
Natural Language Understanding
Kyunghyun Cho, NYU & U. Montreal

Language Understanding?
Modelling?

2

LANGUAGE UNDERSTANDING
3

Topics: Natural Language Understanding
• What does it mean that a machine understands natural languages?
• Should we start reading linguistics?

“Every time I fire a linguist,
the performance of the
recognizer goes up.”

- Fred Jelinek (IBM), 1988

MT History: Statistical MT at IBM

Fred Jelinek, 1988:

“Every time I fire a linguist, the
performance of the recognizer goes up.”

LANGUAGE UNDERSTANDING
4

Topics: Natural Language Understanding

• It’s all about telling how likely a sentence is..

• How likely is this sentence as an answer to the question?
• Q. “Who is the President of the United States?”
• Likely answer: “Obama is the President of the U.S.”
• Unlikely answer: “Tsipras is the President of America.”

LANGUAGE UNDERSTANDING
5

Topics: Natural Language Understanding

• It’s all about telling how likely a sentence is..

• How likely is this sentence given this view?

•Likely: “Two dolphins are diving”
•Unlikely: “Two men are flying”

LANGUAGE UNDERSTANDING
6

Topics: Natural Language Understanding

It’s all about telling how likely a sentence is..

Language Modelling
 

7

HOW LIKELY IS THIS SENTENCE?
8

Topics: Language Modelling

• A sentence
• Ex) (“the”, “cat”, “is”, “eating”, “a”, “sandwich”, “on”, “a”, “couch”)

• How likely is this sentence?
• In other words, what is the probability of ?

• i.e.,

(x1, x2, . . . , xT)

(x1, x2, . . . , xT)

p(x1, x2, . . . , xT) =?

HOW LIKELY IS THIS SENTENCE?
9

Topics: Probability 101 - Conditional Probability
• Joint probability
• Conditional probability
• Marginal probability and

• They are related by

p(x, y)

p(x|y)
p(x) p(y)

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

x

y

HOW LIKELY IS THIS SENTENCE?
10

Topics: Language Modelling as a Product of Conditionals
• Rewrite into

• Graphically,

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

p(x1, x2, . . . , xT)

…
x1 x2 x3 xT

STATISTICAL LM
11

Topics: Statistical Language Modelling
• Maximize the (log-)probabilities of  

sentences in corpora

• Obvious to us, but not to everyone:
• “The validity of statistical (information

theoretic) approach to MT has indeed been
recognized … as early as 1949. And was
universally recognized as mistaken [sic] by
1950. … The crude force of computers is not
science.” 
 (Review of Brown et al. (1990))

maxED [log p(x1, x2, . . . , xT)]

MT History: Statistical MT at IBM

n-gram Language Modelling
 

12

(Blunsom, 2015)

HOW LIKELY IS THIS SENTENCE?
13

Topics: Non-parametric Approach — n-gram modelling
• n-th order Markov assumption: why?

• Collect n-gram statistics from a large corpus:

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

⇡
TY

t=1

p(xt | xt�n, . . . , xt�1)

p(xt|xt�n, . . . , xt�1) =
count(xt�n, . . . , xt�1, xt)

count(xt�n, . . . , xt�1)

HOW LIKELY IS THIS SENTENCE?
14

Topics: Non-parametric Approach — n-gram modelling
• Ex)
• Unigram Modelling

• Bigram Modelling

• Trigram Modelling

…

p(i)p(would|i)p(like|i,would) · · ·

p(i)p(would)p(like) · · · p(h/si)

p(i)p(would|i)p(like|would) · · · p(h/si |.)

Comparison 1–4-Gram

word unigram bigram trigram 4-gram

i 6.684 3.197 3.197 3.197
would 8.342 2.884 2.791 2.791
like 9.129 2.026 1.031 1.290
to 5.081 0.402 0.144 0.113

commend 15.487 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880

rapporteur 10.840 7.319 2.763 2.350
on 6.765 4.140 4.150 1.862
his 10.678 7.316 2.367 1.978

work 9.993 4.816 3.498 2.394
. 4.896 3.020 1.785 1.510

</s> 4.828 0.005 0.000 0.000

average 8.051 4.072 2.634 2.251
perplexity 265.136 16.817 6.206 4.758

p(i,would, like, to, . . . , ., h/si)

HOW LIKELY IS THIS SENTENCE?
15

Topics: n-gram modelling — Two closely-related issues

• Data Sparsity
• # of all possible n-grams: , where : size of vocabulary |V |n |V |

p(a, tenured, professor, like, drinking,whiskey, .) =

p(a)p(tenured|a) p(professor|a, tenured)| {z }
=0

p(likes|tenured, professor) · · · p(.|drinking,whiskey)
= 0

HOW LIKELY IS THIS SENTENCE?
16

Topics: n-gram modelling — Two closely-related issues
• Conventional Solutions to Data Sparsity:

• Smoothing:

(add- smoothing)
• Backoff:

p(xt|xt�n, . . . , xt�1) =
count(xt�n, . . . , xt�1, xt) + ↵

count(xt�n, . . . , xt�1) + ↵|V |
↵

(↵n: adjusted prediction model, dn: discount factor)

p(xt|xt�n, . . . , xt�1) =

8
>><

>>:

↵n(xt|xt�n, . . . , xt�1),

if countn(xt�n, . . . , xt) > 0

dn(xt�n, . . . , xt�1)p(xt|xt�n+1 . . . , xt�1),

otherwise

HOW LIKELY IS THIS SENTENCE?
17

Topics: n-gram modelling — Two closely-related issues

• Lack of Generalization
• (chases, a, dog), (chases, a, cat), (chases, a, rabbit)
• (chases, a, llama)=?

What can go wrong with n-Gram LM?

n-Gram Language Model
I

n-th order Markov assumption
p(x

1

, x
2

, . . . , x
T

) ⇡
Q

T

t=1

p(x
t

| x
t�n

, . . . , x
t�1

)

I Non-parametric Estimator

Two closely-related issues

1. Data sparsity
I # of all possible n-grams: kV kn, kV k: the size of vocabulary
I Only a fraction of these are present in data

2. Lack of generalization
I (chases, a, dog), (chases, a, cat), (chases, a, rabbit)
I (chases, a, llama)?

Neural Language Modelling
 

18

LANGUAGE MODELLING
19

Topics: Neural Language Modelling

• Non-parametric estimator Parametric estimator

p(x

t

|x
t�n

, . . . , x

t�1) =
count(x

t�n

, . . . , x

t�1, xt

)

count(x

t�n

, . . . , x

t�1)

= f

xt(xt�n

, . . . , x

t�1)

LANGUAGE MODELLING
20

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)1-of-K encoding of each word
(2)Continuous space word representation

(3)Nonlinear hidden layer

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

xt0

st0 = W

>
xt0 , where W 2 R|V |⇥d

h =tanh(U> [st�1; st�2; · · · ; st�n] + b)

, where U 2 Rnd⇥d0
and b 2 Rd0

LANGUAGE MODELLING
21

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)Unnormalized probabilities

(2)Softmax normalization

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

y =V h+ c, where V 2 R|V |⇥d0
and c 2 R|V |

p(xt = i|xt�n, . . . , xt�1) =
exp(yi)

P|V |
j=1 exp(yj)

LANGUAGE MODELLING
22

Topics: Neural LM generalizes to unseen n-gram’s
• Example sentences

• there are three teams left for the qualification.
• four teams have passed the first round.
• four groups are playing in the field.

• How likely is groups followed by three?
• Why?

Continuous-Space Representation –
Neural Net LM Generalizes to Unseen n-Grams

Sample sentences:
1. There are three teams left for the qualification.
2. four teams have passed the first round.
3. four groups are playing in the field.

Neural Net LM: compress the corpus into a continuous function

three
four

teams
groups

LANGUAGE MODELLING
23

Topics: Continuous-space representation — Embeddings

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

Continuous-Space Representation –
so-called Word Embeddings

I
W: a lookup table of word
embeddings

I
z: a phrase representation?

Continuous-Space Representation –
so-called Word Embeddings

I
W: a lookup table of word
embeddings

I
z: a phrase representation?

Q&A

24

Non-Markovian Language Modelling
 

25

LANGUAGE MODELLING
26

Topics: Markov Assumption
• Markov Assumption in n-gram modeling

• Issue: Dependency beyond the context window is ignored
• Ex) the same stump which had impaled the car of many a

guest in the past thirty years and which he refused to have
removed

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

⇡
TY

t=1

p(xt | xt�n, . . . , xt�1)

LANGUAGE MODELLING
27

Topics: Non-Markovian Language Modelling
• Directly model the original conditional probabilities

• Feature Extraction + Readout
• Feature Extraction:
• Readout:

• How can we let take variable-length input?

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

ht = f(x1, x2, . . . , xt�1)

p(xt|x1, . . . , xt�1) = g(ht)

f

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

LANGUAGE MODELLING
29

Topics: Language Modelling via Recursion
• Example:

(1) Initialization:

(2) Recursion

(1)

(2)

(3)

(3) Readout:

• It works for any number of context words

h0 = 0

h1 = f(h0, the)

h2 = f(h1, cat)
h3 = f(h2, is)

p(eating|the, cat, is) = g(h3)

p(eating|the, cat, is)

RNN Language Modelling
 

30

LANGUAGE MODELLING
31

Topics: Recurrent neural network language model
• Example:

(1) Initialization:

(2) Recursion with Readout

(1)

(2)

(3)

(3) Combination:

• Read, Update and Predict

h0 = 0

h1 = f(h0, the)

h2 = f(h1, cat)

p(the, cat, is, eating)

p(is|the, cat) = g(h2)

p(cat|the) = g(h1)

p(the) = g(h0)

p(the, cat, is, eating) = g(h0)g(h1)g(h2)g(h3)
h3 = f(h2, is) p(eating|the, cat, is) = g(h3)

LANGUAGE MODELLING
32

Topics: Recurrent neural network language model
• Example:

• Read, Update and Predict

p(the, cat, is, eating)

h0 h1 h2 h3

p(the) p(cat| . . .) p(is| . . .) p(eating| . . .)

the cat is

LANGUAGE MODELLING
33

Topics: Building an RNN Language Model
• What do we need?

• Transition Function
• Output/Readout Function

ht = f(ht�1, xt�1)

h0 h1 h2 h3

p(the) p(cat| . . .) p(is| . . .) p(eating| . . .)

the cat is

p(xt = w|x1, . . . , xt�1) = gw(ht)

LANGUAGE MODELLING
34

Topics: Building an RNN Language Model - Transition Function

• Inputs

• Input : one-hot vector, i.e.,
• Hidden state

• Parameters

• Input weight matrix (often called word embeddings)

• Transition weight matrix
• Bias vector

xt�1 2 {0, 1}|V |
xt�1 = w 2 {1, . . . , |V |}

ht�1 2 Rd

W 2 Rd⇥|V |

U 2 Rd⇥d

b 2 Rd

LANGUAGE MODELLING
35

Topics: Building an RNN Language Model - Transition Function
• Inputs: ,
• Parameters: , ,
• Naive Transition Function

(1) Continuous-space Representation of word:

(2) Linear Transformation of the Previous Hidden State:

(3) Additive combination of and together with

(4) Point-wise nonlinear transformation

xt�1 2 {0, 1}|V | ht�1 2 Rd

W 2 Rd⇥|V | U 2 Rd⇥d b 2 Rd

ht = tanh(Wxt�1 + Uht�1 + b)

Wxt�1

Uht�1

xt�1 ht�1 b

ht�1 +

xt�1

tanh

W

U
b

LANGUAGE MODELLING
36

Topics: Building an RNN Language Model - Readout Function

• Inputs

• (Current) Hidden State
• Parameters

• Output matrix (often called target word embeddings)

• Bias vector

ht 2 Rd

R 2 R|V |⇥d

c 2 R|V |

LANGUAGE MODELLING
37

Topics: Building an RNN Language Model - Readout Function
• Inputs

• Parameters ,
• Softmax Readout Function

(1) Linear projection of the hidden state for each possible target word

(3) Transform each projected vector to be positive

(4) Normalize ’s to make them into probabilities of the i-th target words

ht 2 Rd

R 2 R|V |⇥d c 2 R|V |

vi = R>
i ht�1 for all i = 1, . . . , |V |

vi p̃i = exp(vi)
p̃i

ht

R

…

exp

+

/

p(xt = w|x<t) = gw(ht) =
exp(R

>
wht�1 + cw)

P|V |
i=1 exp(R

>
i ht�1 + ci)

LANGUAGE MODELLING
38

Topics: Building an RNN Language Model

• Recursion and Readout:
• Recursion

• Readout/Output

+

xt�1

tanh

W

U

b

R

…

exp

+

/
p(xt = w|x<t)

ht = tanh(Wxt�1 + Uht�1 + b)

p(xt = w|x<t) =
exp(R

>
wht�1)

P|V |
i=1 exp(R

>
i ht�1)

Training RNN-LM
 

39

LANGUAGE MODELLING
40

Topics: Cost Function
• Log-Probability of a sentence

• Train an RNN LM to maximize the log-prob’s of training sentences
• Given a training set of sentences:

log p(x1, x2, . . . , xT) =

TX

t=1

log p(xt | x1, . . . , xt�1)

(x1, x2, . . . , xT)

N
�
(x1

1, . . . , x
1
T1
), . . . , (xN

1 , . . . , x

N
TN

)

J(⇥)

maximize⇥
1

N

NX

n=1

log p(x

n
1 , . . . , x

n
Tn

)

() minimize⇥J(⇥) = � 1

N

NX

n=1

TnX

t=1

log p(x

n
t |xn

1 . . . , x
n
t�1)

LANGUAGE MODELLING
41

Topics: Minibatch Stochastic Gradient Descent - Recap
(1)Randomly select a minibatch of sentences:
(2)Compute the gradient of per-sample cost w.r.t. :
(3)Compute the minibatch gradient:

(4)Update the parameters

(5)Repeat until convergence

N 0
D =

n

x

1
, . . . , x

N 0
o

rJ(⇥, x

n)⇥

rJ(⇥, D) =
1

N

0

N 0X

n=1

rJ(⇥, x

n)

⇥

⇥ ⇥+ ⌘rJ(⇥, D)

LANGUAGE MODELLING
42

Topics: Backpropagation through time
• Decomposition of a per-sample cost function
• Unrolled Computational Graph

+

xt�1

tanh

W

U
b

R
g

htht�1
……

Jt(⇥, x̂) = log p(xt = x̂t|x<t)

J(⇥, x) = �
TX

t=1

Jt(⇥, xt)

LANGUAGE MODELLING
43

Topics: Backpropagation through time
(1)Initialize and

(1)The per-step cost derivative:
(2)Gradient w.r.t. :
(3)Gradient w.r.t. :
(4)Gradient w.r.t. :
(5)Gradient w.r.t and : ,

(2)Update the parameter gradient and repeat until

+

xt�1

W

U

b

R
g

ht

Jt(⇥, x̂) = log p(xt = x̂t|x<t)

R

ht

rR,rU ,rW ,rb

@Jt
@g

@Jt
@g

@g
@R

U

@Jt
@g

@g
@ht

+ @J>t

@ht+1

@ht+1

@ht

U @J�t

@ht

@ht
@U

W b @J�t

@ht

@ht
@W

@J�t

@ht

@ht
@b

rR rR + @Jt
@R ,rU rU +

@J�t

@U

rW rW +
@J�t

@W ,rb rb +
@J�t

@b

t = 1

t = T

Note: I’m
 abus

ing
math a

 lot
here

!!

Q&A

44

Code: https://github.com/kyunghyuncho/dl4mt-material/tree/master/session0

https://github.com/kyunghyuncho/dl4mt-material/tree/master/session0

Gated Recurrent Units
 

45

GATED RECURRENT UNITS
46

Topics: Temporal Dependency and Vanishing Gradient
• How much influence does have on ?

• With the naive transition function?
 , where
• Let’s rewrite it

ht log p(xt+n|x<t+n)

@Jt+n

@ht
=

@Jt+n

@g

@g

@ht+N

@ht+N

@ht+N�1
· · · @ht+1

@ht

@ht+1

@ht
= U> @ tanh(a)

@a
a = Wxt + Uht + b

@Jt+n

@ht
=

@Jt+n

@g

@g

@ht+N

NY

n=1

U>diag

✓
@ tanh(at+n)

@at+n

◆

| {z }
Problematic! Bengio et al. (1994)

Note: I’m
 abus

ing
math a

 lot
here

!!

GATED RECURRENT UNITS
47

Topics: Temporal Dependency and Vanishing Gradient
• Upper bound on the norm of the gradient w.r.t. ?

• Observations

(1) Vanishing gradient when :
(2) Vanishing gradient when the units are saturated:
(3) Potentially, exploding gradient when

• Problem: It’s likely that there’s no learning signal!

ht�����

NY

n=1

U>diag

✓
@ tanh(at+n)

@at+n

◆����� 
NY

n=1

��U>��
NY

n=1

����
@ tanh(at+n)

@at+n

����

�
max

(U) < 1
@ tanh(at+n)

@at+n
! 0

�
max

(U) > 1

YN

n=1

��U>�� ! 0

GATED RECURRENT UNITS
48

Topics: Exploding gradient is less problematic
• “when gradients explode so does  

the curvature along v, leading to  
a wall in the error surface”

• Solution: Gradient Clipping
(1)Gradient norm clipping

(2)Element-wise gradient clipping

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit

recurrent network, highlighting the existence of high cur-

vature walls. The solid lines depicts standard trajectories

that gradient descent might follow. Using dashed arrow

the diagram shows what would happen if the gradients is

rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
W

rec

is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Pascanu et al. (2013)
˜r

⇢ c
krkr ,if krk � c

r ,otherwise

ri min(c,ri), for all i 2 {1, . . . , dimr}

GATED RECURRENT UNITS
49

Topics: But, vanishing gradient is very problematic
• Why does the gradient vanish?

• Can we simply “maximize” ?
• “we need to force the network to increase the norm of at

the expense of larger errors”
• Pascanu et al. (2013)

• Regularize

����
@ht+N

@ht

���� =

�����

NY

n=1

U>diag

✓
@ tanh(at+n)

@at+n

◆����� ! 0
����
@ht+N

@ht

����
@ht+N

@ht

On the di�culty of training Recurrent Neural Networks

Duchi et al. (2011), or Moreira and Fiesler (1995) for
an overview), we rely on the instantaneous gradient.
This means that we can handle very abrupt changes
in norm, while the other methods would not be able
to do so.

3.3. Vanishing gradient regularization

We opt to address the vanishing gradients problem us-
ing a regularization term that represents a preference
for parameter values such that back-propagated gra-
dients neither increase or decrease too much in mag-
nitude. Our intuition is that increasing the norm of
@xt
@xk

means the error at time t is more sensitive to all

inputs u

t

, ..,u

k

(@xt
@xk

is a factor in @Et
@uk

). In practice
some of these inputs will be irrelevant for the predic-
tion at time t and will behave like noise that the net-
work needs to learn to ignore. The network can not
learn to ignore these irrelevant inputs unless there is
an error signal. These two issues can not be solved in
parallel, and it seems natural to expect that we need
to force the network to increase the norm of @xt

@xk
at the

expense of larger errors (caused by the irrelevant input
entries) and then wait for it to learn to ignore these
irrelevant input entries. This suggest that moving to-
wards increasing the norm of @xt

@xk
can not be always

done while following a descent direction of the error E
(which is, for e.g., what a second order method would
try to do), and therefore we need to enforce it via a
regularization term.

The regularizer we propose below prefers solutions for
which the error signal preserves norm as it travels back
in time:

⌦ =
X

k

⌦
k

=
X

k

0

@

��� @E
@xk+1

@xk+1

@xk

���
��� @E
@xk+1

���
� 1

1

A

2

(9)

In order to be computationally e�cient, we only use
the “immediate” partial derivative of ⌦ with respect to
W

rec

(we consider that x
k

and @E
@xk+1

as being constant

with respect to W

rec

when computing the derivative
of ⌦

k

), as depicted in equation (10). Note we use the
parametrization of equation (11). This can be done ef-
ficiently because we get the values of @E

@xk
from BPTT.

We use Theano to compute these gradients (Bergstra
et al., 2010; Bastien et al., 2012).

@

+⌦
@Wrec

=
P

k

@

+⌦k
@Wrec

=
P

k

@

+

0

@

����
@E

@xk+1
W

T
recdiag(�0(xk))

����
����

@E
@xk+1

����
�1

1

A
2

@Wrec

(10)
Note that our regularization term only forces the Ja-
cobian matrices @xk+1

@xk
to preserve norm in the relevant

direction of the error @E
@xk+1

, not for any direction (i.e.

we do not enforce that all eigenvalues are close to 1).
The second observation is that we are using a soft con-
straint, therefore we are not ensured the norm of the
error signal is preserved. If it happens that these Jaco-
bian matrices are such that the norm explodes (as t�k

increases), then this could lead to the exploding gradi-
ents problem and we need to deal with it for example
as described in section 3.2. This can be seen from
the dynamical systems perspective as well: preventing
vanishing gradients implies that we are pushing the
model such that it is further away from the attrac-
tor (such that it does not converge to it, case in which
the gradients vanish) and closer to boundaries between
basins of attractions, making it more probable for the
gradients to explode.

4. Experiments and Results

4.1. Pathological synthetic problems

As done in Martens and Sutskever (2011), we address
the pathological problems proposed by Hochreiter and
Schmidhuber (1997) that require learning long term
correlations. We refer the reader to this original pa-
per for a detailed description of the tasks and to the
supplementary materials for the complete description
of the experimental setup.

4.1.1. The Temporal Order problem

We consider the temporal order problem as the pro-
totypical pathological problem, extending our results
to the other proposed tasks afterwards. The input is
a long stream of discrete symbols. At two points in
time (in the beginning and middle of the sequence) a
symbol within {A,B} is emitted. The task consists in
classifying the order (either AA,AB,BA,BB) at the
end of the sequence.

Fig. 7 shows the success rate of standard SGD, SGD-C
(SGD enhanced with out clipping strategy) and SGD-
CR (SGD with the clipping strategy and the regular-
ization term). Note that for sequences longer than 20,
the vanishing gradients problem ensures that neither
SGD nor SGD-C algorithms can solve the task. The
x-axis is on log scale.

This task provides empirical evidence that exploding
gradients are linked with tasks that require long mem-
ory traces. We know that initially the model oper-
ates in the one-attractor regime (i.e. �1 < 1), in
which the amount of memory is controlled by �1. More
memory means larger spectral radius, and, when this
value crosses a certain threshold the model enters rich
regimes where gradients are likely to explode. We see
in Fig. 7 that as long as the vanishing gradient prob-

GATED RECURRENT UNITS
50

Topics: But, vanishing gradient is very problematic
• Why does the gradient vanish?

• Perhaps, it is a problem with the naive transition function…

• Error is backpropagated through every intermediate node

����
@ht+N

@ht

���� =

�����

NY

n=1

U>diag

✓
@ tanh(at+n)

@at+n

◆����� ! 0

ht = tanh(Wxt�1 + Uht�1 + b)

ht ht+NU U U U

U>U>U>U>

GATED RECURRENT UNITS
51

Topics: But, vanishing gradient is very problematic
• Perhaps, it is a problem with the naive transition function…

• Error is backpropagated through every intermediate node

• Temporal shortcut connections

ht = tanh(Wxt�1 + Uht�1 + b)

ht ht+NU U U U

U>U>U>U>

ht ht+N
…

GATED RECURRENT UNITS
52

Topics: Gated Recurrent Units (GRU)
• Temporal shortcut connections

• Adaptive Leaky integration

• Update gate
• Candidate state

ht ht+N
…

ht = (1� ut)� ht�1 + ut � h̃t

ut = �(Wuxt�1 + Uuht�1 + bu)

h̃t = tanh(Wxt�1 + Uht�1 + b)

GATED RECURRENT UNITS
53

Topics: Gated Recurrent Units (GRU)
• Pruning connections: avoids the diffusion of signal

• Adaptive Reset

• Reset gate

ht ht+N
…

rt = �(Wrxt�1 + Urht�1 + br)

h̃t = tanh(Wxt�1 + U(rt � ht�1) + b)

GATED RECURRENT UNITS
54

Topics: Gated Recurrent Units (GRU)
• Update and Reset gates

• Candidate hidden state

• Adaptive Leaky Integration

rt = �(Wrxt�1 + Urht�1 + br)

h̃t = tanh(Wxt�1 + U(rt � ht�1) + b)

ut = �(Wuxt�1 + Uuht�1 + bu)

ht = (1� ut)� ht�1 + ut � h̃t

Cho et al. (2014)

GATED RECURRENT UNITS
55

Topics: Long Short-Term Memory (LSTM)
• Input, Forget and Output gates

• Candidate memory cell state

• Adaptive Leaky Integration

• Output

Hochreiter&Schmidhuber (1999),
Gers et al. (2001)

i

t

= �(W
i

x

t�1 + U

i

h

t�1 + b

i

)

f

t

= �(W
f

x

t�1 + U

f

h

t�1 + b

f

)

o

t

= �(W
o

x

t�1 + U

o

h

t�1 + b

o

)

c̃t = tanh(Wxt�1 + Uht�1 + b)

ct = ft � ct�1 + it � c̃t

ht = ot � tanh(ct)

Gated Recurrent Units vs. LSTM

Gated Recurrent Unit Long Short-Term Memory

f

c
c~

+

+

o

i

And, yes, they are very similar.

Q&A

56

Code: https://github.com/kyunghyuncho/dl4mt-material/tree/master/session0

https://github.com/kyunghyuncho/dl4mt-material/tree/master/session0

Next Lecture: Neural Machine Translation
 

57

