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ABSTRACT

We study a regularization framework where we feed an original clean data point
and a nearby point through a mapping, which is then penalized by the Euclidian
distance between the corresponding outputs. The nearby point may be chosen
randomly or adversarially. A more general form of this framework has been pre-
sented in (Bachman et al., 2014). We relate this framework to many existing reg-
ularization methods: It is a stochastic estimate of penalizing the Frobenius norm
of the Jacobian of the mapping as in Poggio & Girosi (1990), it generalizes noise
regularization (Sietsma & Dow, 1991), and it is a simplification of the canonical
regularization term by the ladder networks in Rasmus et al. (2015). We also in-
vestigate the connection to virtual adversarial training (VAT) (Miyato et al., 2016)
and show how VAT can be interpreted as penalizing the largest eigenvalue of a
Fisher information matrix. Our contribution is discovering connections between
the studied and other existing regularization methods.

1 INTRODUCTION

Regularization is a commonly used meta-level technique in training neural networks. This paper
studies a regularization method, which is an instance of the Pseudo-Ensemble Agreement regular-
izer (PEA) presented in (Bachman et al., 2014), investigating theoretical connections of the approach
to three regularization techniques proposed in the literature. These regularization techniques are the
canonical regularizations by penalizing the Jacobian (Poggio & Girosi, 1990), by noise injection (Si-
etsma & Dow, 1991), by the Ladder network (Rasmus et al., 2015), and by the virtual adversarial
training (Miyato et al., 2016).

The structure of the rest of the paper is as follows: In the following section we describe the reg-
ularization criteria studied. In section 3 we investigate connections of these regularization tech-
niques theoretically, providing novel theoretical results together connecting all of the regularization
schemes. Section 4 concludes and discusses future work.

2 REGULARIZATION FRAMEWORK

Given a set of (N ) input examples X =
{
{x(n)}Nn=1

}
, and mapping f(x;θ) parameterized by

θ, training happens by minimizing a training criterion L (X,θ) = Ep(x)(·) iteratively, where the
expectation Ep(x) is taken over the training data set X.1 Often a regularization term R is added to
the training criterion in order to help generalize better to unseen data.

The canonical regularization term by the studied approach is given as follows:

R (x,θ;α, ε) = αEp(x,∆x)‖f(x)− f(x + ∆x)‖2 = αEp(x,∆x)‖h− h̃‖2, (1)

∗The authors declare equal contributions.
1We leave open the particular task and rest of the neural architecture.
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where h = f(x;θ) denotes the network output given an example x, h̃ = f(x + ∆x;θ) denotes
the network output given a perturbed version of the example x + ∆x, and α is a positive scalar
hyperparameter.

By default, the perturbation is implemented as additive white Gaussian noise ∆x ∼ N
(
0, ε2I

)
, with

I denoting the identity-matrix and ε is a positive scalar that is used to control the amount of perturba-
tion. We can also consider an adversarial variant where ∆x = ∆xadv. = arg max∆x:‖x‖≤ε ‖h−h̃‖2.

3 CONNECTIONS TO OTHER REGULARIZATION METHODS

3.1 PSEUDO-ENSEMBLE AGREEMENT

The approach can be seen as an instance of the Pseudo-Ensemble Agreement regularization by
Bachman et al. (2014), assuming V(h, h̃) = ‖h− h̃‖2 in (Bachman et al., 2014, Equation (2)).

3.2 PENALIZING THE JACOBIAN

A central method connecting different regularizers here is the penalization of the Jacobian. Poggio
& Girosi (1990) proposed to penalize a neural network by the Frobenius norm of the Jacobian J:

RJacobian = Ep(x,∆x)

[
‖J‖2F

]
= Ep(x,∆x)

∑
k,i

(
∂hk
∂xi

)2
 . (2)

In the special case of linear f , the Jacobian is constant and the Jacobian penalty can be seen as a
generalization of weight decay. Note that the Frobenius norm of the Jacobian penalizes the mapping
f directly, rather than through its parameters.

Matsuoka (1992) and Reed et al. (1992) found a connection between noise regularization and penal-
izing the Jacobian, assuming a regression setting with a quadratic loss. The connection is applicable
in our setting, too, as is demonstrated in the following: Assuming that a small perturbation of the
form ∆x ∼ N (0, ε2I) is added to every example x, such that every h̃ = f(x+∆x;θ), approximat-
ing h̃ near h using a component-wise Taylor series expansion yields that for every output dimension
index k

h̃k ≈ hk + Jk,:∆x +
1

2
(∆x)

>
H(k) ∆x ,

where Jk,i = ∂hk(x)
∂xi

is the Jacobian matrix of partial derivatives of hk w.r.t. xi, Jk,: denotes its kth

row vector, and H(k) = ∂2hk(x)
∂xi∂xj

is the Hessian matrix. Plugging this into eq. (1) yields that

Ep(x,∆x)

[
(h̃k − hk)2

]
≈ Ep(x,∆x)

[
(hk + Jk,:∆x +

1

2
(∆x)

>
H(k)∆x− hk)2

]
= Ep(x,∆x)

[
(Jk,:∆x)2

]
+ Ep(x,∆x)

[
Jk,:∆x(∆x)

>
H(k)∆x

]
+ Ep(x,∆x)

[
(
1

2
(∆x)

>
H(k)∆x)2

]
≈ Ep(x,∆x)

[
(Jk,:∆x)2

]
= ε2 Ep(x)

[
‖Jk,:‖2

]
=
∑
i

(
∂hk
∂xi

)2

ε2,

where we have used the fact that Ep(∆x)[∆x(∆x)
>

] = ε2I and the assumption that the terms
involving the Hessians are very small. Therefore we can obtain that

R = αEp(x,∆x)

[
‖h− h̃‖2

]
≈ αε2RJacobian ,

and thus conclude that the studied regularization can be seen as a stochastic approximation of the
Jacobian penalty in the limit of low noise.

An example of a recent method penalizing the Jacobian is the contractive auto-encoder (Rifai et al.,
2011).
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3.3 NOISE REGULARIZATION

Sietsma & Dow (1991) proposed to regularize neural networks by injecting noise to the inputs x
while training. This method does not use a separate penalty function. It can be interpreted either
as keeping the solution insensitive to random perturbations in x, or as a data augmentation method,
where a number of noisy copies of each data point are used in training.

In the semi-supervised setting, noise regularization alone does not make unlabelled data useful.
However, our regularization method is applicable even when the output is not available: We can
compute the regularization penaltyR based on the input alone.

In noise regularization, the strength of regularization can only be adjusted by changing the noise
level. This affects the locality of the regularization at the same time. The regularizer studied gives
two hyperparameters to adjust: Noise level ε2 and the regularization strength α. Using small noise
level ε2 emphasizes the local (linear) properties of the mapping f , while a larger noise level empha-
sizes more global (nonlinear) properties.

3.4 VIRTUAL ADVERSARIAL TRAINING

In this section we will show the following: (i) VAT penalizes the largest eigenvalue of a Fisher
information matrix, (ii) in the special case of h parameterizing the mean of a Gaussian output, the
VAT loss which the adversarial perturbation maximization is operating on is equivalent to the studied
lossR, and (iii) the adversarial variant of the studied regularization penalizes the largest eigenvalue
of J>J, whereas the sum of its eigenvalues equals the Frobenius norm of J.

The virtual adversarial training of Miyato et al. (2016) regularizes training under minimization by

RVAT = α {−LDS(x,θ; ε)} = α

{
max

∆x:‖x‖≤ε
DKL (p(y | x,Φ)‖p(y | x + ∆x,Φ))

}
,

a positive scalar α times the maximal Kullback-Leibler divergence between encoding distributions
for an example x and its perturbed version x + ∆x, denoted p(y | x,Φ) and p(y | x + ∆x,Φ),
respectively; the distributions are assumed to be of the same parametric form, and that the perturba-
tion affects the values of the parameters. Using a note in Kaski et al. (2001, eq. (1)-(2)), and a result
in Kullback (1959, Sec. 6, page 28, eq. (6.4)), we can state:

DKL(p(y | x,Φ)‖p(y | x + ∆x,Φ)) ≈ 1

2
(∆x)

>I(x)∆x, (3)

with I(x) = Ey∼p(y|x,Φ)

(
∂ log p(y|x,Φ)

∂x

)(
∂ log p(y|x,Φ)

∂x

)>
, a Fisher-information matrix. Let ∆̂x =

∆x
‖∆x‖ , a unit-length input-perturbation vector. Using the approximation above we can then write that

RVAT ≈
α

2
max

∆x:‖∆x‖≤ε
(∆x)

>I(x)∆x =
α

2
max

∆̂x‖∆x‖:‖∆x‖≤ε
‖∆x‖2


(

∆̂x
)>
I(x)∆̂x

‖∆̂x‖2

 (4)

=
α

2
max

‖∆x‖:‖∆x‖≤ε
‖∆x‖2︸ ︷︷ ︸

ε2

max
∆̂x


(

∆̂x
)>
I(x)∆̂x

‖∆̂x‖2

 =∗
αε2

2
max {λk}Kk=1 =

αε2

2
λmax,

where λmax denotes the maximal eigenvalue of the (K) eigenvalues {λk}Kk=1 of I(x), with the equal-
ity marked =∗ suggested by a spectral theory for symmetric matrices printed in Råde & Westergren
(1998, Sec. 4.5, page 96); diag

(
{λk}Kk=1

)
= C>I(x)C, where C denotes the matrix of eigen-

vectors with C·,k denoting its kth column and kth eigenvector; the adversarial perturbation vector
∆xadv. = ε2

2 C·,arg maxk{λk}Kk=1
.

Let us assume y = f(x;θ) + n, where n ∼ N (0, σ2I). We can then write that

p(y | x,Φ) = N
(
y;h, σ2I

)
, p(y | x + ∆x,Φ) = N

(
y; h̃, σ2I

)
,

3



Workshop track - ICLR 2016

where h = f(x;θ), h̃ = f(x+ ∆x;θ), Φ = {θ, σ}, and I denotes the identity-matrix. Using Kull-
back (1959, Chapter 9, Sec. 1, page 190, eq. (1.4)) (and the derivation in the Appendix), we have
that

DKL

(
N
(
y;h, σ2I

)
|| N

(
y; h̃, σ2I

))
=

1

2σ2

K∑
k=1

(hk − h̃k)2 =
1

2σ2

(
h− h̃

)> (
h− h̃

)
.

For small perturbations ∆x the following linearization approximation is expected to be effective for
non-linear functions f 2:

h− h̃ = f(x;θ)− f(x + ∆x;θ) ' J∆x,

where J denotes a Jacobian-matrix, with element Jk,i = ∂fk(x)
∂xi

, where k ∈ [1,K], and i ∈ [1, I].
Then given the prior analysis, we have for the Gaussian models that

RVAT '
α

2σ2
max

∆x:‖∆x‖≤ε
(∆x)

>
J>J∆x =

αε2

2σ2
λmax,

where λmax denotes the maximal eigenvalue of the (K) eigenvalues {λk}Kk=1 of J>J; we have used
the fact that the optimization problem is exactly the same as in eq. (4), with the replacement of I(x)
with J>J.

Since
K∑
k=1

λk = Trace
(
J>J

)
=
∑
k

∑
i

J2
k,i =

∑
k

∑
i

(
∂fk(x)

∂xi

)2

, (5)

where the first equality is suggested by a fact in Råde & Westergren (1998, Sec. 4.5, page 96), we

find that RJacobian = α
∑
k

∑
i J

2
k,i = α

∑
k

∑
i

(
∂fk(x)
∂xi

)2

= α
∑K
k=1 λk, is also penalizing the

eigenvalues of J>J, penalizing their sum as opposed to their maximum value by the VAT.

3.5 LADDER NETWORKS

The Γ variant of the ladder network (Rasmus et al., 2015) is closely related to the studied regulariza-
tion approach. It uses an auxiliary denoised ĥ = g(h̃) and an auxiliary costRΓ = Ep(x,∆x)‖h−ĥ‖2
to support another task such as classification. It means that if we would train a Γ-ladder network
and further restrict the g-function to identity, we would recover the studied regularization method.

4 FUTURE WORK

We would like to investigate the studied regularization method and the found connections empiri-
cally. Miyato et al. (2016) used the DKL in equation (3) as a regularization criterion with adversarial
perturbations, but it could also be used for regularization using random perturbations.
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A KL-DIVERGENCE BETWEEN TWO DIAGONAL-COVARIANCE
MULTIVARIATE GAUSSIANS

We first derive the KL-divergence between two diagonal-covariance multivariate Gaussians, with
untied parameters. We then use this result for the case where the covariance matrices are tied
and the elements in the diagonal have the same values. Starting with the first derivation: Assume

2It is exact for linear functions f .
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that both N (y | Θ1) and N (y | Θ2) denote (K-dimensional) multivariate Gaussians assuming pa-
rameters Θ1 and Θ2, respectively, and with independent dimensions as follows: N (y | Θ1) =∏K
k=1N (yk;µk, σ

2
k),N (y | Θ2) =

∏K
k=1N (yk;mk, τ

2
k ), where N (yk;µk, σ

2
k) denotes a univari-

ate Gaussian with mean µk and variance σ2
k, andN (yk;mk, τ

2
k ) denotes a univariate Gaussian with

mean mk and variance τ2
k .

We use a ”divided-and-then-joined” calculation strategy to give the result, similar to as in the pre-
sentation of the result in Kingma & Welling (2014, Appendix B):

DKL (N (y | Θ1) || N (y | Θ2)) = Ey∼N (y|Θ1) logN (y | Θ1)︸ ︷︷ ︸
A

−Ey∼N (y|Θ1) logN (y | Θ2)︸ ︷︷ ︸
B

.

Let us now derive the forms of A and B above:

A = Ey∼N (y|Θ1)

{
−1

2

K∑
k=1

[
log 2π + 2 log σk + (yk − µk)2/σ2

k

]}

= −1

2

K∑
k=1

log 2π + 2 log σk +
1

σ2
k

Eyk∼N (yk|Θ1)

{
(yk − µk)2

}︸ ︷︷ ︸
σ2
k

 ,
B = Ey∼N (y|Θ1)

{
−1

2

K∑
k=1

[
log 2π + 2 log τk + (yk −mk)2/τ2

k

]}

= −1

2

K∑
k=1

[
log 2π + 2 log τk +

1

τ2
k

Eyk∼N (yk|Θ1)

{
y2
k − 2mkyk +m2

k

}]

= −1

2

K∑
k=1

[
log 2π + 2 log τk +

1

τ2
k

{
σ2
k + µ2

k − 2mkµk +m2
k

}]
,

where we have used the fact that Eyk∼N (yk|Θ1)

{
y2
k

}
= σ2

k + µ2
k; E(y2

k) , Var(yk) + [E(yk)]
2.

Joining the results, we have that

DKL (N (y | Θ1) || N (y | Θ2)) = −1

2

K∑
k=1

[
1 + 2 log

σk
τk
− 1

τ2
k

{
σ2
k + (µk −mk)2

}]
. (6)

Let σk = τk = σ, ∀ k, N (y | Θ1) =
∏K
k=1N (yk;µk, σ

2),N (y | Θ2) =
∏K
k=1N (yk;mk, σ

2).
Then using the result in eq. (6), we have that

DKL (N (y | Θ1) || N (y | Θ2)) =
1

2σ2

K∑
k=1

(µk −mk)2 =
1

2σ2
(µ−m)

>
(µ−m) . (7)

The result can also be obtained by using the result in Kullback (1959, Chapter 9, Sec. 1, page 190,
eq. (1.4)) which states that DKL

(
N
(
y;µ,Λ−1

)
|| N

(
y;m,Λ−1

))
= 1

2 (µ−m)
>

Λ (µ−m):
plugging in Λ =

(
σ2I
)−1

= σ−2I yields the result in eq. (7).
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