next up previous
Next: About this document ... Up: Missing Values in Hierarchical Previous: Experiments

Bibliography

1
H. Valpola, T. Östman, and J. Karhunen, ``Nonlinear independent factor analysis by hierarchical models,'' in Proc. of the 4th Int. Symp. on Independent Component Analysis and Blind Signal Separation (ICA2003), 2003.
To appear.

2
T. Raiko and H. Valpola, ``Missing values in nonlinear factor analysis,'' in Proc. of the 8th Int. Conf. on Neural Information Processing (ICONIP'01), (Shanghai), pp. 822-827, 2001.

3
C. Bishop, Neural Networks for Pattern Recognition.
Clarendon Press, 1995.

4
R. Little and D.B.Rubin, Statistical Analysis with Missing Data.
J. Wiley & Sons, 1987.

5
H. Lappalainen and A. Honkela, ``Bayesian nonlinear independent component analysis by multi-layer perceptrons,'' in Advances in Independent Component Analysis (M. Girolami, ed.), pp. 93-121, Berlin: Springer-Verlag, 2000.

6
A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis.
J. Wiley, 2001.

7
T. Kohonen, Self-Organizing Maps.
Springer, 3rd, extended ed., 2001.

8
D. Barber and C. Bishop, ``Ensemble learning in Bayesian neural networks,'' in Neural Networks and Machine Learning (M. Jordan, M. Kearns, and S. Solla, eds.), pp. 215-237, Berlin: Springer, 1998.

9
H. Valpola and J. Karhunen, ``An unsupervised ensemble learning method for nonlinear dynamic state-space models,'' Neural Computation, vol. 14, no. 11, pp. 2647-2692, 2002.

10
M. Beal and Z. Ghahramani, ``The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures,'' Bayesian Statistics 7, 2003.
To appear.

11
K. Chan, T.-W. Lee, and T. J. Sejnowski, ``Handling missing data with variational bayesian estimation of ica,'' in Proc. 9th Joint Symposium on Neural Computation, vol. 12, (Institute for Neural Computation, Caltech), May 2002.

12
M. Welling and M. Weber, ``Independent component analysis of incomplete data,'' in Proc. of the 6th Annual Joint Symposium on Neural Computation (JNSC99), (Pasadena), 1999.

13
A. Ilin and H. Valpola, ``On the effect of the form of the posterior approximation in variational learning of ICA models,'' in Proc. of the 4th Int. Symp. on Independent Component Analysis and Blind Signal Separation (ICA2003), 2003.
To appear.

14
H. Valpola, T. Raiko, and J. Karhunen, ``Building blocks for hierarchical latent variable models,'' in Proc. 3rd Int. Conf. on Independent Component Analysis and Signal Separation (ICA2001), (San Diego, USA), pp. 710-715, 2001.



Tapani Raiko 2003-07-01