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Motivation
Deep learning today:

I Mostly about pure supervised
learning

I Requires a lot of labeled
data: expensive to collect

Deep learning in the future:

I Unsupervised, more
human-like

“We expect unsupervised learning to become far
more important in the longer term. Human and
animal learning is largely unsupervised: we dis-
cover the structure of the world by observing it,
not by being told the name of every object.”
–LeCun, Bengio, Hinton, Nature 2015
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Motivation: Ladder network

Yearly progress in permutation-invariant MNIST.
A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko.
Semi-Supervised Learning with Ladder Network. ArXiv, July 2015.
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Semisupervised learning

How can unlabeled data help in classification?
Example: Only two data points with labels.
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Semisupervised learning

How would you label this point?
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Semisupervised learning

What if you see all the unlabeled data?
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Semisupervised learning

Labels are homogenous in densely populated space.
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Semisupervised learning

Labeled data: {xt , yt}1≤t≤N .
Unlabeled data: {xt}N+1≤t≤M .
Often labeled data is scarce, unlabeled data is plentiful:
N � M .

Early works (McLachlan, 1975; Titterington et al., 1985)

modelled P(x|y) as clusters.
Unlabeled data affects the shape and size of clusters.
Use Bayes theorem P(y |x) ∝ P(x|y)P(y) to classify.
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How about P(y |x) directly?

Modelling P(x|y) is inefficient when real task is P(y |x).

Idea? Assign probabilistic labels q(yt) = P(yt |xt) to
unlabeled inputs xt , and train P(y |x) with them.
However, there is no effect as the gradient vanishes:

Eq(y)

[
∂

∂θ
logP(y | x)

]
=

∫
q(y)

∂
∂θ
P(y | x)

P(y | x)
dy

=
∂

∂θ

∫
P(y | x)dy =

∂

∂θ
1 = 0.

There are ways to adjust the assigned labels q(yt) to
make them count.
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Adjusting assigned labels q(yt) (1/2)

Label propagation (Szummer and Jaakkola, 2003)

I Nearest neighbours tend to have the same label.

I Propagate labels to their neighbours and iterate.

Pseudo-labels (Lee, 2013)

I Round probabilistic labels q(yt) towards 0/1
gradually during training.
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Adjusting assigned labels q(yt) (2/2)
Co-training (Blum and Mitchell, 1998)

I Assumes multiple views on x, say x = (x(1), x(2)).

I Train a separate classifier P(y | x(j)) for each view.

I For unlabeled data, the true label is the same for
each view.

I Combine individual q(j)(yt) into a joint q(yt) and
feed it as target to each classifier.

Part of Ladder network (Rasmus et al., 2015)

I Corrupt input xt with noise to get x̃t .

I Train P(y |x̃) with a target from clean
q(yt) = P(yt |xt).
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Unsupervised learning

Data is just x′, not input-output pairs x, y.
Possible goals:

I Model P(x′), or

I Representation f : x′ → h.

Comparisons to supervised learning P(y|x):

I See data as x′ = y, model P(y|x = ∅)

I No right output y given, invent your own output h

I Concatenate inputs and outputs to x′ = [x; y],
prepare to answer any query, including P(y|x).

From here on, data is just x. Notation x′ was used to avoid confusion.
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Approaches to unsupervised learning (1/2)
Besides kernel density estimation, virtually all
unsupervised learning approaches use variables h.

I Discrete h (cluster index, hidden state of HMM,
map unit of SOM)

I Binary vector h (most Boltzmann machines)

I Continuous vector h (PCA, ICA, NMF, sparse
coding, autoencoders, state-space models, . . . )

Vocabulary:

I Encoder function f : x→ h

I Decoder function g : h→ x̂

I Reconstruction x̂

h

x x

f g
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Approaches to unsupervised learning (2/2)

Often the encoder function f : x→ h is implicit:

I Nearest cluster center f (x) = arg minh D(x, ch)

I Bayesian inference in a generative model, e.g.
maximum a posteriori f (x) = arg maxh P(x|h)P(h)

In complex models, exact inference is often impossible.
Approximate inference might hurt learning.

Autoencoders have an explicit encoder function f (·),
which makes learning complex models easier:
Just backpropagation!
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PCA as an autoencoder (1/2)

h

x x

f g

Assume linear encoder and decoder:
f (x) = W(1)x + b(1)

g(h) = W(2)h + b(2)

PCA solution minimizes criterion C = E
[
‖x− x̂‖2

]
.

Note: Solution is not unique, even if restricting
W(2) = W(1)>.
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PCA as an autoencoder (2/2)

Just learning the identity mapping g(f (·)) = I (·)?
x̂ = g(f (x)) =

(
W(2)W(1)

)
x +

(
W(2)b(1) + b(2)

)
We get x̂ = x when W(2) = (W(1))−1 and
b(2) = −W(2)b(1).
So any encoder with an invertible W(1) is optimal.

How to make the autoencoding problem harder?
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Regularized autoencoders

Regularization avoids learning the identity function:

I Bottleneck autoencoder (limit dimensionality of h)
(Bourlard and Kamp, 1988, Oja, 1991)

I Sparse autoencoder (penalize activations of h)
(Ranzato et al., 2006, Le et al., 2011)

I Denoising autoencoder (inject noise to input x)
(Vincent et al., 2008)

I Contractive autoencoder (penalize Jacobian of f (·))
(Rifai et al., 2011)

I Sometimes also weight sharing W(2) = W(1)>.
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Denoising autoencoder (Vincent et al., 2008)

Feed corrupted inputs x̃ ∼ c(x̃|x)
I Additive noise x̃ = x + ε where e.g. εi ∼ N (0, σ2)
I Salt noise x̃ = m� x or x̃i = mixi

where binary mi ∼ Bernoulli(p)
I Masking noise x̃ = [m� x;m]

Train x̂ = g(f (x̃)) to minimize reconstruction error,

e.g. C = E
[
‖x̂− x‖2

]
.

Tapani Raiko (Aalto University) Combining Supervised and Unsupervised Learning (and the Ladder Network)19 August 2015 24 / 68



Denoising autoencoder

Basic encoder h = f (x̃) = Φ
(
W(1)x̃ + b(1)

)
and decoder x̂ = g(h) = W(2)h + b(2).
Deep autoencoder: both f and g multi-layered.
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What does denoising autoencoder learn?

To point g(f (·)) towards higher probability.
Image from (Alain and Bengio, 2014)
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Denoising versus probabilistic modelling

I We noted that denoising models are much easier to
train than probabilistic models.
Trainable by basic back-propagation.

I There is a strong connection between the two:
Models can be converted into each other.
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Probability to denoising

Given: Model P(x) and observation x̃ = x + noise.
Noise distribution known.
Task: Find x̂ = arg minEx

[
(x − x̂)2

]
.

Solution: Compute the posterior P(x | x̃),
use its center of gravity as reconstruction x̂ .
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Probability to denoising
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Denoising to probability
(Generative Stochastic Networks, Bengio et al., 2014)

Markov chain alternating between corruption C (X̃ |X )
and denoising P(X |X̃ ).
Theoretical result: Stationary distribution is P(X ).
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Denoising to probability (Bengio et al., 2014)

Generating samples from the Markov chain.
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Denoising to probability (Bengio et al., 2014)

Reconstructing the left half.
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Layerwise pretraining

I Use unsupervised learning to construct
representations layer by layer (Ballard, 1987).

I Breakthrough with Boltzmann machines (Hinton and

Salakhutdinov 2006), starting deep learning boom.

I Presented here: Stacked denoising autoencoders
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Layerwise pretraining

xnoise x

x

f

h

g

Phase 1: Denoising autoencoder.
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Layerwise pretraining

xnoise x

x

f

h

g

Toss away the decoder g(·).
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Layerwise pretraining

g

h hnoise

f2 2

f1

1 1

h2

x

frozen

Phase 2: Stack another layer, keep the bottom fixed.
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Layerwise pretraining

g

h hnoise

f2 2

f1

1 1

h2

x

frozen

Toss away the second decoder g2(·).
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Supervised finetuning

h

f2

1

h2

y

x

f1

f
3

noise

Phase 3: Supervised finetuning with labels y .
Note: Encoder f of an autoencoder is the same mapping

as used in supervised learning.
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On details and invariance

What is average of images in the category Cat?
What is the average of Dog?
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On details and invariance

Answer: both are just blurry blobs.
Autoencoder tries to learn a representation from which it
can reconstruct the observations.
It cannot discard details: position, pose, lighting. . .
⇒ Not well compatible with supervised learning.
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Ladder network, main ideas

I Shortcut connections in an autoencoder network
allow it to discard details.

I Learning in deep networks can be made efficient by
spreading unsupervised learning targets all over the
network.
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Combining DSS+DAE

Denoising Source Separation
(Särelä and Valpola, 2005)

Denoising Autoencoder
(Vincent et al., 2008)

Ladder Network
(Valpola, 2015, Rasmus et al., 2015)
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Same encoder f (·) used for corrupted and clean paths.
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Supervised learning: Backprop from output ỹ.
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Unsupervised learning:
Several denoising autoencoders simultaneously.
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Unsupervised learning:
Produce robust representations (DSS aspect).
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Read test output from the clean path. (Not used in training.)
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Training criterion

Only one phase of training: Minimize criterion C.

C = − logP(ỹ = yt |xt) +
L∑

l=0

λl

∥∥∥z(l) − ẑ
(l)
BN

∥∥∥2
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Scaling issues

Issue 1: Doubling W(1) and halving W(2) decreases noise.
Issue 2: Collapsing z(1) = ẑ(1) = 0 eliminates cost C (1).
Solution: Batch normalization (Ioffe and Szegedy, 2015)
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Some model details

h

h

Wh

znoise

normalize

scaling and bias

nonlinearity

z

normalize

Vz

u

u

g(z,u)
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Functional form of lateral connections?

Gaussian model: P(z) = N (µ, σ2p)

Gaussian noise: P(z̃ |z) = N (z , σ2n)

Optimal denoising: ẑ = σ2
n

σ2
p+σ2

n
µ +

σ2
p

σ2
p+σ2

n
z̃

Top-down signal u corresponds to P(z).
Modulating (multiplying, gating) z̃ corresponds to
variance modelling.
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Functional form of lateral connections?

How to interpret u modulating:
Does this detail in z̃ fit in the big picture?
If yes, trust it at let it through to reconstruction ẑ.
If not, filter it away as noise.
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Analysis: Unsupervised learning

f (1) g(0)

g(1)f (2)

h(1) ĥ(1)

h(2)

x̂x̃

f (1) g(0)

g(1)f (2)

g(2)

h(1) ĥ(1)

h(2)

x̃ x̂

ĥ(2)

We compare deep denoising autoencoder and Ladder
with additive or modulated lateral connections.
Data is small natural image patches.
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Analysis: Unsupervised learning
Denoising performance

↵ = 0.25

↵ = 4.0
0.0 0.1 0.2 0.3 0.4 0.5 1.0 2.0 3.0

α
0
.1
1
5

0
.1
2
0

0
.1
2
5

Cost Mod No-lat Add

1 million parameters, vary sizes of layers.
Result: Modulated connections best.
Ladder needs fewer units on h(2).
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Analysis: Unsupervised learning

Translation invariance measure of units h(2) as a function
of unit significance.

10−3 10−2 10−1 100
0.0

0.2

0.4

0.6

0.8

1.0

γ
(2)
i

Mod 256-1622-50

10−2 10−1 100

Add 256-839-336

10−2 10−1 100

No-lat 256-590-589

With modulated connections, all units become invariant.
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Analysis: Unsupervised learning

Learned pooling functions

Each h(1) unit belongs to several pooling groups.
Units h(2) specialize to colour, orientation, location, . . .
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Small network for ẑi = g(z̃i , ui)

Each unit i has its own mini network with 9 parameters.
Few parameters compared to weight matrices.
Product ui z̃i for modulating (variance modelling).
Nonlinearity for multimodal distributions.
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Example of a multimodal distribution

Signal z
(L)
0 for digit 0 just before softmax.
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MNIST results
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Thanks for listening!

Thanks to Antti Rasmus and Harri Valpola for some slides.
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Possible exercises

I Follow the Theano tutorial on denoising
autoencoders:
deeplearning.net/tutorial/dA.html

I Examine and try the Ladder network code:
github.com/arasmus/ladder
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