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Disclaimers:

Slides based on David Silver's Lecture Notes

» From a DL perspective
» Not complete, but rather biased and focused
» It is meant to make you want to learn this
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

What is Reinforcement Learning 7

Superv1sed
supervised
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What is Reinforcement Learning 7

Supervised Learning Unsupervised Learning Reinforcement Learning
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Laundry list of differences for RL

) ) - . ) Actions: YTy { P SY 1S

Active learning Moving target Weak error signal
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RL problem

» Reward — scalar feedback signal

» Goal — pick the sequence of actions that maximizes
the cumulative reward

Reward Hypothesis.
All goals can be described by the maximization of expected

cumulative reward
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RL problem

» Agent and Environment

observation /| ~ L/ action
/| % ' )

0 A\ = A

Source: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf

RL problem

» History —is sequence of observations and actions
» State - information used to decide what happens next (MDP/POMDP)

P(S5:S¢-1) = P(5¢|S1,--S¢-1)

¢
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Inside the RL agents

An RL agent has one or more of these components:

» Policy — given a state provide a distribution over the
actions

» Value function — given a state (state/action pair)
estimate expected future reward

» Model — agent's representation of the world (planning)

O
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RL agents taxonomy

o
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Policy based methods (digression)

Effective in high-dimensional / continous action spaces

» Can learn stochastic policies
» Better convergence properties
» Noisy gradients !
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Reinforce

Directly maximize the cumulative reward !

J( - We[r] Zd ZW9(57 a)rs,a

Maximize J. Using the log trick we have:

oJ 8Iog7r Ologm
—9:Zd ng(s a)———rs. = E;] 20 r]
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Primer Dynamic Programming
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Primer Dynamic Programming
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Primer Dynamic Programming

Bellman’s Principle of Optimality
An optimal policy has the property that whatever initial state and
initial decision are, the remaining decisions must consitute an

optimal policy (Bellman, 1957)

V(x) = max {F(x,a) + SV(T(x; a))}

ael(x)
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Q-Values

The Q value Q(x, a) is the expected cumulative reward for picking

action a in state x. _ _
We can act greedily or epsilon greedy.

1—e¢, ifQ(a,-,x) > Q(aj,x)Vj

€, otherwise

(a0 = {
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Q-learning

Think of Q-values as the length of the path in the graph. Use
dynamic programing (Bellman equation):

~

Qt(xta at) = I, + 6 maaX Qt(XH-l; a) =

A

Qir1(xt, ar) = Qr(xt, ar) + Y (Qxt, ar) — Qi(xe, ar))
—~— -— ’

learning rate derivative the of square error(@fQ)2
A J/

Regress Q to @ using SGD
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Finally using deep learning for RL

What role does Deep Learning play in RL ?

» provides a compact form for @ (function approximator)

0
00

o 5_ 02
derivative of the square errora(oaoo)

6t+1 - 91’ + Y (Q(Xh at) T Q@t(xﬁ at))

\ .
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Q-learning in Theano? (theano pseudocode)

x = TT.vector("x")
q = TT.dot(Wout, TT.nnet.relu(TT.dot(W, x)+b)+bout)
forward = theano. function([x], q)
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Q-learning in Theano? (theano pseudocode)

x = TT.vector("x")

g = TT.dot(Wout, TT.nnet.relu(TT.dot(W, x)+b)+bout)

params = [W,b,Wout, bout]

target_q = TT.scalar("target_q")

action = TT.iscalar(’action’)

lr = TT.scalar(’1r’)

gp = TT.grad((q[action] - target_q)=*+2, params)

learn = theano. function([x,action, target_q,lr], [],
updates=[(p,p-1lrxgp) for p,gp in zip(params,gp)])
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Q-learning in Theano? (theano pseudocode)

for _,(x, x_tpl, act, reward) in enumerate (memory):
target_q = reward + forward(x_tpl).max()
learn(x, act, target_q, le-3)

¢
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But Learning can be tricky

Xt =2  Xg41 =2  Xg42 =2

Correlated samples break learning
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Solution: replay buffer
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High variance and minibatches

» Reinforcement Learning is inherintly sequential

» Replay Buffer gives elegant solution to employ
minibatches

» Minibatches means reduced variance in the gradients
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Target network

» Q changes as fast as Q | \

- fix Q (target network) and update it i
X

periodically .
Moving target

o
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Other details

» SGD can be slow .. rely on RMSprop (or any new optimizer)
Convolutional models are more efficient then MLPs

v

DQN uses action repeat set to 4

v

DQN receives 4 frames of the game at a time (grayscale)

v

€ is anealled from 1 to .1

v

v

Training takes time (roughly 12-14 days)
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Results

Average Reward on Breakout
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Source: Mnih et al., Human-level control through deep reinforcement learning, Nature 2015 u
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Results

At human-ovel o above

‘Below human-evel

4500%
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Results

Nature paper videos
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http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

Parallelization — Gorila

Sync ever,
| global N steps

Parameter Server Learner

DQN Loss
Shard 1 Shard 2 seee Shard K .
Gradient .
wrt loss B max, Q(s;a’ 8)

Gradient Target Q
Network

Sync
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argmax, Q(s,a; 6) Replay

i DN
Environment - Q Network Memory

Source: Nair et al., Massively Parallel Methods for Deep Reinforcement Learning, ICML DL

workshop
©
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Results
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Source: Nair et al., Massively Parallel Methods for Deep Reinforcement Learning, ICML DL
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Results

thumanove orshove
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Source: Nair et al., Massively Parallel Methods for Deep Reinforcement Learning, ICML DL 6
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Where this doesn’t work (straightforwardly)

Continous control

v

v

Robotics (experience is very explensive)

v

Sparse rewards (Montezuma !?)

v

Long term correlations (Montezuma !?)

But this does not mean that RL+4DL can
not be the solution !
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DeepMind Research

ﬂ Google DeepMind

HUMAN LEVEL CONTROL THROUGH DEEP REINFORCEMENT LEARNING

through combining

TEACHING MACHINES TO READ AND DRAW: A RECURRENT NEURAL
COMPREHEND NETWORK FOR IMAGE GENERATION

NEURAL TURING MACHINES

Neural Turing Ma
s

UNIVERSAL VALUE FUNCTION
APPROXIMATORS

Source: http://deepmind.com/publications.html
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SPATIAL TRANSFORMER NETWORKS

HIPPOCAMPAL PLACE CELLS
CONSTRUCT REWARD RELATED
SEQUENCES THROUGH UNEXPLORED
SPACE

am about tf
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http://deepmind.com/publications.html

And we are hiring

S

Google DeepMind

WORK WITH US

WE ARE HIRING!

If you are an exceptional machine learning researcher, computational neuroscientist or software engineer,
and want to be part of a world-class team working on the most exciting ground-breaking technology in an
inspiring and collaborative environment then please get in touch.

9
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joinus@deepmind.com

Thank you

Questions ?

(
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Possible exercise for the afternoon sessions |

Pick one or several tasks from the Deep Learning Tutorials:
> Logistic Regression
» MLP

AutoEncoders / Denoising AutoEncoders

Stacked Denoising AutoEncoders

v

v
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http://deeplearning.net/tutorial/

Possible exercise for the afternoon sessions |l

Compare different initialization for neural networks (MLPs and ConvNets) with
rectifieres or tanh. In particular compare:

» The initialization proposed by Glorot et al.

1 1

» Sampling uniformally from [———, =
mn m

» Setting all singular values to 1 (and biases to 0)

How do different optimization algorithms help with this initializations? Extra kudos for
interesting plots or analysis. Please make use of the Deep Learning Tutorials.
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http://deeplearning.net/tutorial/

Possible exercise for the afternoon sessions Il
Requires convolutions

Re-implement the AutoEncoder tutorial using convolutions both in the encoder and
the decoder. Extra kudos for allowing pooling (or strides) in the encoder.

o
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http://deeplearning.net/tutorial/dA.html

Possible exercise for the afternoon sessions 1V
Requires Reinforcement Learning

Attempt to solve the Catch game.

[

Not actual screenshots of the game
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