next up previous
Next: About this document ... Up: Natural Conjugate Gradient in Previous: Acknowledgments

Bibliography

1
Bishop, C.:
Pattern Recognition and Machince Learning.
Springer (2006)

2
Barber, D., Bishop, C.:
Ensemble learning for multi-layer networks.
In Advances in Neural Information Processing Systems 10.
The MIT Press, Cambridge, MA, USA (1998) 395-401

3
Seeger, M.:
Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers.
In Advances in Neural Information Processing Systems 12.
MIT Press, Cambridge, MA, USA (2000) 603-609

4
Lappalainen, H., Honkela, A.:
Bayesian nonlinear independent component analysis by multi-layer perceptrons.
In Girolami, M., ed.: Advances in Independent Component Analysis.
Springer-Verlag, Berlin (2000) 93-121

5
Valpola, H., Karhunen, J.:
An unsupervised ensemble learning method for nonlinear dynamic state-space models.
Neural Computation 14(11) (2002) 2647-2692

6
Valpola, H., Harva, M., Karhunen, J.:
Hierarchical models of variance sources.
Signal Processing 84(2) (2004) 267-282

7
Honkela, A., Valpola, H.:
Unsupervised variational Bayesian learning of nonlinear models.
In Advances in Neural Information Processing Systems 17.
MIT Press, Cambridge, MA, USA (2005) 593-600

8
Amari, S.:
Differential-Geometrical Methods in Statistics. Volume 28 of Lecture Notes in Statistics.
Springer-Verlag (1985)

9
Amari, S.:
Natural gradient works efficiently in learning.
Neural Computation 10(2) (1998) 251-276

10
Sato, M.:
Online model selection based on the variational Bayes.
Neural Computation 13(7) (2001) 1649-1681

11
Murray, M.K., Rice, J.W.:
Differential Geometry and Statistics.
Chapman & Hall (1993)

12
Valpola, H.:
Bayesian Ensemble Learning for Nonlinear Factor Analysis.
PhD thesis, Helsinki University of Technology, Espoo, Finland (2000) Published in Acta Polytechnica Scandinavica, Mathematics and Computing Series No. 108.

13
Nocedal, J.:
Theory of algorithms for unconstrained optimization.
Acta Numerica 1 (1991) 199-242

14
Smith, S.T.:
Geometric Optimization Methods for Adaptive Filtering.
PhD thesis, Harvard University, Cambridge, Massachusetts (1993)

15
Edelman, A., Arias, T.A., Smith, S.T.:
The geometry of algorithms with orthogonality constraints.
SIAM Journal on Matrix Analysis and Applications 20(2) (1998) 303-353



Tapani Raiko 2007-09-11