next up previous
Next: About this document ... Up: Learning Nonlinear State-Space Models Previous: Acknowledgement

Bibliography

1
B. Anderson and J. Moore.
Optimal Filtering.
Prentice-Hall, Englewood Cliffs, NJ, 1979.

2
K.J. Åström, P. Albertos, M. Blamke, A. Isidori, W. Schaufelberger, and R. Sanz.
Control of complex systems.
Springer, 2001.

3
Y. Bar-Shalom.
Stochastic dynamic programming: Caution and probing.
IEEE Transactions on Automatic Control, 26(5):1184-1195, October 1981.

4
M. J. Beal and Z. Ghahramani.
The variational Kalman smoother.
Neural Computation, 14(119):2647-2692, 2002.

5
K. Doya.
What are the computations in the cerebellum, the basal ganglia, and the cerebral cortex?
Neural Networks, 12(7):961-974, 1999.

6
S. Haykin.
Neural Networks - A Comprehensive Foundation, 2nd ed.
Prentice-Hall, 1999.

7
R. E. Kalman.
A new approach to linear filtering and prediction problems.
Transactions of the ASME-Journal of Basic Engineering, 82(Series D):35-45, 1960.

8
H. Kimura and S. Kobayashi.
Efficient non-linear control by combining Q-learning with local linear controllers.
In Proceedings of the Sixteenth International Conference on Machine Learning, pages 210-219, San Francisco, CA, USA, 1999.

9
J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and B. Likar.
Predictive control with Gaussian process models.
In Proceedings of IEEE Region 8 Eurocon 2003: Computer as a Tool, pages 352-356, 2003.

10
G.G. Murray and K. Sykes.
The variation of hand tremor with force in healthy subjects.
Journal of Physiology, 191:699-711, 1967.

11
R. Murray, K. J. Åström, S. P. Boyd, R. W. Brockett, and G. Stein.
Future directions in control in an information-rich world.
IEEE Control Systems Magazine, 23(2):20-33, April 2003.

12
J. Nocedal and S. J. Wright.
Numerical Optimization.
Springer-Verlag, New York, 1999.

13
M. Nørgaard, O. Ravn, N. K. Poulsen, and L. K. Hansen.
Neural Networks for Modelling and Control of Dynamic Systems.
Springer-Verlag London Limited, 2001.

14
F. Rosenqvist and A. Karlström.
Realisation and estimation of piecewise-linear output-error models.
Automatica, 41(3):545-551, March 2005.

15
R. Sutton.
Learning to predict by the methods of temporal differences.
Machine Learning, 3:9-44, 1988.

16
S. B. Thrun.
The role of exploration in learning control.
In D. A. White and D. A. Sofge, editors, Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, pages 527-559. Van Nostrand Reinhold, Florence, Kentucky, 1992.

17
H. Valpola and J. Karhunen.
An unsupervised ensemble learning method for nonlinear dynamic state-space models.
Neural Computation, 14(11):2647-2692, 2002.

18
P. Wawrzynski and A. Pacut.
Model-free off-policy reinforcement learning in continuous environment.
In Proceedings of the International Joint Conference on Neural Networks, pages 1091-1096, Budapest, Hungary, July 2004.


Tapani Raiko 2005-05-23