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Disclaimers:
Slides based on David Silver’s Lecture Notes

I From a DL perspective

I Not complete, but rather biased and focused

I It is meant to make you want to learn this
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html


What is Reinforcement Learning ?

Supervised
Unsupervised

RL
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What is Reinforcement Learning ?

Supervised Learning Unsupervised Learning Reinforcement Learning
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Laundry list of differences for RL
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RL problem

I Reward – scalar feedback signal

I Goal – pick the sequence of actions that maximizes

the cumulative reward

Reward Hypothesis.

All goals can be described by the maximization of expected

cumulative reward
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RL problem

I Agent and Environment

Source: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf


RL problem

I History – is sequence of observations and actions

I State – information used to decide what happens next (MDP/POMDP)

P(St |St−1) = P(St |S1, ..St−1)
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Inside the RL agents

An RL agent has one or more of these components:

I Policy – given a state provide a distribution over the

actions

I Value function – given a state (state/action pair)

estimate expected future reward

I Model – agent’s representation of the world (planning)
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RL agents taxonomy

MODEL

POLICY
VALUE
Function

Actor
Critic
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Policy based methods (digression)

I Effective in high-dimensional / continous action spaces

I Can learn stochastic policies

I Better convergence properties

I Noisy gradients !
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Reinforce

Directly maximize the cumulative reward !

J(θ) = EEπθ[r ] =
∑

d(s)
∑

πθ(s, a)rs,a

Maximize J . Using the log trick we have:

∂J

∂θ
=
∑

d(s)
∑

πθ(s, a)
∂ log π

∂θ
rs,a = EEπ[

∂ log π

∂θ
r ]
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Primer Dynamic Programming
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Primer Dynamic Programming

Bellman’s Principle of Optimality
An optimal policy has the property that whatever initial state and
initial decision are, the remaining decisions must consitute an
optimal policy (Bellman, 1957)

V (x) = max
a∈Γ(x)

{F (x , a) + βV (T (x , a))}
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Q-Values

The Q value Q(x , a) is the expected cumulative reward for picking
action a in state x .

We can act greedily or epsilon greedy.

π(ai |x) =

{
1− ε, ifQ(ai , x) > Q(aj , x)∀j
ε, otherwise
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Q-learning

Think of Q-values as the length of the path in the graph. Use
dynamic programing (Bellman equation):

Q̂t(xt , at) = rxt ,at + β max
a

Qt(xt+1, a)⇒

Qt+1(xt , at) = Qt(xt , at) + γ︸︷︷︸
learning rate

(Q̂(xt , at)− Qt(xt , at))︸ ︷︷ ︸
derivative the of square error(Q̂−Q)2︸ ︷︷ ︸

Regress Q to Q̂ using SGD
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Finally using deep learning for RL

What role does Deep Learning play in RL ?

I provides a compact form for Q (function approximator)

θt+1 = θt + γ (Q̂(xt , at)− Qθt(xt , at))
∂Qθ

∂θ︸ ︷︷ ︸
derivative of the square error∂(Q̂−Q)2

∂θ
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Q-learning in Theano? (theano pseudocode)

x = TT.vector("x")
q = TT.dot(Wout, TT.nnet.relu(TT.dot(W, x)+b)+bout)
forward = theano.function([x], q)
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Q-learning in Theano? (theano pseudocode)

x = TT.vector("x")
q = TT.dot(Wout, TT.nnet.relu(TT.dot(W, x)+b)+bout)
params = [W,b,Wout, bout]
target q = TT.scalar("target q")
action = TT.iscalar(’action’)
lr = TT.scalar(’lr’)
gp = TT.grad((q[action] − target q )∗∗2 , params)
learn = theano.function([x,action, target q ,lr], [],

updates=[(p,p−lr ∗gp) for p,gp in zip(params,gp)])

Razvan Pascanu (Google DeepMind) Deep Learning and Reinforcement Learning 17 August 2015 20/ 40



Q-learning in Theano? (theano pseudocode)

for ,(x, x tp1 , act, reward) in enumerate(memory):
target q = reward + forward(x tp1).max()
learn(x, act, target q , 1e−3)
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But Learning can be tricky

xt = 2 xt+1 = 2 xt+2 = 2

Correlated samples break learning
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Solution: replay buffer

xt

q
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at

xt, rt

Q-learning
θt+1
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High variance and minibatches

I Reinforcement Learning is inherintly sequential

I Replay Buffer gives elegant solution to employ

minibatches

I Minibatches means reduced variance in the gradients
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Target network

I Q̂ changes as fast as Q

I fix Q̂ (target network) and update it

periodically

x∗

x
?

Moving target
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Other details

I SGD can be slow .. rely on RMSprop (or any new optimizer)

I Convolutional models are more efficient then MLPs

I DQN uses action repeat set to 4

I DQN receives 4 frames of the game at a time (grayscale)

I ε is anealled from 1 to .1

I Training takes time (roughly 12-14 days)
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Results
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Source: Mnih et al., Human-level control through deep reinforcement learning, Nature 2015
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Results

Source: Mnih et al., Human-level control through deep reinforcement learning, Nature 2015
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Results

Nature paper videos
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http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html


Parallelization – Gorila

Source: Nair et al., Massively Parallel Methods for Deep Reinforcement Learning, ICML DL

workshop
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Results
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Source: Nair et al., Massively Parallel Methods for Deep Reinforcement Learning, ICML DL
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Results
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Source: Nair et al., Massively Parallel Methods for Deep Reinforcement Learning, ICML DL

workshop
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Where this doesn’t work (straightforwardly)

I Continous control

I Robotics (experience is very explensive)

I Sparse rewards (Montezuma !?)

I Long term correlations (Montezuma !?)

But this does not mean that RL+DL can
not be the solution !
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DeepMind Research

Source: http://deepmind.com/publications.html
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http://deepmind.com/publications.html


And we are hiring

joinus@deepmind.com
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joinus@deepmind.com


Thank you

Questions ?
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Possible exercise for the afternoon sessions I

Pick one or several tasks from the Deep Learning Tutorials:

I Logistic Regression

I MLP

I AutoEncoders / Denoising AutoEncoders

I Stacked Denoising AutoEncoders
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http://deeplearning.net/tutorial/


Possible exercise for the afternoon sessions II

Compare different initialization for neural networks (MLPs and ConvNets) with
rectifieres or tanh. In particular compare:

I The initialization proposed by Glorot et al.

I Sampling uniformally from [− 1
fanin

, 1
fanin

]

I Setting all singular values to 1 (and biases to 0)

How do different optimization algorithms help with this initializations? Extra kudos for
interesting plots or analysis. Please make use of the Deep Learning Tutorials.
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http://deeplearning.net/tutorial/


Possible exercise for the afternoon sessions III
Requires convolutions

Re-implement the AutoEncoder tutorial using convolutions both in the encoder and
the decoder. Extra kudos for allowing pooling (or strides) in the encoder.
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http://deeplearning.net/tutorial/dA.html


Possible exercise for the afternoon sessions IV
Requires Reinforcement Learning

Attempt to solve the Catch game.

Not actual screenshots of the game
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