Next: About this document ...
Up: Principal Component Analysis for
Previous: Acknowledgments
- 1
-
Pearson, K.:
On lines and planes of closest fit to systems of points in space.
Philosophical Magazine 2(6) (1901) 559-572
- 2
-
Jolliffe, I.:
Principal Component Analysis.
Springer-Verlag (1986)
- 3
-
Bishop, C.:
Pattern Recognition and Machine Learning.
Springer-Verlag (2006)
- 4
-
Diamantaras, K., Kung, S.:
Principal Component Neural Networks - Theory and Application.
Wiley (1996)
- 5
-
Haykin, S.:
Modern Filters.
Macmillan (1989)
- 6
-
Cichocki, A., Amari, S.:
Adaptive Blind Signal and Image Processing - Learning Algorithms and
Applications.
Wiley (2002)
- 7
-
Oja, E.:
Neural networks, principal components, and subspaces.
International Journal of Neural Systems 1(1) (1989) 61-68
- 8
-
Tipping, M., Bishop, C.:
Probabilistic principal component analysis.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 61(3) (1999) 611-622
- 9
-
Grung, B., Manne, R.:
Missing values in principal components analysis.
Chemometrics and Intelligent Laboratory Systems 42(1)
(August 1998) 125-139
- 10
-
Bishop, C.:
Variational principal components.
In: Proc. 9th Int. Conf. on Artificial Neural Networks (ICANN99).
(1999) 509-514
- 11
-
Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., Ishii, S.:
A Bayesian missing value estimation method for gene expression
profile data.
Bioinformatics 19(16) (2003) 2088-2096
- 12
-
Raiko, T., Valpola, H., Harva, M., Karhunen, J.:
Building blocks for variational Bayesian learning of latent
variable models.
Journal of Machine Learning Research 8(Jan) (2007) 155-201
- 13
-
Netflix:
Netflix prize webpage (2007) http://www.netflixprize.com/.
- 14
-
Funk, S.:
Netflix update: Try this at home.
Available at http://sifter.org/~simon/journal/20061211.html (December 2006)
- 15
-
Salakhutdinov, R., Mnih, A., Hinton, G.:
Restricted Boltzmann machines for collaborative filtering.
In: Proc. Int. Conf. on Machine Learning. (2007) To appear.
Tapani Raiko
2007-07-16