assump-
tions

Despite the fact that in [26] the authors show that NB
classifiers can result in near optimal accuracy with the
independence assumptions, there has been much work to
tackle this assumption. In [27], several weight modification
methods were proposed to tackle independence assumption
and to mimic language distribution in Multinomial NB. The
proposed techniques included normalizing maximum log-
likelihood estimates θic for the ith feature in a class c ∈ C
by the sum of log estimates of all features, that is:

θic =
θci∑
k θck

. (7)

Another modification from [27] is multiplying the fre-
quency of the ith word in the jth document dij by the
Inverse Document Frequency [28], driven from Information
Retrieval:

dij = dij

∑
k 1∑

k δik
, (8)

where δij is 1, if the ith word occurs in the jth document
and

∑
k 1 is the number of documents.

The authors in [27] also proposed to normalize the ith

feature frequency by the total sum of frequencies of words
in the jth document:

dij =
dij√∑
k d

2
kj

. (9)

In our binary vector setting this formula is equivalent to
document length normalization. Taking into account the
diversity of file sizes, normalization changes the term fre-
quencies differently across the files. These three ideas were
tested, but they did not increase the performance of both
Bernoulli NB and Multinomial NB classifiers. We provide
the results of our experiments in Table II. A dataset for this
and later experiments contains 10,000 samples in the training
set and 10,000 in test set with equal number of malicious
and benign files in both sets. Laplace smoothing parameter k
is set to 0.0001 (we show why in Section IV D) and only the
features, that were seen more than two times in the training
phase were taken into account for classification. From Table
II we can infer, that Multinomial NB does not bring any
good results for our binary features.

IV. IMPROVED IMPLEMENTATION OF BERNOULLI NAIVE
BAYES

The results of this section are based on the techniques
that we introduced for Bernoulli Naive Bayes in order to
achieve low FPR and keep reasonably good TPR. These
modifications include: simple, but effective feature selection,
scaling, tuned Laplace smoothing and decision boundary
selection.



method modification FPR, % TPR, %
Bern. standard 0.08 67.42

Bern. Eq. 7 0 0.18

Bern. Eq. 8 0.08 69.88

Bern. Eq. 9 0.04 60.36

Bern. no absent, Eq. 7 0 0.26

Bern. no absent, Eq.8 0.08 68.82

Bern. no absent, Eq. 9 0.04 60.36

Multin. standard 0.02 30.14

Multin. Eq. 7 0 0.18

Multin. Eq. 8 0.04 27.20

Multin. Eq. 9 0.04 41.36

Bern. no absent, scaling 0.10 82.10

Table II: Experiments with Bernoulli and Multinomial NB
with modifications. “no absent” denotes ignoring absence
features. From the last line of the table we can infer
that proposed Normalized Bernoulli NB outperforms other
modifications with 99.9% TNR and 82.1% TPR.

A. Feature Selection

Despite the fact that NB is a scalable algorithm, we would
like to optimize the complexity and discard potentially
irrelevant features. We decided to restrict the minimum
occurrence for each feature, denoted as α and minimum
number of letters in the feature as β. We found that to
keep high accuracy even features seen in 3 files were
beneficial. To control the number of features, we filter them
by β. By random selection of short features we figured
out that short strings denoted numbers and other random
strings unrelated to the code. The results of experiments
with different thresholds are shown in Table III. By setting
the threshold α = 3, we have a wider set of features and a
better accuracy. The performance did not decrease much by
setting a higher β, but we benefited from discarding non-
informative features. As stated in [29], omitting infrequent
features is not the best strategy in this classifier.

B. Scaling

Now we present our own modifications, based on nor-
malizing the sum of log-factors during classification. In
Equation 6 the number of log-factors θi to sum up is
different for each file. So while summing log-factors θi
for each file f during the classification, the size of the
file can introduce potential bias to the sum. Indeed we are
using a different number of features in the sum and some
normalization is needed to compare the sum across the files.
In order to decrease the bias, the sum of factors is divided

Settings FPR, % TPR, % # features
α = 3,β = 3 0.46 82.9 4833680

α = 3,β = 4 0.46 83.00 4818990

α = 3,β = 5 0.46 83.12 4786793

α = 4,β = 3 0.46 80.76 3710978

α = 4,β = 4 0.42 80.78 3698627

Table III: The effect of different settings in feature selection
on the performance of Normalized NB. α denotes a thresh-
old of the minimum feature occurrence and β denotes the
minimum number of letters in the feature name.

by the number of features with non-zero θi equal to F :

D(f) =
1

F

F∑
i=1

θi. (10)

We call this modification Normalized Bernoulli NB. Next
we illustrate the effect of using modified log-likelihood on
the decision boundary. As the final decision depends on
log-factor sums, the analysis of their histogram gives a
good intuition about how successful we are in achieving
the best possible FPR. Now we compare the boundaries of
standard and Normalized Bernoulli NB in their classification
performance.

The experimental balanced dataset as before contains
20,000 samples from both classes, k = 0.0001, α = 3
and β = 5. The values of α and β were chosen based
on the results of previous feature selection experiments. In
Figures 2 and 3 the histograms of log-factor sums for both
methods are shown. In Bernoulli NB the boundary between
two classes is asymmetrical and a low FPR is achieved easier
than a low FNR. By achieving a low FPR, we get a relatively
high FNR. Moreover, I performed a separate experiment
with cross-validation, where 20,000 samples were divided
into 4 folds and each time 2 folds served as a training set
and 2 folds as a testing set. Average FPR of 0.067% and
TPR of 87.338% were achieved.

Next, compare Figure 2 and Figure 3 which shows
Normalized Bernoulli NB for the value of k = 0.0001.
The intersection of false malicious and false benign log-
factor sums is more symmetric in Figure 3. In addition
to that, low FPR can be achieved with lower FNR. Thus,
modified method proves to be more effective for the current
problem in achieving both low FPR and FNR. Complexity
stays linear, however to find the border to achieve low
FPR takes additional pass through zero-class instances from
training set. We will explain how to select the decision
boundary in advance to achieve the desired low FPR in the
following section. At the same time adjusting k may take
several validation experiments. We make as well remarks on



Figure 2: The histogram of log-factor sums D(f) for malicious and benign test files using Bernoulli NB. The intersection
between two histograms is quite skewed. It is more difficult to find the border to get desired FNR due to the heavy-tail
distribution of the intersection between two classes.

Figure 3: The histogram of log-factor sums D(f) for malicious and benign test files using Normalized Bernoulli NB. The
boundary in this case is more clear. We can adjust the boundary to get low FPR or FNR. The histogram does not have a
heavy-tail in the intersection between two classes unlike in standard Bernoulli NB.

choosing parameter k to have better class separation.

C. Selecting the decision boundary

A natural question that arises when assigning the class
label is how the class boundary between two classes is
decided. As we use factors θi in a log scale, the default

boundary for sum D(f) from Equation 10 would be zero.
However, taking into account our low FPR preference, we
try to find such a boundary that we achieve close to 0 FPR.
In this section we show also why our proposed Normalized
Bernoulli NB is a better method compared to Bernoulli NB
for selecting the boundary between the classes.



The boundary is selected using D(f) while calculating
log-factors θi ∈ θ. In order to make low FPR, we have
chosen the maxD(f) for benign files. It is the value of the
classification boundary, where the highest TPR is achieved
with FPR = 0. For example in Figure 3 the boundary in the
test set would be the point belonging to the right most green
bar.

k FPR, % TPR, %
1 0.08 43.16

0.1 0.08 62.78

0.01 0.18 75.0

0.001 0.32 80.04

0.0001 0.42 83.14

Table IV: The effect of parameter k on classification perfor-
mance in the test set.

D. Tuning Laplace smoothing parameter

It has been shown in [23] that by smoothing maximum
likelihood estimate as well as log-factors θi we avoid zero
probabilities for some features. In Laplace smoothing [23]
it is implemented by adding small constant k to both
the number of malicious files with feature wi denoted as
c(wi,mal) and to the number of benign files with feature
wi as c(wi, ben):

θi = log

c(wi,mal)+k
M+2k

c(wi,ben)+k
B+2k

, (11)

where B and M are the numbers of malicious and benign
files accordingly.

In [24], k is chosen to be 1; however in [25] k is
proposed to be 1

N , where N is the number of training
samples. We conducted an experiment on the same balanced
dataset with α = 3, β = 5 and several values of k, using
Normalized Bernoulli NB. The purpose of the experiment
was to compare overall performance and to see how low
FPR we can achieve. It is clearly seen from Table IV, that
with increasing k the performance drops. However, at the
same time with increasing k FPR decreases. Although with
k = 1 TPR does not seem to be trustworthy. This experiment
agrees with the proposition of [25] to set k = 1

N .

V. OVERVIEW OF THE STATE OF THE ART

Malware classification methods fall into two main cat-
egories: dynamic and static. First one implies performing
dynamic analysis, where malicious behavior is detected after
a sample is executed in the experimental environment or
via sandboxing. An elaborated survey on dynamic malware-
analysis techniques is presented in [5]. The scope of our

method is based on a static off-device approach, so we focus
on the overview of the static approaches here.

Static-based methods can be classified into signature-
based and machine learning-based. In this approach an
application is analyzed without being executed, but based on
its features. Signature-based features are less reliable as they
can be obfuscated by bytecode-level code transformation [6].
Another type of features can be extracted from APK package
files or by decompilation of APK files to Java code. Ex-
tracted features have been used for malware classification in
several areas, including Data Mining [7], Machine Learning
[8], Clustering [9], etc.

Graph representations are widely used for code analysis.
Android malware classification using features from a Java
code of the APKs was implemented in [6]. In this paper,
Java byte-code is transformed into a corresponding graph
representation. The similarity of the features is measured by
the similarity of the corresponding graphs which enable bet-
ter understanding of API calling contexts. In [10] two-level
behavioral graph representation is used to capture Android
application logic and to label elements of the graph that
capture malicious behavioral patterns. The authors predict
most probable malware family and find malicious modalities.
Malicious applications were identified with 95.3% detection
rate and only 0.4% FPR.

Machine Learning techniques, including Support-vector
machines (SVM) [11], Naive Bayes combined with feature
selection are popular as well, however they differ a lot in
the feature engineering approaches. We want to outline the
results of [12] and [8] whose papers are closely related to our
work. In [12], only permissions from AndroidManifest.xml
files are used in a One-Class-SVM classifier with kernels.
Authors solely use benign application samples and permis-
sions out of the diverse set of features that can potentially
be mined from APK data. Another related paper is [8],
where a Naive Bayes Classifier is used for analysis of
reversed-engineered APK Java code. After getting Java code
from compiled files, a Java-code analyzer mines a set of
features, including API calls, commands, permissions, etc.
Top 25 features selected by Mutual Information [13] are
used in Naive Bayes classifier. On a small test set with 1000
samples, the classification accuracy reaches 92.1%, FPR is
6.3% and TPR is 90.6%. One of the weakness in the paper
is that FPR is quite high. Selecting only 25 features might
be insufficient for generalizing to new unseen samples due
to the variety of malware families.

In [14], features from APK files were used to classify
Android applications into two categories: games and tools
due to unavailability of malicious and benign files. However,
they evaluated several Machine Learning methods, including
Decision Tree [15], Naive Bayes, Boosted Bayesian Net-
works [16] and etc. Boosted Bayesian Networks with 800
features selected by Information Gain yielded 17.2% FPR
and accuracy of 91.8%.



The main contribution of our paper in the group of
static approaches is its low complexity and the ability to
achieve low FPR in comparison to the existing methods.
The classification boundary of the Naive Bayes classifier
can be adjusted to get the desired balance between FPR and
TPR. Using our Normalized Bernoulli NB, we can achieve
FPR = 5% and TPR = 98% or even lower FPR = 0.1% with
TPR = 82.1% outperforming the above-mentioned state of
the art results. Compared to mentioned Machine Learning
techniques, we prefer soft feature selection instead of a tight
one to generalize better to new unseen samples. In addition,
Normalized Bernoulli NB can be implemented in Java and
installed on the mobile phone to classify new applications
to be installed.

VI. CONCLUSION

In this paper we introduced the static algorithm for
Android Malware Classification that keeps low FPR, high
overall accuracy and performs real-time classification. The
features from Android application package files, including
AndroidManifest.xml, classes.dex and resources.arsc were
used for classification. We presented Normalized Bernoulli
NB, that outperforms Bernoulli NB and some of its existing
modifications in the accuracy and gives a better class sepa-
ration. Our modification involves tuning Laplace smoothing
parameter and normalizing the sum of log-factors by the
length of the file. Using Normalized Bernoulli NB we
achieved very low FPR of 0.1% and TPR of 82.10% with
10,000 training and 10,000 test samples. As a result our
fast and easy-implementable approach can be used by anti-
virus companies to protect their Android users. The decision
making algorithm can be implemented on an Android mobile
phone in Java. The approach presented in this paper is
currently being expanded by F-Secure.

VII. ACKNOWLEDGEMENTS*

This work was supported by the Academy of Fin-
land ”Cloud Security Services” project (13283212). Special
thanks to Professor N. Asokan from Aalto University and
senior researcher Alexey Kirichenko from F-Secure for
giving precious comments about the paper.

REFERENCES

[1] F-Secure, “Mobile threat report q1 2014.” [Online]. Avail-
able: https://www.f-secure.com/documents/996508/1030743/
Mobile Threat Report Q1 2014.pdf

[2] M. Garnaeva, V. Chebyshev, D. Makrushin, R. Unuchek,
and A. Ivanov, “Kaspersky security bulletin 2014.
Overall statistics for 2014.” [Online]. Available: http:
//securelist.com/analysis/kaspersky-security-bulletin/68010/
kaspersky-security-bulletin-2014-overall-statistics-for-2014/

[3] D. Barber, Bayesian Reasoning and Machine Learning.
Cambridge University Press, 2012.

[4] K. P. Murphy, Machine Learning A Probabilistic Perspective.
The MIT Press, 2012.

[5] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on
automated dynamic malware-analysis techniques and tools,”
ACM Computing Surveys (CSUR), vol. 44, no. 2, p. 6, 2012.

[6] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-Aware
Android malware classification using weighted contextual
API dependency graphs,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Se-
curity, ser. CCS ’14. ACM, 2014, pp. 1105–1116.

[7] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and
J. Blasco, “Dendroid: A text mining approach to analyzing
and classifying code structures in android malware families,”
Expert Systems with Applications, vol. 41, no. 4, Part 1, pp.
1104 – 1117, 2014.

[8] S. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new
Android malware detection approach using Bayesian clas-
sification,” in 2013 IEEE 27th International Conference on
Advanced Information Networking and Applications (AINA),
March 2013, pp. 121–128.

[9] E. Gandotra, “Malware analysis and classification: A survey,”
Journal of Information Security, no. 5, pp. 56–64, 2014.

[10] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras,
“Droidminer: Automated mining and characterization of fine-
grained malicious behaviors in android applications,” in
Computer Security - ESORICS 2014, ser. Lecture Notes in
Computer Science, 2014, vol. 8712, pp. 163–182.

[11] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[12] J. Sahs and L. Khan, “A machine learning approach to
Android malware detection,” in European Intelligence and
Security Informatics Conference (EISIC), Aug 2012, pp. 141–
147.

[13] T. M. Cover and J. A. Thomas, Elements of Information
Theory. New York, NY, USA: Wiley-Interscience, 1991.

[14] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code
analysis for classifying android applications using machine
learning,” in Computational Intelligence and Security (CIS),
2010 International Conference on, 2010, pp. 329–333.

[15] J. R. Quinlan, “Induction of decision trees,” Machine Learn-
ing, vol. 1, no. 1, pp. 81–106, Mar. 1986.

[16] Y. Jing, V. Pavlović, and J. M. Rehg, “Boosted bayesian
network classifiers,” Machine Learning, vol. 73, no. 2, pp.
155–184, 2008.

[17] “App manifest.” [Online]. Available: http://developer.android.
com/guide/topics/manifest/manifest-intro.html

[18] “Dalvik executable format.” [Online]. Available: http:
//source.android.com/devices/tech/dalvik/dex-format.html

[19] F. Peng, D. Schuurmans, and S. Wang, “Augmenting Naive
Bayes classifiers with statistical language models,” Informa-
tion Retrieval, vol. 7, no. 3-4, pp. 317–345, 2004.

https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
http://securelist.com/analysis/kaspersky-security-bulletin/68010/kaspersky-security-bulletin-2014-overall-statistics-for-2014/
http://securelist.com/analysis/kaspersky-security-bulletin/68010/kaspersky-security-bulletin-2014-overall-statistics-for-2014/
http://securelist.com/analysis/kaspersky-security-bulletin/68010/kaspersky-security-bulletin-2014-overall-statistics-for-2014/
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://source.android.com/devices/tech/dalvik/dex-format.html
http://source.android.com/devices/tech/dalvik/dex-format.html


[20] V. Narayanan, I. Arora, and A. Bhatia, “Fast and accu-
rate sentiment classification using an enhanced Naive Bayes
model,” Intelligent Data Engineering and Automated Learn-
ing IDEAL 2013, pp. 194–201, 2013.

[21] W. Wei, S. Visweswaran, and G. F. Cooper, “The applica-
tion of naive Bayes model averaging to predict Alzheimer’s
disease from genome-wide data,” Journal of the American
Medical Informatics Assosiation, pp. 370–375, 2011.

[22] A. Y. Ng and M. I. Jordan, “On Discriminative vs. Gen-
erative Classifiers: A comparison of logistic regression and
naive Bayes,” in Advances in Neural Information Processing
Systems 14. MIT Press, 2002, pp. 841–848.

[23] C. Zhai and J. Lafferty, “A study of smoothing methods
for language models applied to information retrieval,” ACM
Transactions on Information Systems, vol. 22, no. 2, pp. 179–
214, 2004.

[24] Q. Yuan, G. Cong, and N. M. Thalmann, “Enhancing Naive
Bayes with various smoothing methods for short text classifi-
cation,” in Proceedings of the 21st International Conference
Companion on World Wide Web, 2012, pp. 645–646.

[25] R. Kohavi, B. Becker, and D. Sommerfield, “Improving sim-
ple Bayes,” 1997, Poster, presented at European Conference
on Machine Learning.

[26] D. P and P. M, “On the optimality of the simple Bayesian
classifier under zero-one loss,” Machine Learning - Special
issue on learning with probabilistic representations, vol. 29,
pp. 103–130, 1997.

[27] J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tack-
ling the poor assumptions of Naive Bayes text classifiers,” in
In Proceedings of the Twentieth International Conference on
Machine Learning, 2003, pp. 616–623.

[28] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval, 2008.

[29] S. N. Pages and A. Aizawa, “Akiko aizawa linguistic tech-
niques to improve the performance of automatic text cate-
gorization,” in Proceedings 6th NLP Pacific Rim Symposium
NLPRS-01, 2001, pp. 307–314.


