next up previous
Next: About this document ... Up: BAYESIAN LEARNING OF LOGICAL Previous: ACKNOWLEDGEMENTS

Bibliography

1
C. R. Anderson, P. Domingos, and D. S. Weld.
Relational Markov Models and their Application to Adaptive Web Navigation.
In Proceedings of the Eighth International Conference on Knowledge Discovery and Data Mining (KDD-2002), 2002.

2
A. Dempster, N. Laird, and D. Rubin.
Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, 39:1-38, 1977.

3
S. Fine, Y. Singer, and N. Tishby.
The hierarchical hidden Markov model: analysis and applications.
Machine Learning, 32, 1998.

4
P. Frasconi, G. Soda, and A. Vullo.
Hidden Markov models for text categorization in multi-page documents.
Journal of Intelligent Information Systems, (special issue on Automated Text Categorization), 18:195-217, 2002.

5
Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.
Bayesian Data Analysis.
Chapman & Hall, New York, 1995.

6
Z. Ghahramani and M. Jordan.
Factorial hidden Markov models.
Machine Learning, 29:245-273, 1997.

7
Geoffrey E. Hinton and Drew van Camp.
Keeping neural networks simple by minimizing the description length of the weights.
In Proc. COLT'93, pages 5-13, Santa Cruz, California, USA, July 26-28, 1993.

8
K. Karplus.
Regularizers for estimating distributions of amino acids from small samples.
Technical Report UCSC-CRL-95-11, University of California, Santa Cruz, 1995.

9
K. Kersting, T. Raiko, S. Kramer, and L. De Raedt.
Towards discovering structural signatures of protein folds based on logical hidden Markov models.
Technical Report 175, University of Freiburg, Germany, June 2002.

10
K. Kersting, T. Raiko, S. Kramer, and L. De Raedt.
Towards discovering structural signatures of protein folds based on logical hidden Markov models.
In Proceedings of the Pacific Symposium on Biocomputing, 2003.
(to appear).

11
J. W. Lloyd.
Foundations of Logic Programming.
Springer, Berlin, 2. edition, 1989.

12
S. Muggleton and L. De Raedt.
Inductive logic programming: Theory and methods.
Journal of Logic Programming, 1994.

13
L. R. Rabiner.
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.
Proceedings of the IEEE, 77(2), 1989.



Tapani Raiko 2003-07-09