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Deep learning is hot in academy

I ”Deep learning . . . dramatically improved the
state-of-the-art in speech recognition, visual object
recognition. . . ” (LeCun et al., Nature, 2015)

I ”. . . bridges the divide between high-dimensional
sensory inputs and actions, resulting in the first
artificial agent. . . ” (Mnih et al., Nature, 2015)

I ”Knowing the sequence specificities of DNA- and
RNA-binding proteins is essential . . . deep learning
outperforms other state-of-the-art methods”
(Alipanahi et al., Nature Biotechnology, 2015)
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Deep learning is hot in industry

Google acquired startup DeepMind for $500M in 2014.
Also racing: Facebook, Baidu, IBM, Amazon, Samsung,
Nvidia, Nokia, . . .
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Deep learning is changing the world
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Caption generation (Vinyals et al., 2015)



Speech recognition breakthrough

Plot from Yoshua Bengio
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Imagenet classification challenge

Yearly competition in computer vision.
Krizhevsky et al. (2012) won with huge margin
(16.4% error compared to 26.2%) by deep learning.
Soon everyone started using deep learning.
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Representation learning

Traditional way:
Data → Feature engineering → Machine learning

I Feature selection

I Feature extraction (e.g. PCA)

I Feature construction (e.g. SIFT)

Deep learning way:
Data → End-to-end learning
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Y LeCun
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Review article, May 2015:

Book, draft available online:

Portal: deeplearning.net
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Example: MNIST handwritten digits

Train a network to classify 28× 28 images.
Data: 60000 input images x(n) and labels y(n).
Example model gives around 1.2% test error.
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Example Network

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

y = softmax(W(3)h(2) + b(3))

h(2) = relu(W(2)h(1) + b(2))

h(1) = relu(W(1)x + b(1))

softmax(z)i = exp(zi )∑
j exp(zj)

relu(z) = max(0, z)
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Weight matrix W(1) size 225× 784
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Signals x→ h(1) → h(2) → y

x h(1)

h(2) y
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On sparsity

h(1) h(2)

How often hi > 0? Histogram over units i .
(Sometimes units become completely dead.)
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On activation functions

relu(z) = max(0, z) is replacing old sigmoid and tanh.
Note that identity function would lead into:

h(2) = W(2)h(1) + b(2)

= W(2)(W(1)x + b(1)) + b(2)

= (W(2)W(1))x + (W(2)b(1) + b(2))

= W′x + b′
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Training criterion

Find parameters

θ = {W(L),b(L)}

that minimize expected
negative log-likelihood:

C = Edata [− logP(y|x,θ)] .

Learning becomes optimiza-
tion.

Say we have a true distribution P(y | x) and we would
like to find a model Q(y | x, θ) that matches P. Let us
study how maximizing expected negative log-likelihood
C = EP [− log Q] works as a learning criterion.

θ
∗ = arg min

θ
C(θ) = arg min

θ
EP(y|x) [− log Q(y | x, θ)] .

Let us assume that there is a θ∗ for which Q(y|x, θ∗) =
P(y|x). We can note that the gradient at θ∗

∂

∂θ
EP(y|x)

[
log Q(y | x, θ∗)

]
= EP(y|x)

[
∂

∂θ
log Q(y | x, θ∗)

]

=

∫
P(y | x)

∂
∂θ

Q(y | x, θ∗)

Q(y | x, θ∗)
dy

=

∫
∂

∂θ
Q(y | x, θ∗)dy

=
∂

∂θ

∫
Q(y | x, θ∗)dy =

∂

∂θ
1 = 0

becomes zero, that is, the learning converges when Q =
P. Therefore the expected log-likelihood is a reasonable
training criterion.
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Tiny Example

input x

1 outputoutput y

hidden h 1 unit

1 input

1 weight

1 weight

y ∼ N (w2h, 1)
h = w1x
Data ”set”: {x = 1, y = 1.5}
Some weight decay.
C = (w1w2−1.5)2+0.04(w 2

1 +w 2
2 )
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Gradient g = ∇θC (θ) =


∂C
∂θ1...
∂C
∂θn
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Gradient descent, ηk = 0.25 (→ too slow)
θk+1 = θk − ηkgk , iteration k , stepsize (or learning rate) ηk
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Gradient descent, ηk = 0.35 (→ oscillates)
θk+1 = θk − ηkgk
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Newton’s method, too complex

θk+1 = θk −H−1k gk , H =


∂2C
∂θ1∂θ1

· · · ∂2C
∂θ1∂θn... . . . ...

∂2C
∂θn∂θ1

· · · ∂2C
∂θn∂θn


Less oscillations.
Points to the wrong direc-
tion in places (solvable).
Computational complexity:
#params3 (prohibitive).
There are approximations,
but not very popular.
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Momentum method (Polyak, 1964)

mk+1 = αmk − ηkgk
θk+1 = θk + mk+1
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Momentum method with noisy gradient
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Mini-batch training
No need to have an accurate estimate of g.
Use only a small batch of training data at once.
Leads into many updates per epoch (=seeing data once).
E.g. 600 updates with 100 samples per epoch in MNIST.

Important to anneal stepsize ηk towards the end, e.g.

Adaptation of ηk possible (Adam, Adagrad, Adadelta).
Tapani Raiko (Aalto University) Introduction to Deep Learning 17 August 2015 29 / 54



W(1) after epoch 1
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W(1) after epoch 2
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W(1) after epoch 3
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W(1) after epoch 4
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W(1) after epoch 5
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W(1) after epoch 10
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W(1) after epoch 50 (final)
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Backpropagation (Linnainmaa, 1970)

Computing gradients in a network.

input x

1 outputoutput y

hidden h 1 unit

1 input

1 weight

1 weight

First with scalars. Use chain rule:

∂C

∂w2
=
∂C

∂y

∂y

∂w2

∂C

∂w1
=
∂C

∂y

∂y

∂h

∂h

∂w1
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Backpropagation

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

With vectors, consider multiple paths:

∂C

∂W
(3)
ij

=
∂C

∂yi

∂yi

∂W
(3)
ij

∂C

∂W
(2)
jk

=
∑
i

∂C

∂yi

∂yi

∂h
(2)
j

∂h
(2)
j

∂W
(2)
jk

∂C

∂W
(1)
kl

=
∑
i ,j

∂C

∂yi

∂yi

∂h
(2)
j

∂h
(2)
j

∂h
(1)
k

∂h
(1)
k

∂W
(1)
kl

How many paths
as a function of depth?
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Backpropagation
Dynamic programming avoids exponential complexity.

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

Store intermediate results

∂C

∂h
(2)
j

=
∑
i

∂C

∂yi

∂yi

∂h
(2)
j

∂C

∂h
(1)
k

=
∑
j

∂C

∂h
(2)
j

∂h
(2)
j

∂h
(1)
k

to get all layers L simply as

∂C

∂W
(L)
ij

=
∂C

∂h
(L)
i

∂h
(L)
i

∂W
(L)
ij
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Backpropagation, tiny example

y = w2h + noise

h = w1x

C = (y − 1.5)2

∂C

∂w2
= 2(w2w1x − 1.5)w1x

∂C

∂w1
= 2(w2w1x − 1.5)w2x

Note a scaling issue: If w1 is doubled and w2 is halved,
- output y stays the same.
- system is twice as sensitive to changes in w2.
- gradient of w2 is doubled!
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Exponential growth/decay forward

Recall the model

y = softmax(W(3)h(2)+b(3))

h(2) = relu(W(2)h(1)+b(2))

h(1) = relu(W(1)x+b(1))

Ignoring softmax and biases, we can write

yi =
∑
j ,k,l

1
(
h
(2)
j > 0

)
1
(
h
(1)
k > 0

)
W

(3)
ij W

(2)
jk W

(1)
kl xl

Exponential growth/decay of forward signals!
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Exponential growth/decay backward

Given indicators 1(·), model is linear

yi =
∑
j ,k ,l

1
(
h
(2)
j > 0

)
1
(
h
(1)
k > 0

)
W

(3)
ij W

(2)
jk W

(1)
kl xl

∂yi
∂xl

=
∑
j ,k

1
(
h
(2)
j > 0

)
1
(
h
(1)
k > 0

)
W

(3)
ij W

(2)
jk W

(1)
kl

Exponential growth/decay of gradient, too!
⇒ Scale of initialization important.
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Initialization

Initialize weights Wij ∼
√

4
ni+nj
N (0, 1)

where size of W is ni × nj .

Outline of derivation:
Assume independent signals.

Retain variance forward:
√

2
nj

Retain variance backward:
√

2
ni

(2 is from relu indicators being on half the time.)
Strike a balance between the two (Glorot and Bengio, 2010).
(Other ideas, relevant for RNNs: sparse initialization (Sutskever et al. 2013), orthogonal initialization (Saxe et al., 2014))
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Batch normalization (Ioffe and Szegedy, 2015)

Recent idea: Normalize hidden units to zero-mean and
unit variance over mini-batch.

I Allows much higher learning rates.
(gradient closer to Newton’s method (Raiko et al., 2012))

I Less careful about initialization. (solves scaling issues)

I Acts as a regularizer.
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Expressivity

Neural networks are very powerful (universal appr.).
Easy to perform great on the training set (overfitting).
Regularization improves generalization to new data.
Use held-out validation data to choose hyperparameters
(e.g. regularization strength).
Use held-out test data to evaluate performance.
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Power demo: Training first layer only
No regularization, training W(1) and b(1) only.
0.2% error on training set, 2% error on test set.
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What is overfitting?

Probability theory states how we should make pre-
dictions (of ytest) using a model with unknowns θ
and data X = {xtrain, ytrain, xtest}:

P(ytest | X) =

∫
P(ytest, θ | X)dθ

=

∫
P(ytest | θ,X)P(θ | X)dθ.

Probability of observing ytest can be acquired by
summing or integrating over all different explana-
tions θ. The term P(ytest|θ,X) is the probabil-
ity of ytest given a particular explanation θ and it
is weighted with the probability of the explanation
P(θ|X). However, such computation is intractable.
If we want to choose a single θ to represent all the
probability mass, it is better not to overfit to the
highest probability peak, but to find a good repre-
sentative of the mass.

Posterior probability mass matters
Center of gravity 6= maximum
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Regularization methods

I Weight decay (Tikhonov, 1943): C = · · ·+ λ‖W‖2
I Inject noise to inputs (Sietsma and Dow, 1991)

I Limited size of network

I Early stopping

I Sparsity (either signals h or weights W)

I Weight sharing (e.g. convolutional)

I Auxiliary tasks (e.g. unsupervised)

I Ensembles, variational methods

I . . .
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Effect of noise regularization

Without regularization training error goes to zero and
learning stops. With noise, test error keeps dropping.
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Thanks for listening!

Thanks to Huiling Wang for the optimization example.
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Possible exercises (1/2)

I Follow the Theano tutorial on neural networks:
http://deeplearning.net/tutorial/mlp.html

I Load the MNIST example Matlab code
iki.fi/raiko/summerschool and change
something (network size, regularization,
initialization, learning rate schedule . . . ).
Inspect the results.

I Load the optimization example Matlab code and
solve the Newton’s method pointing the wrong way
based on arxiv.org/pdf/1405.4604v2.pdf.
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Possible exercises (1/2)

I Work out the math for the backpropagation
algorithm in the MNIST classification example.

I Take a trained network and arrange the hidden units
for a better visualization: Make outgoing weight
vectors of neighboring units close to each other.
(Hint: Try using simulated annealing or the
self-organizing map.)
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