next up previous
Next: About this document ... Up: courseware Previous: Acknowledgments

Bibliography

Bishop, 2006
Bishop][2006]Bishop2006 Bishop, C. M. (2006).
Pattern recognition and machine learning.
Information Science and Statistics. Springer, New York.

Brooks, 1995
Brooks][1995]Brooks1995 Brooks, F. (1995).
The mythical man-month: Essays on software engineering.
Addison-Wesley. 20th anniversary edition edition.

Dempster et al., 1977
Dempster et al.][1977]Dempster77 Dempster, A. P., Laird, N., & Rubin, D. (1977).
Maximum likelihood from incomplete data via the EM algorithm (with discussion).
Journal of the Royal Statistical Society, Series B, 39, 1-38.

Hand et al., 2001
Hand et al.][2001]Hand2001 Hand, D., Mannila, H., & Smyth, P. (2001).
Principles of data mining.
Adaptive Computation and Machine Learning Series. MIT Press.

Hollmén et al., 2003
Hollmén et al.][2003]Hollmen2003 Hollmén, J., Seppänen, J. K., & Mannila, H. (2003).
Mixture models and frequent sets: combining global and local methods for 0-1 data.
Proceedings of the Third SIAM International Conference on Data Mining (pp. 289-293).

Kernighan & Ritchie, 1988
Kernighan and Ritchie][1988]Kernighan1988 Kernighan, B. W., & Ritchie, D. M. (1988).
The C programming language.
Prentice Hall. Second edition edition.

Mathworks, 1994
Mathworks][1994]Matlab Mathworks (1994).
Matlab -- the language of technical computing.
http://www.mathworks.com/products/matlab/.

Myllykangas et al., 2008
Myllykangas et al.][2008]Myllykangas2008a Myllykangas, S., Tikka, J., Böhling, T., Knuutila, S., & Hollmén, J. (2008).
Classification of human cancers based on dna copy number amplification patterns.
BMC Medical Genomics.
in press.

R Project, 1997
R Project][1997]R-project R Project (1997).
The R project for statistical computing.
http://www.r-project.org/.

Raiko et al., 2008
Raiko et al.][2008]Raiko_tml_2008 Raiko, T., Puolamäki, K., Karhunen, J., Hollmén, J., Honkela, A., Kaski, S., Mannila, H., Oja, E., & Simula, O. (2008).
Macadamia: Master's programme in machine learningi and data mining.
Teaching Machine Learning: Workshop on open problems and new directions.
Saint-Étienne, France.

Sonnenburg et al., 2007
Sonnenburg et al.][2007]Sonnenburg2007 Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K.-R., Pereira, F., Rasmussen, C. E., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., & Williamson, R. (2007).
The need for open source software in machine learning.
Journal of Machine Learning Research, 8, 2443-2466.

Tikka et al., 2007
Tikka et al.][2007]Tikka2007b Tikka, J., Hollmén, J., & Myllykangas, S. (2007).
Mixture modeling of DNA copy number amplification patterns in cancer.
Proceedings of the 9th International Work-Conference on Artificial Neural Networks (IWANN 2007) (pp. 972-979).
San Sebastián, Spain: Springer-Verlag.

Wolfe, 1970
Wolfe][1970]Wolfe1970 Wolfe, J. W. (1970).
Pattern clustering by multivariate mixture analysis.
Multivariate Behavioral Research, 5, 329-350.



Tapani Raiko 2008-06-02