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Topics: Statistical Machine Translation
•  

• Translation model: 
• Fit it with parallel corpora

• Language model: 
• Fit it with monolingual corpora

• The whole task                is conditional language modelling.
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Topics: Statistical Machine Translation - In Reality
•  

• Log-linear model 
• Feature function 

• Count-based or linguistics-based
• Learned from corpora

• Steps:
(1)Experts engineer useful features
(2)Use a simple log-linear model 
(3)Use a strong, external language model

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Topics: Sequence-to-Sequence Learning

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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(Forcada&Ñeco, 1997; 
Kalchbrenner&Blunsom, 2013; 
Sutskever et al., 2014; 
Cho et al., 2014)
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Topics: Sequence-to-Sequence Learning — Encoder
•  Encoder

(1)1-of-K coding of source words
(2)Continuous-space representation

(3)Recursively read words

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Topics: Sequence-to-Sequence Learning — Decoder
•  Decoder

(1)Recursively update the memory

(2)Compute the next word prob.

(3)Sample a next word
•Beam search is a good idea

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Topics: Sequence-to-Sequence Learning — Issue
• This is quite an unrealistic model.
• Why?

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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“You can’t cram the meaning of a 
whole %&!$# sentence into a 
single $&!#* vector!” Ray Mooney
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Topics: Attention-based Model
• Encoder: Bidirectional RNN

• A set of annotation vectors

• Attention-based Decoder
(1)Compute attention weights

(2)Weighted-sum of the annotation vectors

(3)Use      instead of 
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Topics: Attention-based Model
• Encoder: Bidirectional RNN

• A set of annotation vectors

• Attention-based Decoder
(1)Compute attention weights

(2)Weighted-sum of the annotation vectors

(3)Use      instead of 

{h1, h2, . . . , hT }

↵t0,t / exp(e(zt0�1, ut0�1, ht))

ct0 =
PT

t=1↵t0,tht

ct0 hT
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Topics: Few tricks for neural machine translation
• Very large target vocabulary (Jean et al., 2015)
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Topics: Few tricks for neural machine translation
• Deep Fusion of  Target Language Model (Gulcehre&Firat et al., 2015)
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Attention-based neural machine translation 
is comparable to 

phrase-based statistical machine translation
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Teaching Machines to Read, Comprehend 
and Answer
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Based on (Hermann et al., 2015; Blunsom, 2015)
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Topics: Teaching machines to read and comprehend

Supervised Reading Comprehension

CNN article:

Document The BBC producer allegedly struck by Jeremy Clarkson will not
press charges against the “Top Gear” host, his lawyer said
Friday. Clarkson, who hosted one of the most-watched
television shows in the world, was dropped by the BBC
Wednesday after an internal investigation by the British
broadcaster found he had subjected producer Oisin Tymon “to
an unprovoked physical and verbal attack.” . . .

Query Producer X will not press charges against Jeremy Clarkson, his
lawyer says.

Answer Oisin Tymon

We formulate Cloze style queries from the story paraphrases.
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Topics: Teaching machines to read and comprehend  
          — Deep LSTM Reader

•Document Reader

•Summary of the document: 
•Query Reader

•Summary of the query: 
•Answer selection

Deep LSTM Reader

Mary went to X visited EnglandEngland |||

g
ht = f(ht�1, wt), for all t = 1, . . . , T

hT

zt = f(zt�1, w
0
t), for all t = 1, . . . , T 0

zT 0

No!!!

p(a| {wt}Tt=1 , {wt0}T
0

t0=1) = ga(hT , zT )
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Topics: Teaching machines to read and comprehend  
          — Attentive Reader

•Document Reader: BiRNN
•Annotation vectors: 

•Query Reader:
•Answer selection
•Attention mechanism
•Query-dependent document summary
•Answer selection: 

zT 0

The Attentive Reader

r
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Mary went to X visited EnglandEngland

{h1, h2, . . . , hT }

↵t / e(ht, zT 0)

c =
PT

t=1↵tht

p(a| {wt}Tt=1 , {wt0}T
0

t0=1) = ga(zT 0 , c)
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Topics: Teaching machines to read and comprehend  
          — Attentive Reader (Examples)

•Visualize the attention

The Attentive Reader: Predicted: ent49, Correct: ent49



Going beyond Natural Languages
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Is a human language special? 
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Topics: Beyond Natural Languages  
          — Image Caption Generation

•Task: conditional language modelling

•Encoder: convolutional network
•Pretrained as a classifier or autoencoder

•Decoder: recurrent neural network
•RNN Language model
•With attention mechanism (Xu et al., 2015)
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Topics: Beyond Natural Languages — Image Caption Generation (Examples)
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Topics: Beyond Natural Languages — Image Caption Generation (Examples)
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Topics: Beyond Natural Languages — Attention Models 

•End-to-End Speech Recognition (Chorowski et al., 2015; Chan et al., 2015) 

•Video Description Generation (Yao et al., 2015) 

•Discrete Optimization (Vinyals et al., 2015) 

•and many more…  
(Cho et al., 2015) and references therein
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Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D
convolutional network, shown in Fig. 6. Unlike the usual
convolutional network which often works only spatially over a
two-dimensional image, the 3-D convolutional network applies
its (local) filters across the spatial dimensions as well as the
temporal dimensions. Furthermore, those filters work not on
pixels but on local motion statistics, enabling the model to
concentrate on motion rather than appearance. Similarly to
the strategy from Sec. II-D, the model was trained on larger
video datasets to recognize an action from each video clip, and
the activation vectors from the last convolutional layer were
used as context. The authors of [23] suggest that this encoder
extracts more local temporal structures complementing the
global structures extracted from the frame-wise application of
a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in
[22] was used with the content-based attention mechanism in
Eq. (16).

2) Experimental Result: In [23], this approach to video
description generation has been tested on two datasets; (1)
Youtube2Text [54] and (2) Montreal DVS [55]. They showed
that it is beneficial to have both types of encoders together
in their attention-based encoder–decoder model, and that
the attention-based model outperforms the simple encoder–
decoder model. See Table IV for the summary of the evalua-
tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (?) HIGHER THE BETTER.

(�) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR? Perplexity� METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the
attention-based model, the attention mechanism applied to the
task of video description also provides a straightforward way
to inspect the inner workings of the model. See Fig. 7 for
some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight ↵

t
j (see Eq. (11)) for the frame when the

corresponding word (color-coded) was generated. Reprinted from [23].



Connectionist Approach to 
Natural Language Understanding
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(see the slides 33-40 of my talk at CVSC 2015)

https://drive.google.com/open?id=0B16RwCMQqrtdNUptOGtDeDhxZ0E
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•Department of Computer Science 

•Ph.D. Programme: Application dl. 12th December
•Center for Data Science 

•M.Sc. Programme in Data Science: Application dl. 4th Februrary
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•Department of Computer Science 

•M.Sc. Programme in Machine Learning and Data Mining (Macadamia)
•Ph.D. Programme: Prof. Tapani Raiko


