next up previous
Next: About this document ... Up: The Go-Playing Program Called Previous: Discussion and future work

Bibliography

1
S. Ragab A. Abdelbar and S. Mitri.
Co-evolutionary particle swarm optimization applied to the 7x7 Seega game.
In Proc. of the IntJ. Conf. on Neural Networks, pages 243-248, Budapest, Hungary, July 2004.

2
B. Abramson.
Expected-outcome: A general model of static evaluation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2):182-193, 1990.

3
D. Benson.
Life in the game of Go.
Information Sciences, 10:17-29, 1976.

4
E. Bonabeau and G. Théraulaz.
Swarm smarts.
Scientific American, pages 72-79, March 2000.

5
B. Bouzy and B. Helmstetter.
Developments on Monte Carlo Go.
Advances in Computer Games 10, 2003.

6
B. Brügmann.
Monte Carlo Go.
Technical report, Syracuse University, March 1993.
ftp://ftp.cse.cuhk.edu.hk/pub/neuro/GO/mcgo.tex.

7
M. Sipser D. Lichtenstein.
Go is polynomial-space hard.
Journal ACM, 27(2):393-401, 1980.

8
T. Graepel D. Stern and D. MacKay.
Modelling uncertainty in the game of Go.
In Proc. of the Conference on Neural Information Processing Systems, Vancouver, Canada, December 2004.
submitted.

9
D. Bump et al.
GNU Go home page, 2004.
http://www.gnu.org/software/gnugo/devel.html.

10
A. Huima.
Unsupervised learning of go patterns.
http://people.ssh.fi/huima/compgo/, 1999.

11
H. Hyötyniemi and P. Saariluoma.
Chess - Beyond the Rules.
Finnish Artificial Intelligence Society, 1999.

12
A. Iizuka.
AIGO home page, 2004.
http://www001.upp.so-net.ne.jp/iizuka/AIGO/.

13
T. Kageyama.
Lessons in the Fundamentals of Go.
Kiseido publishing company, 1978.

14
M. Müller.
Computer Go.
Special issue on games of Artificial Intelligence Journal, 2001.

15
T. Raiko.
Go81 home page, 2004.
http://www.cis.hut.fi/praiko/go81/.

16
T. Thomsen.
Lambda-search in game trees - with application to Go.
Computers and Games 2000, Lecture Notes in Computer Science, 2001.



Tapani Raiko 2005-05-10