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L anguage Understanding?
Modelling?



L ANGUAGE UNDERS TANDING

Topics: Natural Language Understanding

* What does it mean that a machine understands natural languages!

» Should we start reading linguistics? |

“Every time | fire a linguist,
the performance of the
recognizer goes up.”




L ANGUAGE UNDERS TANDING

Topics: Natural Language Understanding

* It’s all about telling how likely a sentence is..

* How likely Is this sentence as an answer to the question?
» Q."Who is the President of the United States?”
* Likely answer:"“Obama is the President of the U.JS.”

* Unlikely answer: " Tsipras is the President of America



L ANGUAGE UNDERS TANDING

Topics: Natural Language Understanding

* It’s all about telling how likely a sentence is..

* How likely Is this sentence given this view!

*Likely:" Iwo dolphins are diving”
* Unlikely:" Iwo men are flying”




L ANGUAGE UNDERS TANDING

Topics: Natural Language Understanding

It’s all about telling how likely a sentence is..



Language Modelling



HOW LIKELY IS THIS SENTENCE?

Topics: Language Modelling

» A sentence (Z1,%2,...,2T)
- EX) (H_the”’Hca_t”’HiS”,Hea_tingH,Ha,”Hsandwich’!,Hon”,lia”’HCOUChH)
* How likely Is this sentence!?

» In other words, what is the probability of (x1,x2,...,27)?

3 i.e., p($1, 159 R ,mT) —



HOW LIKELY IS THIS SENTENCE?

Topics: Probability 101 - Conditional Probability

 Joint probability p(z,y)
- Conditional probability p(z|y)
» Marginal probability P(z) and P(y)

» They are related by p(z,y) = p(z|y)p(y) = ply|z)p(z)

0



HOW LIKELY IS THIS SENTENCE?

Topics: Language Modelling as a Product of Conditionals

» Rewrite p(Z1,Z2,...,TT) into
T
p($1,$2, CERE ,ZCT) 2o Hp(xt ‘ L1y--- 73315—1)
=

» Graphically,




COMMENTS FOR THE AUTHOR(S) (clearness of presentation, lack of
nee material or relerences to relevant work of other authors,
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n-gram Language Modelling

(Blunsom, 2015)



HOW LIKELY IS THIS SENTENCE?

Topics: Non-parametric Approach — n-gram modelling

* n-th order Markov assumption: why?

T
p(x17x27 e 7$T) o Hp(xt | L1y .- - 7xt—1)

=1l
T

& Hp(% | Tt—ny ooy Te—1)
=1l

» Collect n-gram statistics from a large corpus:

CoOUMb|ie e R e S

P(Tt|Tt—n, ... T1—1) = count(s p,---,Ts—1)



HOW LIKELY IS THIS SENTENCE?

Topics: Non-parametric Approach — n-gram modelling

5 (/8))

» Ex) p(i, would, like, to, . . .

* Unigram Modelling
p(i)p(would)p(like) - - - p({/s))

* Bigram Modelling
p(i)p(would|i)p(like|would) - - - p((/s) |.)

* Irigram Modelling

p(i)p(would|i)p(likel|i, would) - - -

word unigram | bigram | trigram | 4-gram

] 6.684 3.197 3.197 3.197
would 3.342 2.884 2.791 2.791
like 9.129 2.026 1.031 1.290

to 5.081 0.402 0.144 0.113
commend 15.487 | 12.335 3.794 3.633
the 3.885 1.402 1.084 0.880
rapporteur 10.840 7.319 2.763 2.350
on 0.765 4.140 4.150 1.862
his 10.678 7.316 2.367 1.978
work 9.993 4.816 3.498 2.394

. 4.896 3.020 1.785 1.510
</s> 4.828 0.005 0.000 0.000
average 3.051 4.072 2.634 2.251
perplexity | 265.136 | 16.817 6.206 4.758



HOW LIKELY IS THIS SENTENCE?

Topics: n-gram modelling — Two closely-related 1ssues

» Data Sparsity

» # of all possible n-grams: |V|™, where |V|: size of vocabulary

p(a, tenured, professor, like, drinking, whiskey, .) =

p(a)p(tenured|a) p(professor|a, tenured)

N — ———
=0

p(likes|tenured, professor) - - - p(.|drinking, whiskey)
=



HOW LIKELY IS THIS SENTENCE?

Topics: n-gram modelling — Two closely-related 1ssues

» Conventional Solutions to Data Sparsity:

* Smoothing:
i ) GOl e B
o | T50 b B R
e g GO 5 o o o A L) == 107
(add-a smoothing)
» Backoff: Dl G e AR
IERE OG22 S ST SR ()
G SR Ty ) —
p( t‘ t—n t 1) dn(ili't_n,---,33t—1)p(37t‘56t—n—|—1"’73775—1)’
otherwise

(ap,: adjusted prediction model, d,,: discount factor)



HOW LIKELY IS THIS SENTENCE?

Topics: n-gram modelling — Two closely-related 1ssues

» Lack of Generalization
* (chases, a, dog), (chases, a, cat), (chases, a, rabbit)

* (chases, a, llama)=?
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Neural Language Modaelling



LANGUAGE MODELLING

Topics: Neural Language Modelling

- Non-pararetre-estimateor —— Parametric estimator




LANGUAGE MODELLING

Xy = 1| @i | mosay

Topics: Neural Language Modelling

PATs | Tty oy Tp1) = oo (Ti—ny oo, Ti1) L
Softmax
* Building a neural language model (Bengio et al., 2000)
| = [T T T 111
(1) [-of-K encoding of each word T/ o Nonlincar ol Soren
| , =H=
(2)Continuous space word representation > 3
_ pp [V |xd 2 &
sy = W 'xy, where W € R £ X
=
(3)Nonlinear hidden layer SEa [ B
= b
h :tanffl(UT S¢_1;8¢—9; ;St_n|+ b) 5 = u
where U € R"*% and b ¢ RY 3 = e
LU

20



LANGUAGE MODELUNG

t—Z‘CEt 1y Lt—2, Lt— 3)

Topics: Neural Language Modelling

p(xt‘xt—n7°'°7xt—1) :f:ct(ajt—na-”axt—l) | S
Softmax
* Bullding a neural language model (Bengio et al.,, 2000)
= [T T T T 1]
Q T Nonlinear projection
. o S 5
(1Unnormalized probabilities > 3
=3
y =Vh + ¢, where V € RVI*? and c e RIVI £ 2
W= e
= P
(2)Softmax normalization ) SEa [ B
. exply; S L]
p(xt :Z‘th_n,...,l't_l) = V] : S e
Zj:l exp(y; ) S = B
— . N
L

2|



LANGUAGE MODELLING

Topics: Neural LM generalizes to unseen n-gram'’s

e Gipie sentences
» there are three teams left for the gualification.
» four teams have passed the first round. thré/e

» four groups are playing in the field.

* How likely 1s groups followed by three!?
- Why?

22



LANGUAGE MODELLING

t—’6|513t 1, Lt—2, Lt— 3)

Topics: Continuous-space representation — Embeddings
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Q&A

iz



Non-Markovian Language Modelling

25



LANGUAGE MODELLING

Topics: Markov Assumption

» Markov Assumption In n-gram modeling

T
p(£17x27 D 7$T) = Hp(xt ‘ L1y .- - 7$t—1)

=il
T

& Hp(xt | Tt—ny .oy Te—1)
=l

* Issue: Dependency beyond the context window Is ignored

* EX) the same stump which had impaled the car of many a
guest in the past thirty years and which he refused to have

removed

26



LANGUAGE MODELLING

Topics: Non-Markovian Language Modelling

* Directly model the original conditional probabllities

T
p(ﬁUl,CEQ, QO 7CET) a Hp(xt ‘ L1y - 73715—1)
=l

* Feature Extraction + Readout
e iiliie Bxiraction: h: = f(z1,29,...,Ts_ 1)

S dOli ez, - Te—1) = glhe)

» How can we let f take variable-length input?

27



LANGUAGE MODELLING

Topics: Language Modelling via Recursion

* Directly model the original conditional probabllities

T
p(x17x27 QO 7CET) a Hp(xt | L1y - 73715—1)
=l

» Recursive Construction of f

* |Initial Condition: hg = 0 f
» Recursion: by = f(®i—1, ht—1) T
* We call hy an internal hidden state or memory L

* hi summarizes/memorizes the history from 1 up to Tt—1



LANGUAGE MODELLING

Topics: Language Modelling via Recursion

- Example: p(eating|the, cat, is)
(1) Initialization: hg = 0
(2) Recursion
(1) h1 = f(hg, the)
2) hy = (h cat)
3) hy = f(hs,is)
(3) Readout: p(eating|the, cat,is) = g(hs)

* [t works for any number of context words

29



RNN Language Modelling

30



3

LANGUAGE MODELLING

Topics: Recurrent neural network language model

- Example: p(the, cat, is, eating)
(1) Initialization: hg = 0 — p(the) = g(ho)
(2) Recursion with Readout
(1) hy = f(ho,the)— p(cat|the) = g(h)
(2) ho = f(hq,cat)— p(is|the, cat) = g(ho)
3) hg = f(ho,is) — p(eating|the, cat,is) = g(hs)
(3) Combination: p(the, cat, is, eating) = g(hg)g(h1)g(h2)g(hs3)

EE ER U pdate and Predict



LANGUAGE MODELLING

Topics: Recurrent neural network language model

- Example: p(the, cat, is, eating)

p(the) p(cat|...) p(is|...) p(eating]...)

O

T | |

the cat 1S

e R pdate and Predict

32



LANGUAGE MODELLING

Topics: Building an RNN Language Model
* What do we need!?
SEaRsition Function hy = f(hi_1,2:_1)

» Output/Readout Function p(z: = w|T1,...,Tt—1) = gu(he)

p(the)  p(cat|...) p(is|...) p(eating|..

o

l

the cat is

33



LANGUAGE MODELLING

Topics: Building an RNN Language Model - Transition Function

* Inputs
BlEEles = c {0, 1}|V| -one-hot vectorie, Tt-1 =w € {1,...,|V]}
+ Hidden state ht—1 € R

* Parameters

* Input weight matrix W & IR (often called word embeddings)

+ Transition weight matrix U € R**¢

+ Bias vector b € R?

34



LANGUAGE MODELLING

Topics: Building an RNN Language Model - Transition Function
* Inputs; T¢t—1 © 10, 1}|V| hi_q € R

taph
» Parameters: W ¢ R¥*IVl U7 ¢ R4 p e R? [7 :
1l e
- Naive Transition Function !
hy = tanh(Wxy_q1 + Uhy_q + b) : w
pi )

(1) Continuous-space Representation of word: W x¢_1
(2) LinearTransformation of the Previous Hidden State: U fry—1
(3) Additive combination of L¢t—1 and Ft—1 together with b

(4) Point-wise nonlinear transformation

35



LANGUAGE MODELLING

Topics: Building an RNN Language Model - Readout Function

* Inputs
* (Current) Hidden State h; & R4
* Parameters
- Output matrix R € RIVIX? (often called target word embeddings)

+ Bias vector ¢ € RV

36



LANGUAGE MODELLING

Topics: Building an RNN Language Model - Readout Function

* Inputs h; € R? /
* Parameters R € R!IVI*4 ¢ e RV ¥
* Softmax Readout Function fiecet IT

p(xr = w|T<t) = Guw(ht) = |e;<|p( = tT_l T Cw) eXp

P el e T ) XR

(1) Linear projection of the hidden state for each possible target word Pt

R h forall i="1,.7 V]

(3) Transform each projected vector Uj; to be positive p; = exp(v,,;)

(4) Normalize Di's to make them into probabilities of the I-th target words



LANGUAGE MODELLING

Topics: Building an RNN Language Model

p(ﬂft = w‘«??<t)

e Recursion and Readout: 4"\

» Recursion [ ] —+
ht — tanh(Wxt_l 4 Uht_l 4 b) T
exp
 Readout/Output
p(Ts = w|T ) bl IR
A L)
SVl exp(RT hy_1) @ph
_A_ l b
1%




Training RNIN-LM

39



LANGUAGE MODELLING

Topics: Cost Function J(O)

» Log-Probability of a sentence (z1,2,...,Z7)

lng(Il,zg, T 7$T) T Zlogp(xt | L1y - - - 73375—1)

* Train an RNIN LM to maximize the log-prob’s of training sentences

» Given a training set of N sentences: {(z1,...,Zq )y, (27 ,- ..

1
maximize@ﬁ Z 1ng(aj7f7 SR 737221“ )

mn

n=1

/=

In

*\

log p(y |2y - .., 24— 1)

1
<= minimizegJ(0) = N

|
=t

n ="

N

) CETN

)}

40



LANGUAGE MODELLING

Topics: Minibatch Stochastic Gradient Descent - Recap
(IRandomly select a minibatch of N’ sentences: D = {xl, i ,xN’}

(2)Compute the gradient of per-sample cost wrt. ©: VJ(O, z™)
(3)Compute the minibatch gradient:

/

VJ(©,D) = N,ZVJ@CE)

(4)Update the parameters ©
© <+ 06+nVJ(O,D)

(5)Repeat until convergence

41



LANGUAGE MODELLING

Topics: Backpropagation through time 7
» Decomposition of a per-sample cost function J(O, x) Z (28

» Unrolled Computational Graph
J(0, 1) = log p(xr = &¢|T<t)

42



LANGUAGE MODELLING

Topics: Backpropagation through time ; ;
PI o e : Ji(0, %) = logp(xt = &t|x<t)
(DInitialize Vr, Vu, Vw, Vb andt =T ;
(1) The per-step cost derivative:%—‘? [7 IR [7
(2)Gradient wirt. R : %Z; 31% @
(3)Gradient w.rt. At %{; gfi | g;{:l 8({;;;1 %I;V_b
(4)Gradient w.rt. U : aajhit %}(‘} G|
(5)Gradient w.rit Wandb: aajhit 2IC o aajhit i -
(2)Update the parameter gradient and repeat until £t = 1 o 0‘005\
Sl A\
Ve < Vg A %{% N = Vi 85’ 0&0'\
8J2t ajzt $




Q&A

Code: https://github.com/kyunghyuncho/dl4mt-material/tree/master/session0

44


https://github.com/kyunghyuncho/dl4mt-material/tree/master/session0

Gated Recurrent Units

45



GATED RECURRENT UNITS

Topics: lemporal Dependency and Vanishing Gradient i
- How much influence does h: have on log p(Tsan|T<tin)? 5‘\(\%(00
0. 90 Ohun Ohun @ ooV
Ohy 0g Ohiyn OhianN_1 Ohy \40'&‘
« With the nalve transition function!?
ag;:l = 8ta§i1(a) where a=Waxy +Uhs + b

 Let's rewrrte it

N
8Jt+n 5 8Jt_|_n (?g H Uleag (8tanh(at+n)>

(9ht 2 (99 aht_H\] ('9at+n

=il

Problematic! Bengio et al. (1994)

46



GATED RECURRENT UNITS

Topics: lemporal Dependency and Vanishing Gradient

» Upper bound on the norm of the gradient w.rt. f;?

N N N
H Uleag (8 tanh(at+n) > S H H U—|- H H o, tanh(at+n)
=t =l

8at—|—n aat—I—n

n=1
* Observations

(1) Vanishing gradient when Amax(U) <1 :H:;l HUTH =t

atanh(at+n) N O
aaft—l—n i

(2) Vanishing gradient when the units are saturated.

(3) Potentially, exploding gradient when Amax(U) > 1

* Problem: [t's likely that there’s no learning signal!



GATED RECURRENT UNITS

Topics: Exploding gradient Is less problematic

* “when gradients explode so does

the curvature along v, leading to “
a wall in the error surface” Il S
. . L T R 025,
* Solution: Gradient Clipping UM 5= 0.20
0.15
- : : 0.10
(1) Gradient norm clipping b;.g\gxﬂ\\’///ﬂus
o 2
C ' O 32 _2o =2.0
@ /s { ||V|| v ,lf ||VH .Z C 4 5.4 58 _E'Ega]_féﬁtﬂfb 2.2
V ,otherwise Pascanu et al. (2013)

(2)Element-wise gradient clipping
V; < min(c, V;), for all 1 € {1,...,dimV}

43



GATED RECURRENT UNITS

Topics: But, vanishing gradient Is very problematic

* Why does the gradient vanish!?
N

tanh(asyp,
et N = U ' diag AL — (0
5’ht i 8at—|—n
| e G
» Can we simply “maximize !
Ohy

* “we need to force the network to increase the norm of ag’;;N at
the expense of larger errors”

* Pascanu et al. (201 3)

* Regularize ) = ZQk = Z |
k

k

)
0 OXp41

8xk+1 8Xk

o0&
3Xk+1

49



GATED RECURRENT UNITS

Topics: But, vanishing gradient Is very problematic

* Why does the gradient vanish?

aht_H\f o T o, tanh(at+n)
o H U ' diag ( S, — 0

* Perhaps, It Is a problem with the naive transition function...
]’Lt — tanh(W:z:t_l I Uht_l I b)

* Error Is backpropagated through every intermediate node

Ui U' s il
O rOTOrOr

50



GATED RECURRENT UNITS

Topics: But, vanishing gradient Is very problematic

* Perhaps, It Is a problem with the naive transition function...
]'Lt — tanh(Wxt_l == Uht_l 5 b)

* Error Is backpropagated through every intermediate node

U' U B il
@T’ B 7 GEL T

» lemporal shortcut connections

o)



GATED RECURRENT UNITS

Topics: Gated Recurrent Units (GRU)

» lemporal shortcut connections

* Adaptive Leaky integration
iy = (L = WOl +up © hy

- Update gate us = o(Wyxi—1 + Unhy—1 + by)
. Candidate state h; = tanh(Wxy;_1 +Uhy_1 + b)

52



GATED RECURRENT UNITS

Topics: Gated Recurrent Units (GRU)

* Pruning connections: avoids the diffusion of signal

B0 SO0 >6

g d@nilc Reset
he = tanh(Wxe_q + U(r: © he—1) + b)

* Reset gate
== O-(Wfr'ibt—l F Ufr‘ht—l iy br)

53



GATED RECURRENT UNITS

Topics: Gated Recurrent Units (GRU) Cno St a
 Update and Reset gates @4_.)

Uy = U(Wuxt—l Uuht—l bu) “ A
8\
I~ O-(Wfrxt—l oE Urht—l 2 br)
« Candidate hidden state i
he = tanh(Waxe_1 + U(rs ® hy_1) + b) /;7
I

* Adaptive Leaky Integration Y

g = (1l = W O G ® hy




GATED RECURRENT UNITS

Topics: Long Short-Term Memory (LSTM)

* Input, Forget and Output gates
Zt—O'(WLIZ‘t 1—|—Uht 1—|—b)

fe = o(Wyzi—y + Uphsy + by)

Ot = U(Woxt—l Sl Uoht—l i bo)
» Candidate memory cell state

» Adaptive Leaky

q”l(WZBt_l I Uht_l E b)

Et = tanl

ntegration

T — i O] S U ONe

» Output

ht =ROC) tanh(ct)

Hochrerter&schmidhuber (1999),

Grefesiete el (01011



Q&A

Code: https://github.com/kyunghyuncho/dl4mt-material/tree/master/session0
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Next Lecture: Neural Machine [ranslation
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