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Deep learning is hot in academy

I ”Deep learning . . . dramatically improved the
state-of-the-art in speech recognition, visual object
recognition. . . ” (LeCun et al., Nature, 2015)

I ”. . . bridges the divide between high-dimensional
sensory inputs and actions, resulting in the first
artificial agent. . . ” (Mnih et al., Nature, 2015)

I ”Knowing the sequence specificities of DNA- and
RNA-binding proteins is essential . . . deep learning
outperforms other state-of-the-art methods”
(Alipanahi et al., Nature Biotechnology, 2015)
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Deep learning is hot in industry

Google acquired startup DeepMind for $500M in 2014.
Also racing: Facebook, Baidu, IBM, Amazon, Samsung,
Nvidia, Nokia, . . .
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Deep learning is changing the world
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Caption generation (Vinyals et al., 2015)



Speech recognition breakthrough

Plot from Yoshua Bengio
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Imagenet classification challenge

Yearly competition in computer vision.
Krizhevsky et al. (2012) won with huge margin
(16.4% error compared to 26.2%) by deep learning.
Soon everyone started using deep learning.
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Representation learning

Traditional way:
Data → Feature engineering → Machine learning

I Feature selection

I Feature extraction (e.g. PCA)

I Feature construction (e.g. SIFT)

Deep learning way:
Data → End-to-end learning
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Y LeCun
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Review article, May 2015:

Book, draft available online:

Portal: deeplearning.net
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Example: MNIST handwritten digits

Train a network to classify 28× 28 images.
Data: 60000 input images x(n) and labels y(n).
Example model gives around 1.2% test error.
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Example Network

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

y = softmax(W(3)h(2) + b(3))

h(2) = relu(W(2)h(1) + b(2))

h(1) = relu(W(1)x + b(1))

softmax(z)i = exp(zi )∑
j exp(zj)

relu(z) = max(0, z)
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Weight matrix W(1) size 225× 784
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Signals x→ h(1) → h(2) → y

x h(1)

h(2) y
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On sparsity

h(1) h(2)

How often hi > 0? Histogram over units i .
(Sometimes units become completely dead.)

Tapani Raiko (Aalto University) Introduction to Deep Learning 17 August 2015 18 / 54



On activation functions

relu(z) = max(0, z) is replacing old sigmoid and tanh.
Note that identity function would lead into:

h(2) = W(2)h(1) + b(2)

= W(2)(W(1)x + b(1)) + b(2)

= (W(2)W(1))x + (W(2)b(1) + b(2))

= W′x + b′
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Training criterion

Find parameters

θ = {W(L),b(L)}

that minimize expected
negative log-likelihood:

C = Edata [− logP(y|x,θ)] .

Learning becomes optimiza-
tion.

Say we have a true distribution P(y | x) and we would
like to find a model Q(y | x, θ) that matches P. Let us
study how maximizing expected negative log-likelihood
C = EP [− log Q] works as a learning criterion.

θ
∗ = arg min

θ
C(θ) = arg min

θ
EP(y|x) [− log Q(y | x, θ)] .

Let us assume that there is a θ∗ for which Q(y|x, θ∗) =
P(y|x). We can note that the gradient at θ∗

∂

∂θ
EP(y|x)

[
log Q(y | x, θ∗)

]
= EP(y|x)

[
∂

∂θ
log Q(y | x, θ∗)

]

=

∫
P(y | x)

∂
∂θ

Q(y | x, θ∗)

Q(y | x, θ∗)
dy

=

∫
∂

∂θ
Q(y | x, θ∗)dy

=
∂

∂θ

∫
Q(y | x, θ∗)dy =

∂

∂θ
1 = 0

becomes zero, that is, the learning converges when Q =
P. Therefore the expected log-likelihood is a reasonable
training criterion.
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Tiny Example

input x

1 outputoutput y

hidden h 1 unit

1 input

1 weight

1 weight

y ∼ N (w2h, 1)
h = w1x
Data ”set”: {x = 1, y = 1.5}
Some weight decay.
C = (w1w2−1.5)2+0.04(w 2

1 +w 2
2 )
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Gradient g = ∇θC (θ) =


∂C
∂θ1...
∂C
∂θn


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Gradient descent, ηk = 0.25 (→ too slow)
θk+1 = θk − ηkgk , iteration k , stepsize (or learning rate) ηk
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Gradient descent, ηk = 0.35 (→ oscillates)
θk+1 = θk − ηkgk
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Newton’s method, too complex

θk+1 = θk −H−1k gk , H =


∂2C
∂θ1∂θ1

· · · ∂2C
∂θ1∂θn... . . . ...

∂2C
∂θn∂θ1

· · · ∂2C
∂θn∂θn


Less oscillations.
Points to the wrong direc-
tion in places (solvable).
Computational complexity:
#params3 (prohibitive).
There are approximations,
but not very popular.
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Momentum method (Polyak, 1964)

mk+1 = αmk − ηkgk
θk+1 = θk + mk+1
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Momentum method with noisy gradient
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Mini-batch training
No need to have an accurate estimate of g.
Use only a small batch of training data at once.
Leads into many updates per epoch (=seeing data once).
E.g. 600 updates with 100 samples per epoch in MNIST.

Important to anneal stepsize ηk towards the end, e.g.

Adaptation of ηk possible (Adam, Adagrad, Adadelta).
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W(1) after epoch 1
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W(1) after epoch 2
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W(1) after epoch 3
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W(1) after epoch 4
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W(1) after epoch 5
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W(1) after epoch 10
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W(1) after epoch 50 (final)
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Backpropagation (Linnainmaa, 1970)

Computing gradients in a network.

input x

1 outputoutput y

hidden h 1 unit

1 input

1 weight

1 weight

First with scalars. Use chain rule:

∂C

∂w2
=
∂C

∂y

∂y

∂w2

∂C

∂w1
=
∂C

∂y

∂y

∂h

∂h

∂w1
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Backpropagation

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

With vectors, consider multiple paths:

∂C

∂W
(3)
ij

=
∂C

∂yi

∂yi

∂W
(3)
ij

∂C

∂W
(2)
jk

=
∑
i

∂C

∂yi

∂yi

∂h
(2)
j

∂h
(2)
j

∂W
(2)
jk

∂C

∂W
(1)
kl

=
∑
i ,j

∂C

∂yi

∂yi

∂h
(2)
j

∂h
(2)
j

∂h
(1)
k

∂h
(1)
k

∂W
(1)
kl

How many paths
as a function of depth?
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Backpropagation
Dynamic programming avoids exponential complexity.

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

Store intermediate results

∂C

∂h
(2)
j

=
∑
i

∂C

∂yi

∂yi

∂h
(2)
j

∂C

∂h
(1)
k

=
∑
j

∂C

∂h
(2)
j

∂h
(2)
j

∂h
(1)
k

to get all layers L simply as

∂C

∂W
(L)
ij

=
∂C

∂h
(L)
i

∂h
(L)
i

∂W
(L)
ij
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Backpropagation, tiny example

y = w2h + noise

h = w1x

C = (y − 1.5)2

∂C

∂w2
= 2(w2w1x − 1.5)w1x

∂C

∂w1
= 2(w2w1x − 1.5)w2x

Note a scaling issue: If w1 is doubled and w2 is halved,
- output y stays the same.
- system is twice as sensitive to changes in w2.
- gradient of w2 is doubled!
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Exponential growth/decay forward

Recall the model

y = softmax(W(3)h(2)+b(3))

h(2) = relu(W(2)h(1)+b(2))

h(1) = relu(W(1)x+b(1))

Ignoring softmax and biases, we can write

yi =
∑
j ,k,l

1
(
h
(2)
j > 0

)
1
(
h
(1)
k > 0

)
W

(3)
ij W

(2)
jk W

(1)
kl xl

Exponential growth/decay of forward signals!
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Exponential growth/decay backward

Given indicators 1(·), model is linear

yi =
∑
j ,k ,l

1
(
h
(2)
j > 0

)
1
(
h
(1)
k > 0

)
W

(3)
ij W

(2)
jk W

(1)
kl xl

∂yi
∂xl

=
∑
j ,k

1
(
h
(2)
j > 0

)
1
(
h
(1)
k > 0

)
W

(3)
ij W

(2)
jk W

(1)
kl

Exponential growth/decay of gradient, too!
⇒ Scale of initialization important.
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Initialization

Initialize weights Wij ∼
√

4
ni+nj
N (0, 1)

where size of W is ni × nj .

Outline of derivation:
Assume independent signals.

Retain variance forward:
√

2
nj

Retain variance backward:
√

2
ni

(2 is from relu indicators being on half the time.)
Strike a balance between the two (Glorot and Bengio, 2010).
(Other ideas, relevant for RNNs: sparse initialization (Sutskever et al. 2013), orthogonal initialization (Saxe et al., 2014))
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Batch normalization (Ioffe and Szegedy, 2015)

Recent idea: Normalize hidden units to zero-mean and
unit variance over mini-batch.

I Allows much higher learning rates.
(gradient closer to Newton’s method (Raiko et al., 2012))

I Less careful about initialization. (solves scaling issues)

I Acts as a regularizer.
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Expressivity

Neural networks are very powerful (universal appr.).
Easy to perform great on the training set (overfitting).
Regularization improves generalization to new data.
Use held-out validation data to choose hyperparameters
(e.g. regularization strength).
Use held-out test data to evaluate performance.
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Power demo: Training first layer only
No regularization, training W(1) and b(1) only.
0.2% error on training set, 2% error on test set.
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What is overfitting?

Probability theory states how we should make pre-
dictions (of ytest) using a model with unknowns θ
and data X = {xtrain, ytrain, xtest}:

P(ytest | X) =

∫
P(ytest, θ | X)dθ

=

∫
P(ytest | θ,X)P(θ | X)dθ.

Probability of observing ytest can be acquired by
summing or integrating over all different explana-
tions θ. The term P(ytest|θ,X) is the probabil-
ity of ytest given a particular explanation θ and it
is weighted with the probability of the explanation
P(θ|X). However, such computation is intractable.
If we want to choose a single θ to represent all the
probability mass, it is better not to overfit to the
highest probability peak, but to find a good repre-
sentative of the mass.

Posterior probability mass matters
Center of gravity 6= maximum
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Regularization methods

I Weight decay (Tikhonov, 1943): C = · · ·+ λ‖W‖2
I Inject noise to inputs (Sietsma and Dow, 1991)

I Limited size of network

I Early stopping

I Sparsity (either signals h or weights W)

I Weight sharing (e.g. convolutional)

I Auxiliary tasks (e.g. unsupervised)

I Ensembles, variational methods

I . . .
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Effect of noise regularization

Without regularization training error goes to zero and
learning stops. With noise, test error keeps dropping.
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Thanks for listening!

Thanks to Huiling Wang for the optimization example.
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Possible exercises (1/2)

I Follow the Theano tutorial on neural networks:
http://deeplearning.net/tutorial/mlp.html

I Load the MNIST example Matlab code
iki.fi/raiko/summerschool and change
something (network size, regularization,
initialization, learning rate schedule . . . ).
Inspect the results.

I Load the optimization example Matlab code and
solve the Newton’s method pointing the wrong way
based on arxiv.org/pdf/1405.4604v2.pdf.
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Possible exercises (1/2)

I Work out the math for the backpropagation
algorithm in the MNIST classification example.

I Take a trained network and arrange the hidden units
for a better visualization: Make outgoing weight
vectors of neighboring units close to each other.
(Hint: Try using simulated annealing or the
self-organizing map.)
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