Aalto University
School of Science
Degree Programme in Machine Learning and Data Mining

Miquel Perelld Nieto

Merging chrominance and luminance in
early, medium, and late fusion using
Convolutional Neural Networks

Master’s Thesis
Espoo, May 25, 2015

Supervisor: Prof. Tapani Raiko, Aalto University
Advisors: D.Sc. (Tech) Markus Koskela, University of Helsinki
Prof. Ricard Gavalda Mestre, Universitat Politécnica de Catalunya

A’, Aalto University

Aalto University
School of Science ABSTRACT OF THE
Degree Programme in Machine Learning and Data Mining MASTER’S THESIS

Author: Miquel Perell6 Nieto

Title: Merging chrominance and luminance in early, medium, and late fusion
using Convolutional Neural Networks

Date: 25.05.2015 Language: English Number of pages: 244166

Professorship: Computer and Information Science Code: T-61

Supervisor: Prof. Tapani Raiko

Advisors: D.Sc. (Tech.) Markus Koskela, Prof. Ricard Gavalda Mestre

The field of Machine Learning has received extensive attention in recent years.
More particularly, computer vision problems have got abundant consideration as
the use of images and pictures in our daily routines is growing.

The classification of images is one of the most important tasks that can be used
to organize, store, retrieve, and explain pictures. In order to do that, researchers
have been designing algorithms that automatically detect objects in images. Dur-
ing last decades, the common approach has been to create sets of features — man-
ually designed — that could be exploited by image classification algorithms. More
recently, researchers designed algorithms that automatically learn these sets of
features, surpassing state-of-the-art performances.

However, learning optimal sets of features is computationally expensive and it can
be relaxed by adding prior knowledge about the task, improving and accelerating
the learning phase. Furthermore, with problems with a large feature space the
complexity of the models need to be reduced to make it computationally tractable
(e.g. the recognition of human actions in videos).

Consequently, we propose to use multimodal learning techniques to reduce the
complexity of the learning phase in Artificial Neural Networks by incorporating
prior knowledge about the connectivity of the network. Furthermore, we analyze
state-of-the-art models for image classification and propose new architectures that
can learn a locally optimal set of features in an easier and faster manner.

In this thesis, we demonstrate that merging the luminance and the chrominance
part of the images using multimodal learning techniques can improve the acquisi-
tion of good visual set of features. We compare the validation accuracy of several
models and we demonstrate that our approach outperforms the basic model with
statistically significant results.

Keywords: Machine learning, computer vision, image classification, artificial
neural network, convolutional neural network, image processing,
Connectionism.

v

Preface

This thesis summarizes the work that I have been developing as a Master student on
my final research project in the Department of Information and Computer Science in
the Aalto Univeristy School of Science under the supervision of Prof. Tapani Raiko
and Dr. Markus Koskela, and the remote support from Prof. Ricard Gavalda.

I would like to thank the discussions and comments about topics related to my
thesis to Vikram Kamath, Gerben van den Broeke, and Antti Rasmus. And for
general tips and advises during my studies to Ehsan Amid, Mathias Berglund, Pyry
Takala and Karmen Dykstra.

Finally, thanks to Jose C. Valencia Almansa for hi visits to Finland and his
company in a trip through Europe. And a special thank to Virginia Rodriguez
Almansa to believe in me and gave me support towards the acquisition of my Master
degree, moving to a foreign country for two years and studding abroad.

“All in all, thanks to everybody,
since without anybody this work
will make no sense”
— Miquel Perell6 Nieto (2012)

Otaniemi, 25.05.2015

Miquel Perell6 Nieto

vi

A note from the author

After the completion of this thesis, further experiments seem to demonstrate that
it is possible to achieve the same validation accuracy by merging the chrominance
and the luminance in early fusion with similar number of parameters. However,
learning separate filters for the luminance and the chrominance achieved the same
performance, while showing a faster learning curve, better generalization and the
possibility of parallelize the training on different machines or graphics processor
units. Furthermore the results of this thesis are extensible to other sets of features
where the fusion level is not clear (e.g. audio, optical flow, captions, or other useful
features).

Otaniemi, 25.05.2015

Miquel Perell6 Nieto

vil

viii

Contents

Abstract iii
Preface v
A note from the author vii
Contents viii
Mathematical Notation xiii
Acronyms XV
List of Figures Xix
List of Tables xxiii
1 Introduction 1
1.1 Motivation 2
1.2 Objective and scope 3
BACKGROUND
2 Image classification 5
2.1 What is image classification? 0oL 6
2.1.1 Computer vision approach 8
2.1.2 Connectionism approach 9
2.2 Image transformationso 9
2.3 Region detectors 10
2.4 Feature descriptors 12
241 SIFT .. oo o 12
2.4.2 Other descriptors 14
2.5 Feature Cluster Representation 15
2.6 Color e 15
2.7 Colorspaces 16
2.8 The importance of luma oL 20
2.9 Datasets 21

X

3 Neuro vision

3.1 The biological neuron L
3.2 Visual system
3.2.1 Theretina
3.2.2 The lateral geniculate nucleus
3.2.3 The primary visual cortex
3.3 LMS color space and color perception
Artificial Neural Networks
4.1 The artificial neurono
4.2 Activation function
4.3 Single layer feed-forward neural network
4.3.1 Linear regression oo
4.3.2 Perceptron
4.3.3 Logistic regression
4.4 Multilayer feed-forward neural network
4.5 Trainingo e
4.5.1 Backpropagation 0oL
4.5.2 Stochastic gradient descent
4.5.3 Batch gradient descent L
4.5.4 Mini-batch gradient descent
4.5.5 Regularization and other advices
4.6 Extreme Learning Machines
4.7 Recurrent Neural Network
4.8 Deep learning
Convolutional Neural Network
5.1 Convolution layer
5.2 Grouping
5.3 Rectification
54 Pooling
5.5 Local Normalization
5.6 Fully connected layers Lo
5.7 Soft-max e
5.8 Complete example
5.9 Best practices Lo
A brief history of Connectionism
6.1 First insights into the human perception
6.2 Human behaviour oo
6.3 The central nervous systemo
6.4 Mathematical Biophysics oL
6.5 Machine intelligence oL
6.6 The renaissance of Connectionism
6.7 The winter of the Connectionism

25
26
27
27
30
31
31

35
36
37
38
39
41
43
43
45
46
52
93
53
53
o4
%)
56

59
59
60
61
62
62
62
62
63
63

x1

6.8 Connectionism as a doctrine L. 84
6.9 The birth of Deep learning 88

OUR CONTRIBUTION

7 Method and Material 91
7.1 [Initial analysis, experiments, and test 91
7.2 Datasets 92
7.3 Colorspaces L 93
7.4 CONN architectures 93

7.4.1 Multimodal learningo 94
7.5 Software L 95
751 OverFeat. 95
752 Caffe 95
7.5.3 Theano 96
754 Pylearn2 96
7.5.5 Blocks 96
7.5.6 Inthisthesis oo 97
7.6 Computer hardware 97

8 Experiments 99
8.1 [Imitial analysis 99
8.2 Description of the experiments 100

8.2.1 Experiment 1: Color channels 101
8.2.2 Experiment 2: YUV early/medium/late fusion 102
8.2.3 Experiment 3: RGB early and medium fusion 103
8.2.4 Experiment 4: RGB + Y early and medium fusion 103
8.2.5 Experiment 5: RGB + Y + UV medium fusion 104
8.3 Tests of Significance L 104

9 Results 107

9.1 Imitial analysis 107
9.1.1 Alexnet filters for ImageNet dataset 107
9.1.2 Berkeley filters for CIFAR10 dataset 110
9.1.3 ILSVRC2014 state-of-the-art CNNs 112
9.1.4 Conclusions o 115

9.2 Experiments 115
9.2.1 Experiment 1: Color channels 116
9.2.2 Experiment 2: YUV early/medium/late fusion 119
9.2.3 Experiment 3: RGB early and medium fusion 120
9.2.4 Experiment 4: RGB + Y early and medium fusion 122
9.2.5 Experiment 5: RGB + Y + UV medium fusion 124

9.3 Statistical significance of the findings 126

xii

10 Conclusions
10.1 Summary .
10.2 Discussion .
10.3 Future work

APPENDICES
A Architectures
Bibliography

Glossary

131
131
132
133

135

143

157

Mathematical Notation

e This thesis contains some basic mathematical notes.
e [followed notation from |Bishop, 2006|

— Vectors: lower case Bold Roman column vector w or w = (wy, ..., wy)

— Vectors: row vector is the transpose w’ or w! = ()z

Wiy ...y Wy
— Matrices: Upper case Bold Roman M

— Closed interval: [a, b]

— Open interval: (a,b)

— Semi-closed interval: (a,b] and [a, b)

— Unit/identity matrix: of ize M x M is I,

xiii

Xiv

Acronyms

Adaline Adaptive Linear Neuron or Adaptive Linear Element. 77, 157, 162
AT Artificial Intelligence. 4, 65, 157

ANN Artificial Neural Network. 3, 9, 21, 25, 35-37, 40, 43-46, 52, 54, 55, 59, 63,
65, 71, 74, 76, 78-83, 85-87, 94, 96, 104, 127, 157-161, 163-165

BM Boltzmann Machine. 73, 82, 85, 87, 158
BN Belief Network. 57, 85, 88, 158, 159
BoV Bag of Visual words. 15, 59, 158
BoW Bag of Words. 15, 158

BPTT backpropagation through time. 56, 158

CIE Commission Internationale de I'Clairage. 16

CNN Convolutional Neural Network. xviii, 2-4, 9, 37, 54, 56, 57, 59, 61-63, 86-89,
91-93, 95, 97, 99, 100, 103, 107, 112, 115, 132, 134, 135, 162, 163

DARPA Defense Advanced Research Projects Agency. 21, 84
DBN Deep Belief Network. 57, 88, 159

DoG Difference of Gaussian. 12, 13, 29

EDVAC Electronic Discrete Variable Automatic Computer. 70, 159
ELM Extreme Learning Machine. 36, 54, 55
ENIAC Electronic Numerical Integrator And Computer. 70, 159, 160

ESN Echo State Network. 88, 160
FNN Feed-forward neural network. 41, 160, 162, 165
GLOH Gradient location-orientation histogram. 14, 160

XV

XVi

GPU Graphics Processing Unit. 61, 92, 95-97, 115, 116, 160

HM Helmholtz Machine. 88, 160

HOG Histogram of Oriented Gradients. 14, 59, 160
HoPS Histogram of Pattern Sets. 15, 160

HSL Hue-Saturation-Lightness. 93, 161

HSV Hue-Saturation-Value. 93, 161

ICA Independent Component Analysis. 86, 161
ILSVRC ImageNet Large Scale Visual Recognition Challenge. 9, 89

Infomax maximum mutual information. 83, 86, 87, 161
K-cells Koniocellular cells. 30, 161

LGN Lateral Geniculate Nucleus. 27, 30, 31, 33, 132, 161-163
LoG Laplacian of Gaussian. 11-13, 29, 161

LRN Local Response Normalization. 62, 89, 162

M-cells Magnocellular cells. 29, 30, 161, 162

MFNN Multilayer Feedforward Neural Network. xvii, 36, 41, 44, 49, 50, 54, 55,
86, 162

MLP Multilayer Perceptron. 162

P-cells Parvocellular cells. 29-31, 161, 163
PCA-SIFT PCA-Scale-Invariant Feature Transform. 14, 163
PCA Principal Component Analysis. 14, 160, 163

PReLU Parametric Rectified Linear Unit. 38, 61, 163

RBF Radial Basis Function. 37, 86, 163

RBM Restricted Boltzmann Machine. 57, 88, 163

ReLU rectified linear unit. 37, 38, 59, 61, 63, 88, 89, 100, 163

RGB Red Green and Blue. 16, 18, 21, 93, 99-101, 103, 116, 132, 133, 165

RINN Recurrent Neural Network. 36, 55, 56, 85, 158, 160, 163

SGD Stochastic Gradient Descent. 52, 53, 164

SIFT Scale-Invariant Feature Transform. 12-14, 59, 160, 163, 164
SNARC Stochastic Neural Analog Reinforcement Calculator. xviii, 73, 164
SOM Self-Organizing Map. 37, 79, 82, 83

SURF Speeded-Up Robust Features. 14, 59, 164

SVM Support Vector Machine. 9, 59, 81, 87, 88, 164

TPE Temporal Propositional Expression. 70, 165
VC dimension Vapnik-Chervonenkis dimension. 81, 165
XYZ proportions of the RGB color space. 16, 20

YCbCr Y (luminance), Cb (blue difference), Cr (red difference). 18

YIQ Y (luminance) IQ) (chrominance). 18, 20, 93

Xvii

YUYV Stands for luminance (Y) and chrominance (UV). 18, 21, 93, 101, 132-134,

165

Xviil

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11
4.12

Motivation L 3
Digital image representation L. 7
Iris versicolor RGB example. L. 8
ILSVRC results 10
Comparison of detected regions between Harris and Laplacian detectors 11
Laplacian of Gaussian 12
Example of DoG in one and two dimensions 13
Visible colors wavelengths 16
Primary colors.o 17
RGB represented in other transformed spaces 19
Comparison of different subsampling on RGB and YUV channels. . . 22
Simplified schema of a biological neuron 26
Visual pathway oo 27
A cross section of the retina 0oL 28
Retina oo 28
Extitation of parvocellular cells 30
The theory of Newton and Castel about the color formation 32
Human perception of the primary colors 33
Human perception of opponent colors 33
Artificial neuron oL 36
Example of activation functions (A) 39
Example of activation functions (B) 40
Single and Multilayer feedforward neural networks 41
Example of Perceptron training 42
Example of a MLP fitting a linear pattern 44
Example of a MLP fitting a sin(cos(x)) pattern 45
Generalization error. 46
Analogy of backpropagation illustrated in a single layer network . . . 47
Error backpropagation in an output layer of a Multilayer Feedforward

Neural Network (MFNN) o oo o ., 50
Error backpropagation in a hidden layer of a MFNN 50
Recurrent Neural Network 56

Xix

5.1
5.2
5.3
0.4

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4

8.1

9.1
9.2

9.3
9.4

9.5

9.6

9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21

Convolution parameters 60

Convolutional Network example 60
Grouping in a Convolutional Neural Network (CNN). 61
Example of a forward passina CNN. 64
Drawing of neurons by Ramén y Cajal 69
The Homeostat created by William Ross Ashby. 72
One neuron from the SNARC (Stochastic Neural Analog Reinforce-

ment Calculator) o oo 73
Pictures of Rosenblatt work 76
Hubel and Wiesel experiment 78
VC dimension. 81
Neocognitron Lo 83
LeNet-5. o o 87
AlexNet deep CNN. 89
CIFAR-10 examples 92
Set of channels used in our experiments. 93
Multimodal learning example 94
CNN libraries comparison 96
Simplified diagram of different architectures per experiment. 102
First convolution filters in Alexnet 108
Mean and standard deviation of first filters of Alexnet in the RGB

colorspace 109

Representation of the initial weights of Alexnet in the RGB colorspace110
Mean and standard deviation of first filters of Alexnet in the YUV

colorspace 111
Representation of the initial weights of Alexnet in the YUV colorspacelll
First layer of filters of Berkeley network trained with CIFAR10 dataset112

First convolutional filters on Berkeley for CIFAR10. 113
First layer of filters of two state-of-the-art networks on ILSVRC14 . . 114
Inception moduleo 115
Color channels: training error smoothed 117
Color channels: test accuracy 117
Color channels: experimental results 118
YUV E/M/L: training error smoothed 120
YUV E/M/L: test accuracy 120
YUV E/M/L: results of experiment 121
RGB E/M: training error smoothed 122
RGB E/M: test accuracy o 122
RGB E/M: experimental results 123
RGB+Y E/M: training error smoothed 123
RGB+Y E/M: test accuracy 123

RGB+Y E/M: experimental results 124

9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29

Al
A2
A3
A4
A5
A6
AT
A8

XX1

RGB+Y+UV Medium: training error smoothed 125
RGB+Y+UV Medium: test accuracy 125
RGB+Y+UV Medium: experimental results 126
Statistical test: mean training error 127
Statistical test: test accuracy 127
Statistical test: experimental results 128
Wilcoxon rank-sum test YUV32 Ewvsall00 128
Different statistical tests 129
CNNs Keys o 135
Alexnet L 136
Berkeley version of Alexnet 137
GoogleNet 138
Early fusion: rgh32 E oo 139
Early fusion: yuv32 E oo oo 140
Medium fusion: y32 uv32 Mo oL 141

Late fusion: y32 uv32 L 142

XxI11

List of Tables

2.1
2.2

4.1
4.2

7.1

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3
9.4
9.5
9.6
9.7

RGB to YCbCr standard constants 18
Chroma subsampling oL 21
Activation function derivatives L. 38
Summary of derivatives for the backpropagation chain rule 48
Different machine architectures used during all the experiments . . . 97
Examples of nomenclature used per each architecture 101
Experiment 1: models and numbers of parameters 102
Experiment 2: models and numbers of parameters 103
Experiment 3: models and numbers of parameters 104
Experiment 4: models and numbers of parameters 104
Experiment 5: models and numbers of parameters 105
Different machine architectures used during all the experiments . . . 116
Color channels: summary table of results 116
YUV E/M/L: summary table of results 119
RGB E/M: summary table of results 121
RGB+Y E/M: summary table of results 122
RGB+Y+UV Medium: summary table of results 124
Statistical test: summary table of ten executions per model 126

xxiii

XX1V

Chapter 1

Introduction

“Do the difficult things while they are easy and
do the great things while they are small. A
journey of a thousand miles must begin with a
single step”

— Lao Tzu

Machine learning and artificial intelligence are two young fields of computer sci-
ence. However, their foundations are inherent in the understanding of intelligence,
and the best example of intelligence can be found in the brain. The comprehension
of the process of learning and the emergence of intelligence has been widely studied
since humans had the capability to hypothesize what other people think. Philoso-
phers, psychologists, sociologists, and physiologists, have attempted to solve these
type of questions. However, with the development of the first computers, engineers,
mathematicians, physicists and computer scientists started implementing the old
ideas on electronic devices. After years of developing new ideas — and improving
the computational power of these electronic devices — the terms machine learning
and artificial intelligence have gotten further attention; and actually got their name.
Nowadays, the tasks that researchers try to automate are usually very practical and
less theoretical. Nevertheless, the biggest changes come with unexpected theoretical
breakthroughs. Researchers explore new algorithms to solve important problems in
a large number of domains: path planning, decision making, optimal control, game
theory, regression, clustering, pattern recognition, information retrieval, logics, data
mining, and in multiple applications that — we hope — can be learned automatically.
In this thesis, we look at a narrow problem of pattern recognition in computer vision
— the image classification problem — and evaluate state-of-the-art models to extract
important conclusions that can help us to understand the process of vision. We
analyze and extend the previous work, in a desire to contribute in that manner to
the computer vision research community.

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

In the computer vision community, researchers have been trying to improve image
classification and object recognition algorithms since the late 80s. However, we still
do not know what is the optimal way to solve these problems. Despite the fact
that humans are able to solve these tasks from the early stages of our lives, we still
do not comprehend which are the features that we use to succeed. For us, colors
are a natural part of vision, but, the perception of colors is a subjective process
for each brain. Furthermore, there are animals that only perceive the environment
in a gray-scale of tones, while other animals can perceive ultra-light frequencies of
color. The requirements of the retinal photoreceptors have changed with evolution,
making different species to perceive a diverse number of colors.

One of the most basic vision systems is the perception of one unique light wave-
length. This is enough to perceive the luminance of the environment and determine
edges, shapes, blobs and other patterns. For example, nocturnal animals usually
have one type of photoreceptor and, therefore, can only see in a gray scale. The
luminance is one of the most important features to recognize objects and scenes,
while the perception of additional colors has been valuable to distinguish between
poisonous fruits, venomous animals, and other important situations.

Although we still do not know completely how our brain understands the envi-
ronment that we perceive, lately we have been able to train mathematical models
that learn to solve image classification tasks automatically. Earlier approaches tried
to create sets of hand-crafted features, usually driven by common sense or inspi-
ration from biology. However, during the last decade, researchers achieved very
good results by using mathematical models that learn to extract the sets of features
automatically. The resulting features could be astonishing, as they for example
discovered the importance of the luminance as an isolated feature, while the chromi-
nance seemed to have less importance (although it contains 2/3 parts of the total
information).

If we look at the initial filters that one of these models learned from a huge
number of images (see Figure 1.1a) we can see that more than half of the filters are
focused on the luminance, while the chrominance plays a secondary role for the image
classification task. If we visualize all the possible values that a pixel can have, the
gray-scale is only the diagonal of the resulting 3D cube. This small region in a cube
with 256 values per color correspond to a portion of 256/256% = 1/2562 ~ 1.5 x 107°
of the complete cube. However, the parameters of a Convolutional Neural Network
(CNN) can take “continuous” values (double floats of 64 bits), decreasing the ratio
of the diagonal exponentially to zero. This diagonal can be codified with one unique
feature if we apply a rotation to the cube. Then, the other two components will
represent the chrominance and can be disentangled. In the actual CNNs, the model
needs to synchronize the three features together in order to work in the infinitely
small luminance region, requiring large amounts of data and computational time.
However, given that we know the importance of the luminance in the first stages,
it should be possible to accelerate the learning if — as a preprocessing step — we
present the images with the appropriate rotation, and train the filters separately.

1.2. OBJECTIVE AND SCOPE 3

000000000000(200

(a) First filters of Alexnet. During the training the first 48
filters were trained in a separate machine from the bottom(b) From all the possible colors in

48 filters. the RGB space only the diagonal

axis is focused on the luminance.

Figure 1.1: Motivation Where the idea came from

With this in mind, we only need to investigate at which level to merge the color and
the luminance information, in order to obtain the best results. This can be done by
studying and validating several models; and it is the focus of this thesis.

1.2 Objective and scope

In this thesis, we propose to modify the architectures of previous state-of-the-art
Convolutional Neural Networks (CNNs) to study the importance of luminance and
chrominance for the image classification tasks. Although the initial idea was to
try these experiments in deep networks and natural images, we opted to reduce the
complexity of the problem to small images and reduced models. However, the results
of this thesis can be extended to larger problems if the necessary computational
capabilities are available.

In addition, the initial idea for this thesis was to create a self-contained report.
For that reason, the necessary background to understand the topics related to Con-
volutional Neural Networks (CNNs) and image classification is summarized in the
first chapters (identified as Background chapters). First, in Chapter 2 we present
the problem of image classification, and which has been the most common approach
to solve it. Then, Chapter 3 gives a small introduction on how the biological vi-
sual system works in humans and other mammals. The purpose of this chapter is
to originate inspiration for future computer vision algorithms, and to explain the
initial motivation that pushed the creation of Artificial Neural Networks (ANNs)
and the Connectionism ideas. Chapter 4 introduces the concept of Artificial Neural
Networks (ANNs), the mathematical model that describes them, how to train them,
and series of methods to improve their performance. Next, Chapter 5 introduces
the Convolutional Neural Network (CNN), one specific type of Artificial Neural Net-
works (ANNSs) specially designed for tasks with strong assumptions about spatial or
temporal local correlations. Finally, to end the background portion of the thesis, I
chose to dedicate the complete Chapter 6 to explain the history of the Connection-

4 CHAPTER 1. INTRODUCTION

ism and all the important figures that have been involved in the understanding of
the human intelligence, Artificial Intelligence (Al), and new techniques to solve a
variety of different problems.

In the second part, we present the methodological contributions of the thesis.
First, in Chapter 7, we explain the methodology followed in the thesis. We present
the dataset, the color spaces, the architectures, different methods to merge the
initial features, and finally the available software frameworks to test CNNs. Then, in
Chapter 8, we discuss the first analysis to test different state-of-the-art architectures
and how to evaluate their use of the colors after the training. Then, we present the
set of experiments to test a diverse set of hypotheses about merging the colors.
Each of the architectures is explained in the same chapter, as well as the evaluation
criteria of each network. Next, we describe a statistical test to demonstrate the
validity of our findings. Chapter 9 presents the results of the initial analysis, all
the experiments and the statistical tests. Finally, we conclude the thesis with a
discussion about our findings, a summary, and future work in Chapter 10.

Chapter 2

Image classification

“I can see the cup on the table,” interrupted

Diogenes, “but I can’t see the ‘cupness’”.

“That’s because you have the eyes to see the

cup,” said Plato, “but”, tapping his head with

his forefinger, “you don’t have the intellect with
P

which to comprehend ‘cupness’.
— Teachings of Diogenes (c. 412- c. 323 B.C)

In this chapter, we give an introduction to the problem of image classification and
object recognition. This has been one of the typical problems in pattern recognition
since the development of the first machine learning models. First, we explain what
is image classification and why is difficult in Section 2.1. We give some visual
representations of how computers see images and briefly explain which has been the
common approaches on computer vision to solve the object recognition problem in
Section 2.1.1. Then, we present a different approach from the Connectionism field
that tries to solve the problem with more general techniques in Section 2.1.2; this
approach is the focus of the entire thesis.

After this small introduction we explain with more details the common approach
of computer vision in the next sections. Omne of the most difficult problems to
solve is due to the huge variability of a representation of a 3D object in a two
dimensional image. We explain different variations and image transformations in
Section 2.2. Then, we start solving the problem of recognizing objects first by
localizing interesting regions on the image in Section 2.3, and then merging different
regions to describe in a more compact manner the specific parts of the objects in
Section 2.4. With the help of the previous descriptors, several techniques try to
minimize the intraclass variations and maximize the separation between different
classes, this methods based usually in data mining and clustering are explained in
Section 2.5.

After the description of the common approaches, we explain the concept of color
in Section 2.6, and show that there are better ways to represent the images us-
ing different color spaces in Section 2.7. Also, we highlight the importance of the
luminance to recognize objects in Section 2.8.

6 CHAPTER 2. IMAGE CLASSIFICATION

Finally, we present some famous datasets that have been used from the 80’s to
the present day in Section 2.9.

A more complete and accurate description of the field of computer vision and
digital images can be found in the references [Szeliski, 2010] and |Glassner, 1995].

2.1 What is image classification?

Image classification consists of identifying which is the best description for a given
image. This task can be ambiguous, as the best description can be subjective de-
pending on the person. It could refer to the place where the picture was taken, the
emotions that can be perceived, the different objects, the identity of the object, or to
several other descriptions. For that reason, the task is usually restricted to a specific
set of answers in terms of labels or classes. This restriction alleviates the problem
and makes it tractable for computers; the same relaxation applies to humans that
need to give the ground truth of the images. As a summary, the image classification
problem consists of the classification of the given into one of the available options.

It can be difficult to imagine that identifying the objects or labeling the images
could be a difficult task. This is because people do not need to perform conscious
mental work in order to decide if one image contains one specific object or not; or
if the image belongs to some specific class. We also see in other animals similar
abilities, many species are able to differentiate between a dangerous situation and
the next meal. But, one of the first insights into the real complexity occurred in
1966, when Marvin Minsky and one of his undergraduate students tried to create a
computer program able to describe what a camera was watching (See [Boden, 2006,
p. 781, originally from [Crevier, 1993|). On that moment, the professor and the
student did not realize about the real complexity of the problem. Nowadays it is
known to be a very difficult problem, belonging to the class of inverse problems, as
we try to classify 2D projections from a 3D physical world.

The difficulty of this task can be easier to understand if we examine the image
represented in a computer. Figure 2.1 shows three examples from the CIFAR-10
dataset. From the first two columns it is easy to identify to which classes the
images could belong. That is because our brain is able to identify the situation of
the main object, to draw the boundaries between objects, to identify their internal
parts, and to classify the object. The second column contains the same image
in gray-scale. In the last column the gray value of the images has been scaled
from the range [0,255] to [0,9] (this rescaling is useful for visualization purposes).
This visualization is a simplified version of the image that a computer sees. This
representation can give us an intuition about the complexity for a computer to
interpret a batch of numbers and separate the object from the background. For a
more detailed theoretical explanation about the complexity of object recognition see
the article [Pinto et al., 2008].

In the next steps, we see an intuitive plan to solve this problem.

1. Because the whole image is not important to identify the object, we first need
to find the points that contain interesting information. Later, this collection

2.1. WHAT IS IMAGE CLASSIFICATION? 7

10 15 20 25 30 10 15 20 25 30 0 5 10 15 20 25 30

0 5 10 15 20 25 30

20

25 25

30

30
0 5 10 15 20 25 30

i1
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 2.1: Digital image representation with some examples from the CIFAR-10
dataset.The first column contains the original images, second column the gray-scale,
and the last column contains the gray-scale values scaled to the range [0, 9]

of points can be used to define — for example — the object boundaries.

2. Group all the different collections of points to generate small objects or parts
that can explain larger — or more complex — objects.

3. In some cases identifying the background can be a very good prior in order to
classify the object. For example, if we are classifying animals and the picture is
taken under the sea, then it is more probable to find a sea lion than a savanna
lion.

4. All the extracted information conforms a set of features that we can use to
compare with past experiences and use these experiences to classify the new
images.

If the features that we are using are good enough and our past experiences cover
a large part of the possible situations it should be easy to decide which is the correct
class of the object. However, each of the previous steps has its own complexities
and researchers work on individual parts to find better solutions. Additionally, this
is a simplification of the common approach used in computer vision.

Although we saw a visual representation of the image stored in a computer, from
the mathematical point of view it is easier to imagine the three channels of the image

8 CHAPTER 2. IMAGE CLASSIFICATION

Figure 2.2: Iris versicolor RGB example. This is a representation of the three
RGB channels as 3D surfaces

(red, green and blue) as surfaces, where the strength of the color in the specific pixel
is represented with a higher peak on the surface. With this approach on mind it is
easier to apply mathematical equations and algorithms that look for specific shapes
in the surfaces. Figure 2.2 shows a picture of a flower with its corresponding three
color surfaces.

2.1.1 Computer vision approach

We saw that image classification is a difficult task, and we explained one intuitive
approach to solve the problem. But, what has been the common approach in the
past?

First of all, we should mention that having prior knowledge of the task could
help to decide which type of descriptors to extract from the images. For example,
if the objects are always centered and use the same orientation, then we could not
be interested in descriptors that are invariant to translation and rotation. This and

2.2. IMAGE TRANSFORMATIONS 9

other transformations that can be applied to the images are explained in Section
2.2.

Once the limitations of the task are specified, it is possible to choose the features
that can be used. Usually, these features are based on the detection of edges, regions
and blobs throughout the image. These detectors are usually hand-crafted to find
such features that could be useful at the later stages. Some region detectors are
explained in Section 2.3, whilst some feature descriptors are shown in Section 2.4.

Then, given the feature descriptors it is possible to apply data mining and ma-
chine learning techniques to represent their distributions and find clusters of descrip-
tors that are good representatives of the different categories that we want to classify.
In Section 2.5 we give an introduction to some feature cluster representations.

Finally, with the clusters or other representations we can train a classification
model. This is often a linear Support Vector Machine (SVM), an SVM with some
kernel or a random forest.

2.1.2 Connectionism approach

Another approach is to use an Artificial Neural Network (ANN) to find automati-
cally the interesting regions, the feature descriptors, the clustering and the classifi-
cation. In this case the problem is on which structure of ANN to choose, and lots
of hyperparameters that need to be tuned and decided.

Convolutional Neural Network (CNN) have demonstrated to achieve very good
results on hand-written digit recognition, image classification, detection and local-
ization. For example, before 2012, the state-of-the-art approaches for image classifi-
cation were the previously mentioned and explained in the next sections. However,
in 2012, a deep CNN [Krizhevsky et al., 2012 won the classification task on Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC)2012. From that mo-
ment, the computer vision community started to became interested in the hidden
representation that these models were able to extract, and started using them as
a feature extractiors and descriptors. Figure 2.3 shows the number of participants
using CNNs during the period (2010-2014) in the ILSVRC image classification and
location challenges, together with the test errors of the winners in each challenge.

2.2 Image transformations

We explained previously that image classification belongs to the class of inverse
problems because the classification uses a projection of the original space to a lower
dimensional one; in this case from 3D to 2D. To solve this problem one of the
approaches consists in extracting features that are invariant to scale, rotation, or
perspective. However, these techniques are not always applied, because in some
cases, the restrictions of the problem in hand do not allow specific transformations.
Moreover, the use of these techniques reduces the initial information, possibly de-
teriorating the performance of the classification algorithm. For this reason, prior
knowledge of the task — or cross-validation — is very useful to decide which features

10 CHAPTER 2. IMAGE CLASSIFICATION

O —————— 1 25 [lcLsiiLoc
Hother JCNNs] 40 1] -
n 34.2
£ =1 30
H — 5 22 a5 M 253
g 201 35 | 8
= 20 X 20 16.4 i
Q‘ L)
& 11.7
11 T T 6.
op L El m ik
2010 2011 2012 2013 2014 2010 2011 2012 2013 2014
(a) number of participants (b) Winners error results

Figure 2.3: ILSVRC results during the years 2010-2014

are better on each task.

Occasionally, the objects to classify are centered and scaled. One example of
this is the MNIST dataset, composed of centered and re-scaled hand-written digits.
In this case, it could be possible to memorize the structure of the digits and find
the nearest example. However, this approach is computationally expensive at test
time and better techniques can be used. On the other hand, some datasets do not
center the objects, and they can be in any position of the frame. For example, in
detecting people in an image, the persons can be standing in front of the camera or
in the background, and we need a set of features invariant to scale and translation.
Furthermore, some objects can appear with different rotations and adding rotation
invariant features could help to recognize them. Also, the reflection is sometimes
useful. Finally, we can combine all the previous transformations with the term affine
transformations. These transformations preserve all the points in the same line, but
possibly not the angles between the lines.

It is very useful to know the set of transformations that the dataset can incor-
porate. For example, if we want to detect people, the reflection of people can be
used for training. This idea has been extended to increase the number of training
samples; usually called data augmentation.

2.3 Region detectors

One of the most important prerequisites to find good image descriptors is to find
good explanatory regions. To localize these regions, there are several approaches
more or less suited to some specific invariances. Some interesting regions can be
patches with more than one dominant gradient (e.g. corners or blobs), as they
reduce the possibility of occurrence. On the other hand, there are regions that are
usually not good (in the explanatory sense), for example regions with no texture are
quite common and could be found in several different objects. Also, the straight lines
present an aperture problem as the same portion of line can be matched at multiple

2.3. REGION DETECTORS 11

(a) Harris-Laplace detector (b) Laplacian detector

Figure 2.4: Comparison of detected regions between Harris and Laplacian
detectors on two natural images (image from [Zhang and Marszalek, 2007|)

positions. In general, the regions should be repeatable, invariant to illumination and
distinctive.

Edge detectors are a subclass of region detectors. They are focused on detect-
ing regions with sharp changes in brightness. The Canny detector [Canny, 1986]
is one of the most common edge detectors. Other options are the Sobel [Lyvers
and Mitchell, 1988|, Prewitt [Prewitt, 1970] and Roberts cross operators. For an
extended overview about edge detectors see |[Ziou and Tabbone, 1998|.

The Harris corner detector [Harris and Stephens, 1988| is a more general region
detector. It describes one type of rotation-invariant feature detector based on a
filter of the type [—2,—1,0,1,2]. Furthermore, the Laplacian detector [Lindeberg,
1998] is scale and affine-invariant and extracts blob-like regions (see Figure 2.4Db).
Similarly, the Harris-Laplace detector [Mikolajczyk and Schmid, 2004; Mikolajczyk
et al., 2005a| detects also scale and affine-invariant regions. However, the detected
regions are more corner-like (see Figure 2.4a). Other common region detectors
include the Hessian-Laplace detector [Mikolajczyk et al., 2005b|, the salient region
detector [Kadir and Brady, 2001], and Maximally Stable Extremal Region (MSER)
detector[Matas et al., 2004].

The blob regions, i.e. regions with variation in brightness surrounded by mostly
homogeneous levels of light, are often good descriptors. One very common blob
detector is the Laplacian of Gaussian (LoG) [Burt and Adelson, 1983|. In gray-scale
images where I(x,y) is the intensity of the pixel in the position [z, y] of the image
I, we can define the Laplacian as:

B 0?1 n 0*1
C0x2 Oy?
Because of the use of the second derivative, small noise in the image is prone to

activate the function. For that reason, the image is smoothed with a Gaussian filter
as a pre-processing step. This can be done in one equation:

L(z.y) = (V'D)(z,y) (2.1)

1 2 2 22442
LoG(x,y) = — 4{1—x +y]e_ =S

- 2.2
— 2 (2:2)

12 CHAPTER 2. IMAGE CLASSIFICATION

0.10+

0.05}

0.00

—0.05F

010 , , ,
-10 =5 0 5 10
(a) First and second derivative of
a Gaussian

(d) g2 (e) 25 (f) LoG = 9% + 29

Figure 2.5: Laplacian of Gaussian

Also, the Difference of Gaussian (DoG) [Lowe, 2004] can find blob regions and
can be seen as an approximation of the LoG. In this case the filter is composed of the
subtraction of two Gaussians with different standard deviations. This approximation

is computationally cheaper than the former. Figure 2.6 shows a visual representation
of the DoG.

2.4 Feature descriptors

Given the regions of interest explained in the last section, it is possible to aggregate
them to create feature descriptors. There are several approaches to combine different
regions.

2.4.1 SIFT

Scale-Invariant Feature Transform (SIFT) [Lowe, 1999, 2004] is one of the most
extended feature descriptors. All previous region detectors were not scale invariant,
that is the detected features require a specific zoom level of the image. On the

2.4. FEATURE DESCRIPTORS 13

(a) 1D

Figure 2.6: Example of DoG in one and two dimensions

contrary, SIFT is able to find features that are scale invariant — to some degree. The
algorithm is composed of four basic steps:

Detect extrema values at different scales

In the first step, the algorithm searches for blobs of different sizes. The objective
is to find Laplacian of Gaussian (LoG) regions in the image with different o values,
representing different scales. The LoG detects the positions and scales in which the
function is strongly activated. However, computing the LoG is expensive and the
algorithm uses the Difference of Gaussian (DoG) approximation instead. In this
case, we have pairs of sigmas o; = ko;_;, where [represents the level or scale. An
easy approach to implement this step is to scale the image using different ratios,
and convolve different Gaussians with an increasing value of ko. Then, the DoG is
computed by subtracting adjacent levels. In the original paper the image is rescaled
4 times and in each scale 5 Gaussians are computed with ¢ = 1.6 and k£ = V2

Once all the candidates are detected, they are compared with the 8 pixels that
are surrounding the point at the same level, as well as the 9 pixels in the upper and
lower levels. The pixel that has the largest activation is selected for the second step.

Refining and removing edges

Next, the algorithm performs a more accurate inspection of the previous candidates.
The inspection consists of computing the Taylor series expansion in the spatial
surrounding of the original pixel. In [Lowe, 1999| a threshold of 0.03 was selected
to remove the points that did not exceeded this value. Furthermore, because the
DoG is prone to detect also edges, a Harris corner detector is applied to remove
them. To find them, a 2 x 2 Hessian matrix is computed and the points in which
the eigenvalues are different with a certain degree are considered to be edges and
are discarded.

14 CHAPTER 2. IMAGE CLASSIFICATION

Orientation invariant

The remaining keypoints are modified to make them rotation invariant. The sur-
rounding is divided into 36 bins covering the 360 degrees. Then the gradient in
each bin is computed, scaled with a Gaussian centered in the middle and with a o
equal to 1.5 times the scale of the keypoint. Then, the bin with the largest value is
selected and the bins with a value larger than the 80% are also selected to compute
the final gradient and direction.

Keypoint descriptor

Finally, the whole area is divided into 16 x 16 = 256 small blocks. The small blocks
are grouped into 16 squared blocks of size 4 x 4. In each small block, the gradient
is computed and aggregated in eight circular bins covering the 360 degrees. This
makes a total of 128 feature descriptors that compose the final keypoint descrip-
tor. Additionally, some information can be stored to avoid possible problems with
brightness or other problematic situations.

2.4.2 Other descriptors

Speeded-Up Robust Features (SURF) [Bay et al., 2006, 2008] is another popular
feature descriptor. It is very similar to SIFT, but, it uses the integral of the original
image at different scales and finds the interesting points by applying Haar-like fea-
tures. This accelerates the process, but results in a smaller number of keypoints. In
the original paper, the authors claim that this reduced set of descriptors was more
robust than the ones discovered by SIFT.

Histogram of Oriented Gradients (HOG) |[Dalal and Triggs, 2005| was originally
proposed for pedestrian detection and shares some ideas of SIFT. However, it is
computed extensively over the whole image, offering a full patch descriptor. Given
a patch of size 64 x 128 pixels, the algorithm divides the region into 128 small cells
of size 8 x 8 pixels. Then, the horizontal and vertical gradients at every pixel are
computed, and each 8 x 8 cell creates a histogram of gradients with 9 bins, divided
from 0 to 180 degrees (if the orientation of the gradient is important it can be
incorporated by computing the bins in the range 0 to 360 degrees). Then, all the
cells are grouped into blocks of 4 x4 with 50% overlap with each adjacent block. This
makes a total of 7 x 15 = 105 blocks. Finally, the bins of each cell are concatenated
and normalized. This process creates a total of 105p10cks X 4eelis X Ibins = 3780 features-

Other features are available but are not discussed here, some examples are the
Gradient location-orientation histogram (GLOH) [Mikolajczyk and Schmid, 2005]
with 17 locations, 16 orientation bins in a log-polar grid and uses Principal Com-
ponent Analysis (PCA) to reduce the dimensions to 128; the PCA-Scale-Invariant
Feature Transform (PCA-SIFT) [Ke and Sukthankar, 2004] that reduces the final
dimensions with PCA to 36 features; moment invariants [Gool et al., 1996]; SPIN
|[Lazebnik et al., 2005]; RIFT |Lazebnik et al., 2005]; and HMAX |Riesenhuber and
Poggio, 1999].

2.5. FEATURE CLUSTER REPRESENTATION 15

2.5 Feature Cluster Representation

All the previouslydiscussed detectors and descriptors can be used to create large
amounts of features to classify images. However, they result in very large feature
vectors that can be difficult to use for pattern classification tasks. To reduce the
dimensionality of these features or to generate better descriptors from the previous
ones it is possible to use techniques like dimensionality reduction, feature selection
or feature augmentation.

Bag of Visual words (BoV) [Csurka and Dance, 2004| was inspired by an older
approach for text categorization: the Bag of Words (BoW) [Aas and Eikvil, 1999].
This algorithm detects visually interesting descriptors from the images, and finds a
set of clusters representatives from the original visual descriptors. Then, the clusters
are used as reference points to form — later — a histogram of occurrences; each bin
of the histogram corresponds to one cluster. For a new image, the algorithm finds
the visual descriptors, computes their distances to the different clusters, and then
for each descriptor increases the count of the respective bin. Finally, the description
of the image is a histogram of occurrences where each bin is referred to as a visual
word.

Histogram of Pattern Sets (HoPS) [Voravuthikunchai, 2014] is a recent new al-
gorithm for feature representation. It is based on random selection of some of the
previously explained visual features (for example BoV). The selected features are
binarized: the features with more occurrences than a threshold are set to one, while
the rest are set to zero. The set of features with the value one creates a transac-
tion. The random selection and the creation of transactions is repeated P times
obtaining a total of P random transactions. Then, the algorithm uses data min-
ing techniques to select the most discriminative transactions, for example Frequent
Pattern (FP) [Agrawal et al., 1993] or Jumping Emerging Patterns (JEPs) [Dong
and Li, 1999]. Finally, the last representations is formed by 2 x P bins, two per
transaction: one for positive JEPs and the other for negative JEPs. In the original
paper this algorithm demonstrated state-of-the-art results on image classification
with the Oxford-Flowers dataset, object detection on PASCAL VOC 2007 dataset,
and pedestrian recognition.

2.6 Color

“We live in complete dark. What is color but
your unique interpretation of the electrical
impulses produced in the neuro-receptors of
your retina?”

— Miquel Perell6 Nieto

The colors emerge from different electromagnetic wavelengths in the visible spec-
trum. This visible portion is a small range from 430 to 790 THz or 390 to 700nm
(see Figure 2.7). Each of these isolated frequencies creates one pure color, while
combinations of various wavelengths can be interpreted by our brain as additional

16 CHAPTER 2. IMAGE CLASSIFICATION

red (650nm) \/\/\/\/

orange (590nm) |- =
yellow (570nm) |- 4
green (510nm) f\/\/\/\/\/
cyan (480nm) |- 4
blue (475nm) NN S~ . —
indigo (445nm) NN~ | L L L U

violet (400nm) |- s

0 500 1000 1500 2000 2500
wavelength(nm)

Figure 2.7: Visible colors wavelengths

colors. From the total range of pure colors, our retina is able to perceive approxi-
mately the blue, green, and red (see Chapter 3). While the co-occurrence of some
adjacent wavelengths can accentuate the intermediate frequency — green and orange
produce yellow and red and blue produce cyan — more separated wavelengths like
red and blue generate a visible color that does not exist in the spectrum. This
combination is perceived by our brain as magenta. By mixing three different colors
it is possible to simulate all the different wavelenghts. These three colors are called
primary colors. The red, green and blue are additive, this means that they act as
sources of light of the specific wavelength (see Figure 2.8a). On the other hand, the
cyan, magenta and yellow are subtractive colors, meaning that they act as filters
that only allow a specific wavelength to pass, filtering everything else. For example,
cyan filters everything except the range 520 — 490 nm, yellow 590 — 560 nm, and
magenta filters mostly the green region allowing the light of both lateral sides of the
visible spectrum. The subtractive colors can be combined to filter the additional
wavelengths creating the red, green and blue colors (see Figure 2.8b). The colors
black, white and gray are a source of light uniformly distributed in all the visual
spectrum, they go from the complete darkness (absence of any wavelength), to the
brightest white (light with all the visible wavelengths).

2.7 Color spaces

Although the visual spectrum is a continuous space of wavelengths, the techniques
that we use to represent the different colors had to be discretized and standard-
ized as a color space. It was William David Wright and John Guild that in the
1920s started to investigate the human perception of colors. Later in 1931 the CIE
(Commission Internationale de 1’Clairage) RGB and Expanded (XYZ) color spaces
where specified. The RGB is one of the most used color spaces in analog and digital
screens (see Figure 2.9a). XYZ, on the other hand, was a human sight version of
the RGB that was standardized after several years of experiments on the human
vision perception (see Figure 2.9c). In XYZ, the luminance (X) is separated from
the chrominance (Y and Z).

Furthermore, during the transition between black and white and color television,

2.7. COLOR SPACES 17

(a) RGB (b) CMY

Figure 2.8: Primary colors (a) RGB are additive colors, this means that the sum
of the colors creates the white (an easy example is to imagine a dark wall where light
focus of the three colors are illuminating. The combination of all the focus create
the white spot). (b) CMY are subtractive colors, this means that they subtract light
(an easy example is to imagine that the wall is the source of light and each filter
stops all except one color; another example is to imagine the white paper and each
of the colors absorbing all except its own color.

18 CHAPTER 2. IMAGE CLASSIFICATION

Reference standard K,, Ky,

ITU601 / ITU-T 709 1250/50/2:1 | 0.299 | 0.114
ITU709 / ITU-T 709 1250/60/2:1 | 0.2126 | 0.0722
SMPTE 240M (1999) 0.212 | 0.087

Table 2.1: RGB to YCbCr standard constants

it was necessary to create a codification compatible with both systems. In the black
and white television the luminance channel was already used, therefore, the newly
introduced color version needed two additional chrominance channels. These three
channels were called YUV (see Figure 2.9b) in the analog version and nowadays
the digital version is the YCbCr (although both terms are usually used to refer to
the same color space). This codification has very good properties for compression
of images (see Section 2.8). YIQ is a similar codification that also separates the
luminance (Y) from the chrominance (I and Q) and was used in the NTSC color TV
system (see Figure 2.9d).

It is possible to perform a spatial transformation from one of the previous color
spaces to the others. In the case of RGB to YCbCr the transformation follows the
next equations:

Y = K, R+ K,,G + K,,B
C,=B-Y

C,=R—-Y

Ky + Koy + Ky = 1

(2.3)

Y =K, R+ K,,G+ Ky,B
Cy = KR+ Kg,G + Ky, B (2.4)
C, = K,wR + K;.G + Ky B

where

K’ru _Kry

Koy = =Ky,

Ky, =1— Ky, (2.5)
K’rv 1— Kry .
ng _Kgy

Kbv = _Kby

There are different standards for the values of K,, and Kj,, these are summarized
in table 2.1.

19

2.7. COLOR SPACES

1.2
1.0

0.8

0-6g1ue
0.4

0.6 0.0

X
08 o2

(c) XYZ

Figure 2.9: RGB represented in other transformed spaces

20 CHAPTER 2. IMAGE CLASSIFICATION

Following the standard ITU601, we can express these equations using the next
matrix transformation:

Y’ 0.299 0.587 0.114 R
Ul = [-0.14713 —0.28886 0.436 G (2.6)
V 0.615 —0.51499 —-0.10001| |B
R 1 0 1.13983 Y’
G| = |1 —0.39465 —0.58060| |U (2.7)
B 1 203211 0 V

Also the matrix transformations for the XYZ and YIQ are presented here as as
a reference:

X 0.412453 0.357580 0.180423| | R

Y| = (0212671 0.715160 0.072169| |G (2.8)
Z 0.019334 0.119193 0.950227| | B
R 3.240479 —1.53715 —0.498535] [X
G| = |-0.969256 1.875991 0.041556 | |V (2.9)
B 0.055648 —0.204043 1.057311 | |Z
Y 0.299 0.587 0.114 R
I =10595716 —0.274453 —0.321263| |G& (2.10)
Q 0.211456 —0.522591 0.311135 | | B
R 1 09563 06210] [Y
G| =1 —02721 —0.6474]| |I (2.11)

B 1 —1.1070 1.7046 Q

2.8 The importance of luma

The luminance part of images is very important for the human visual system, as
several experiments have demonstrated that our visual system is more accurate with
changes in luminance than in chrominance. Exploiting this difference, video encod-
ings usually have a larger bandwidth for luminance than chrominance, increasing
the transfer speed of the signals. The same technique is used in image compres-
sion. In that case, chroma subsampling is a technique that reduces the amount of
chroma information in the horizontal, vertical or both spatial dimensions. The dif-
ferent variations of chroma subsampling are represented with three digits in the form
X1 0 X5 : X3” where the variations of the X values have different meaning. The
basic case is the original image without subsampling, represented by 4:4:4. Then, if
the horizontal resolution is reduced by half in the two chrominance channels the final
image size is reduced by 2/3. This is symbolized with the nomenclature 4:2:2. The
same approach but reducing the horizontal resolution of the chrominance channels
by a factor of 1/4 is symbolized with 4:1:1 and it achieves a reduction of size of
1/2. Tt is possible to achieve the same reduction of size also by decreasing by half
the horizontal and vertical resolutions, symbolized with 4:2:0. Table 2.2 shows a

2.9. DATASETS 21

subsample Y Uuv YUV factor
4:4:4 I, x I | 2x 1, x 1, | 3x1I,x1, 1
4:2:2 IxIy | 2x I, x| 2x I, xI, | 2/3
4:1:1 I, x1I, | 2x1I,x SxI, x| 1/2
4:2:0 I, x I | 2x & x Sx I, x1I,| 1/2

KN

Table 2.2: Chroma subsampling vertical, horizontal and final size reduction factor

summary of these transformations with the symbolic size of the different channels
of the YUV color space and the final size.

Figure 2.10 shows a visual example of the three subsampling methods previously
explained in the YUV color space, and how it would look if we apply the same
subsampling to the green and blue channels in the RGB color space. The same
amount of information is lost in both cases (in RGB and YUV), however, if only the
chrominance is reduced (YUV case) it is difficult to perceive the loss of information.

2.9 Datasets

In this section, we present a set of famous datasets that have been used from the
80s to evaluate different pattern recognition algorithms in computer vision.

In 1989, Yann LeCun created a small dataset of hand written digits to test
the performance of backpropagation in Artificial Neural Networks (ANNs) [LeCun,
1989]. Later in [LeCun et al., 1989, the authors collected a large amount of samples
from the U.S. Postal Service and called it the MNIST dataset. This dataset is one
of the most widely used datasets to evaluate pattern recognition methods. The
test error has been dropped by state-of-the-art methods to 0%, but it is still being
used as a reference and to test semi-supervised or unsupervised methods where the
accuracy is not perfect.

The COIL Objects dataset [Nene et al., 1996] was one of the first image classifi-
cation datasets of a set of different objects. It was released in 1996. The objects were
photographed in gray-scale, centered in the middle of the image and were rotated
by 5 degree steps throughout the full 360 degrees.

From 1993 to 1997, the Defense Advanced Research Projects Agency (DARPA)
collected a large number of face images to perform face recognition. The corpus was
presented in 1998 with the name FERET faces [Phillips and Moon, 2000].

In 1999, researchers of the computer vision lab in California Institute of Technol-
ogy collected pictures of cars, motorcycles, airplanes, faces, leaves and backgrounds
to create the first Caltech dataset. Later they released the Caltech-101 and Caltech-
256 datasets.

In 2001, the Berkeley Segmentation Data Set (BSDS300) was released for group-
ing, contour detection, and segmentation of natural images [Martin and Fowlkes,
2001]. This dataset contains 200 and 100 images for training and testing with
12.000 hand-labeled segmentations. Later, in [Arbelaez and Maire, 2011], the au-

1989

1996

1998

1999

2001

22 CHAPTER 2. IMAGE CLASSIFICATION

4:4:4 4:2:2 4:1:1 4:2:0

(a) Subsampling in RGB color space

4:4:4 4:2:2 4:1:1 4:2:0

(b) Subsampling in RGB color space

4:4:4 4:2:2 4:1:1 4:2:0

(¢) Subsampling in YUV color space

4:4:4 4:2:2 4:1:1 4:2:0

(d) Subsampling in YUV color space

Figure 2.10: Comparison of different subsampling on RGB and YUV chan-
nels - Although the chroma subsampling technique is only applied on YUV colors
we apply the subsampling to Green and Blue channels on RGB codification only
as a visual comparison. While in RGB channels applying this subsampling highly
deteriorates the image, it is almost imperceptible when applied on chroma channels.

2.9. DATASETS 23

thors extended the dataset with 300 and 200 images for training and test; in this
version the name of the dataset was modified to BSDS500.

In 2002, the Middleburry stereo dataset [Scharstein and Szeliski, 2002] was re-
leased. This is a dataset of pairs of images taken from two different angles and with
the objective of pairing the couples.

In 2003, the Caltech-101 dataset |Fei-Fei et al., 2007] was released with 101
categories distributed through 9.144 images of roughly 300 x 200 pixels. There are
from 31 to 900 images per category with a mean of 90 images.

In 2004, the KTH human action dataset was released. This was a set of 600
videos with people performing different actions in front of a static background (a
field with grass or a white wall). The 25 subjects were recorded in 4 different
scenarios performing 6 actions: walking, jogging, running, boxing, hand waving and
hand clapping.

The same year, a collection of 1.050 training images of cars and non-cars was
released with the name UIUC Image Database for Car Detection. The dataset was
used in two experiments reported in [Agarwal et al., 2004; Agarwal and Roth, 2002].

In 2005, another set of videos was collected this time from surveillance cameras.
The team of the CAVIAR project captured people walking alone, meeting with
another person, window shopping, entering and exiting shops, fighting, passing out
and leaving a package in a public place. The image resolution was of 384 x 288
pixels and 25 frames per second.

In 2006, the Caltech-256 dataset |Griffin et al., 2007] was released increasing the
number of images to 30.608 and 256 categories. There are from 80 to 827 images
per category with a mean of 119 images.

In 2008, a dataset of videos of sign language [Athitsos et al., 2008] was released
with the name American Sign Language Lexicon Video Dataset (ASLLVD). The
videos were captured from three angles: front, side and face region.

In 2009, one of the most known classification and detection datasets was released
with the name of PASCAL Visual Object Classes (VOC) [Everingham and Gool,
2010; Everingham and Eslami, 2014|. Composed of 14.743 natural images of people,
animals (bird, cat, cow, dog, horse, sheep), vehicles (aeroplane, bicycle, boat, bus
car, motorbike, train) and indoor objects (bottle, chair, dining table, potted plant,
sofa, tv/monitor). The dataset is divided into 50% for training and validation and
50% for testing.

In the same year, a team from Toronto University collected the CIFAR-10 dataset
(see Chapter 3 of [Krizhevsky and Hinton, 2009]). This dataset contained 60.000
color images of 32 x 32 pixel size divided uniformly between 10 classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck). Later, the number of
categories was increased to 100 in the extended version CIFAR-100.

ImageNet dataset was also released in 2009 [Deng et al., 2009]. This dataset
collected images containing nouns appearing in WordNet [Miller, 1995; Fellbaum,
1998]| (a large lexical database of English). The initial dataset was composed by 5.247
synsets and 3.2 million images whilst in 2015 it was extended to 21.841 synsets and
14.197.122 images.

2002

2003

2004

2005

2006

2008

2009

2015

24

CHAPTER 2. IMAGE CLASSIFICATION

Chapter 3

Neuro vision

“He believes that he sees his retinal images: he
would have a shock if he could.”

— George Humphry

This Chapter gives a brief introduction about the neural anatomy of the visual
system. We hope that by understanding the biological visual system, it is possible to
get inspiration and design better algorithms for image classification. This approach
has been successfully used in the past in computer vision algorithms; for example,
the importance of blob-like features, or edge detectors. Additionally, some of the
state-of-the-art Artificial Neural Network (ANN) were originally inspired by the
cats and macaques visual system. We also know that humans are able to extract
very abstract representations of our environment by interpreting the different light
wavelengths that excite the photoreceptors in our retinas. As the neurons propagate
the electric impulses through the visual system our brain is able to create an abstract
representation of the environment [Fischler, 1987| (the so-called “signals-to-symbol”
paradigm).

Vision is one of the most important senses in human beings, as roughly the 60%
of our sensory inputs belong to visual stimulus. In order to study the brain we need
to study its morphology, physiology, electrical responses, and chemical reactions.
These characteristics are studied in different disciplines, however, they need to be
merged to solve the problem of understanding how the brain is able to create visual
representations of the surrounding. For that reason, the disciplines that are involved
in neuro vision extend from neurophysiology to psychology, chemistry, computer
science, physics and mathematics. In this chapter, first we introduce the biological
neuron, one of the most basic components of the brain in Section3.1. We give an
overview of the structure and the basics of their activations. Then, in Section 3.2,
we explain the different parts of the brain involved in the vision process, the cells,
and the visual information that they proceed. Finally, we present a summary about
the color perception, and the LMS color space in Section 3.3. For an extended
introduction to the human vision and how it is related to ANN see |[Gupta and
Knopf, 1994].

25

26 CHAPTER 3. NEURO VISION

Dendrite
Axon Terminal

Node of

node
Cell body o my'€"

Schwann cell

Myelin sheath
Nucleus

Figure 3.1: Simplified schema of a biological neuron '

3.1 The biological neuron

Neurons are cells that receive and send electrical and chemical responses from — and
to — other cells. They form the nervous system, having the responsibility of sensing
the environment and reacting accordingly. The brain is almost entirely formed by
neurons, that together, generate the most complex actions. Humans have around
86 billion of neurons in all the nervous system. Each neuron is divided basically
by three parts: dendrites, soma and axons. Figure 3.1 shows a representation of a
biological neuron with all the components explained in this section.

The dendrites are ramifications of the neuron that receive the action potentials
from other neurons. The dendrites are able to decrease or increase their number —
and strength — when their connections are reiteratively activated (this behaviour is
known as Hebbian learning). Thanks to the dendrites, one neuron in the cortex can
receive on average thousands of connections from other neurons.

The soma (or cell body) is the central part of the neuron, and receives all
the excitatory and inhibitory impulses from the dendrites. All the impulses are
aggregated on time, if the sum of impulses surpass the Hillock threshold — in a short
period of time — the neuron is excited and activates an action potential that traverses
its axons.

The axons are the terminals of the neurons that start in the axon hillock. In
order to transmit the action potential from the nucleus of the neuron to the axon
terminals a series of chemical reactions creates an electrical cascade that travels
rapidly to the next cells. However, some of the axons on the human body can
extend approximately 1 meter, and to increase the speed of the action potentials,
the axons are sometimes covered by Schwann cells. This cells isolate the axons with
Myelin sheath, making the communication more robust and fast.

!Originally Neuron.jpg taken from the US Federal (public domain) (Nerve Tissue, retrieved
March 2007), redrawn by User:Dhpl1080 in Illustrator. Source: “Anatomy and Physiology” by the
US National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) Program.

http://training.seer.cancer.gov/module_anatomy/unit5_2_nerve_tissue.html
http://training.seer.cancer.gov/module_anatomy/unit5_2_nerve_tissue.html
http://commons.wikimedia.org/wiki/User:Dhp1080

3.2. VISUAL SYSTEM 27

Left visual Right visual

field field =<
RYAY AT Y aYe
N NN

Nasal retina

=<— Optical lens

cones
Temporal Temporal Eye ' S M L rods
retina —> < retina BEEE P
Optic nerve
Optic chiasma
Lateral Parvocellular
geniculate cells
nucleus (LGN) P0+0+*0
Simple |/_.\

Primar
visualy Complex F4mad

cortex Hypercomplex kE & m 3

Figure 3.2: Visual pathway

3.2 Visual system

The visual system is formed by a huge number of nervous cells that send and receive
electrical impulses trough the visual pathway. The level of abstraction increases
as the signals are propagated from the retina to the different regions of the brain.
At the top level of abstraction there are the so-called “grandmother-cells” |Gross,
2002, these cells are specialized on detecting specific shapes, faces, or arbitrary
visual objects. In this section, we describe how the different wavelengths of light
are interpreted and transformed at different levels of the visual system. Starting
in the retina of the eyes in Section 3.2.1, going through the optic nerve, the optic
chiasma, and the Lateral Geniculate Nucleus (LGN) — allocated in the thalamus —
in Section 3.2.2, and finally the primary visual cortex in Section 3.2.3. Figure 3.2
shows a summary of the visual system and the connections from the retina to the
primary visual cortex. In addition, at the right side, we show a visual representation
of the color responses perceived at each level of the visual pathway.

3.2.1 The retina

The retina is a thin layer of tissue located in the inner and back part of the
eye. The light crosses the iris, the optical lens and the eye, and finally reaches the
photoreceptor cells. There are two types of photoreceptor cells: cone and rod cells.

Cone cells are cone shaped and are mostly activated with high levels of light.
There are three types of cone cells specialized on different wavelength: the short cells
are mostly activated at 420nm corresponding to a bluish color, the medium cells at

28 CHAPTER 3. NEURO VISION

Photoreceptors:
Rods (R) and
Cones (C)

Horizontal Synaptic pedicle

cells (H)

Bipolar

cells (B) »Q# <@Q

Amacrine Optic
cells (A) © C@;’ nerve

@ fiber
Ganglion —>

cells (G)
Light
stimulus

Figure 3.3: A cross section of the retina with the different cells (the figure has
been adapted from [Gupta and Knopf, 1994]

103
1800 22
420 498 534 564
° | | 1T Tt 160 Foveaog/—\ Blind
o spot
c € 140 P
© .
2 o
5] o 120
wn
«
g = 100 4
]
2 © g Rod cells
N ‘s density
© 60
=)
5 a
S \ 40
= . § Cone cells
0—T— TRy T T T T TT
400 500 600 700 0 "
Violet Blue Cyan Green Yellow Red (Temporay 20 40-30-20-10 0% 10 20 30 40 50 60 70 80,

Wavelength (nm) Angular separation from the fovea

(a) Human visual color response. The dashed line (b) Rod and cone densities

is for the rod photoreceptor while red, blue, and
green are for the cones.

Figure 3.4: Retina photoreceptors

534nm corresponding to a greenish color, and the long cells at 564nm corresponding
to a reddish color (see Figure 3.4a). These cells need large amounts of light to be
fully functional. For that reason, cone cells are used in daylight or bright conditions.
Their density distribution on the surface of the retina is almost limited to an area of
10 degrees around the fovea (see Figure 3.4b). For that reason, we can only perceive
color in a small area around our focus of attention — the perception of color in other
areas is created by more complex systems. There are about 6 million cone cells,
from which 64% are long cells, 32% medium cells and 2% short cells. Although the
number of short cells is one order of magnitude smaller than the rest, these cells
are more sensitive and being active in worst light conditions, additionally, there are
some other processes that compensate this difference. That could be a reason why
in dark conditions — when the cone cells are barely activated — the clearest regions
are perceived with a bluish tone.

3.2. VISUAL SYSTEM 29

Rod cells do not perceive color but the intensity of light, their maximum re-
sponse corresponds to 498nm, between the blue and green wavelengths. They are
functional only on dark situations — usually during the night. They are very sensi-
tive, some studies (e.g. [Goldstein, 2013]) suggest that a rod cell is able to detect
an isolated photon. There are about 120 million of rod cells distributed trough all
the retina, while the central part of the fovea is exempt of them (see Figure 3.4b).
Additionally, the rod cells are very sensitive to motion and peripheral vision. There-
fore, in dim situations, it is easier to perceive movement and light in the periphery
but not in our focus of attention.

However, the photoreceptors are not connected directly to the brain. Their axons
are connected to the dendrites of other retinal cells. There are two types of cells
that connect the photoreceptors to other regions: the horizontal and bipolar cells.

Horizontal cells connect neighborhoods of cone and rod cells together. This
allows the communication between photoreceptors and bipolar cells. One of the most
important roles of horizontal cells, is to inhibit the activation of the photoreceptors
to adjust the vision to bright and dim light conditions. There are three types of
horizontal cells: HI, HII, and HIII; however their distinction is not clear.

Bipolar cells connect photoreceptors to ganglion cells. Additionally, they ac-
cept connections from horizontal cells. Bipolar cells are specialized on cones or rods.
There are nine types of bipolar cells specialized in cones, while only one type for
rod cells. Bipolar and horizontal cells work together to generate center surrounded
inhibitory filters with a similar shape of a Laplacian of Gaussian (LoG) or Difference
of Gaussian (DoG). These filters are focused in one color tone in the center and its
opposite at the bound.

Amacrine cells connect various ganglion and bipolar cells. Amacrine cells are
similar to horizontal cells, they are laterally connected and most of their responsi-
bility is the inhibition of certain regions. However, they connect the dendrites of
ganglion cells and the axons of bipolar cells. There are 33 subtypes of amacrine
cells, divided by their morphology and stratification.

Finally, ganglion cells receive the signals from the bipolar and amacrine cells,
and extend their axons trough the optic nerve and optic chiasma to the thalamus,
hypothalamus and midbrain (see Figure 3.2). Although there are about 126 mil-
lions of photoreceptors in each eye, only 1 million of ganglion axons travel to the
different parts of the brain. This is a compression ratio of 126:1. However, the
action potentials generated by the ganglion cells are very fast, while the cones, rods,
bipolar, horizontal and amacrine cells have slow potentials. Some of the ganglion
cells are specialized on the detection of centered contrasts, similar to the Laplacian
of Gaussian (LoG) or a Difference of Gaussian (DoG) (see these shapes in Figures
2.5 and 2.6). The negative side is achieved by inhibitory cells and can be situated
in the center or at the bound. The six combinations are yellow and blue, red and
green, and bright and dark, with one of the colors in the center and the other on
the bound. There are three groups of ganglion cells: W-ganglion, X-ganglion and
Y-ganglion. However, groups of the three types of ganglion cells are divided in
five classes depending on the region where their axons end: midget cells project to
the Parvocellular cells (P-cells), parasol cells project to the Magnocellular cells (M-

30 CHAPTER 3. NEURO VISION

Red| |Green| [|Blue Red| [Green| |Blue Red| [Green| P Blue
to visual cortex to visual cortex to visual cortex

(a

(

.-

b)
[200 400 600 800
(e)

.-
0 400 600 800

()

Figure 3.5: Extitation of parvocellular cells - The three different types of par-
vocellular cells; or P-cells.

cells), bistratified cells project to the Koniocellular cells (K-cells) (P-cells, M-cells
and K-cells are situated in the Lateral Geniculate Nucleus (LGN)), photosensitive
ganglion cells and other cells project to the superior colliculus.

3.2.2 The lateral geniculate nucleus

The ganglion cells from the retina extend around 1 million axons per eye through
the optic nerve, and coincide in the optic chiasma. From the chiasma, the axons
corresponding to the left and right visual field take different paths towards the two
Lateral Geniculate Nuclei (LGNs) in the thalamus. Every LGN is composed of 6
layers and 6 strata. One stratum is situated before the first layer while the rest lie
between every pair of layers. There are 3 specialized types of cells that connect to
different layers and strata.

Koniocellular cells (K-cells) are located in the stratas between the M-cells and
P-cells, composing 5% of the cells in the LGN.

Magnocellular cells (M-cells) are located in the first two layers (1st and 2nd)
composing the 5% of the cells in the LGN. These cells are mostly responsible on the
detection of motion.

Parvocellular cells (P-cells) are located in the last four layers (from 3th to 6th)
and contribute to the 90% of the cells in the LGN. These cells are mostly responsible
of color and contrast, and are specialized in red-green, blue-yellow and bright-dark

3.3. LMS COLOR SPACE AND COLOR PERCEPTION 31

differences. Figure 3.5 shows a toy representation of the different connections that
P-cells perform and a visual representation of their activation when looking at a
scene.

3.2.3 The primary visual cortex

Most of the connections from the LGN go directly to the primary visual cortex. In
the primary visual cortex, the neurons are structured in series of rows and columns of
neurons. The first neurons to receive the signals are the simple cortical cells. These
cells detect lines at different angles — from horizontal to vertical — that occupy a large
part of the retina. While the simple cortical cells detect static bars, the complex
cortical cells detect the same bars with motion. Finally, the hypercomplex cells
detect moving bars of certain length.

All the different bar orientations are separated by columns. Later, all the con-
nections extend to different parts of the brain where more complex patterns are
detected. Several studies have demonstrated that some of these neurons are spe-
cialized in the detection of basic shapes like triangles, squares or circles, while other
neurons are activated when visualizing faces or complex objects. These specialized
neurons are called “grandmother cells”. The work of Uhr [Uhr, 1987] showed that
humans are able to interpret a scene in 70 to 200 ms performing 18 to 46 transfor-
mation steps.

3.3 LMS color space and color perception

The LMS color space corresponds to the colors perceived with the excitation of the
different cones in the human retina: the long (L), medium (M) and short (S) cells.
However, the first experiments about the color perception in humans started some
hundreds of years ago, when the different cells in our retina were unknown.

From 1666 to 1672, Isaac Newton? developed some experiments about the diffrac-
tion of light into different colors. Newton was using glasses with prism shape to
refract the light and project the different wavelengths into a wall. At that moment,
it was thought that the blue side corresponded to the darkness, while the red side
corresponded to the brightness. However, Newton already saw that passing the
red color through the prism did not change its projected color, meaning that light
and red were two different concepts. Newton demonstrated that the different colors
appeared because they traveled at different speeds and got refracted by different
angles. Also, Newton demonstrated that it was possible to retrieve the initial light
by merging the colors back. Newton designed the color wheel, and it was used later
by artist to increase the contrast of their paintings (more information about the
human perception and one study case about color vision can be seen in [Churchland
and Sejnowski, 1988])

2Isaac Newton (Woolshorpe, Lincolnshire, England; December 25, 1642 — March 20 1726) was
a physicist and mathematician, widely know by his contributions in classical mechanics, optics,
motion, universal gravitation and the development of calculus.

1666

1810

1740

1802

1892

1986

32 CHAPTER 3. NEURO VISION

(a) Newton’s theory

(b) Castel’s theory

Figure 3.6: The theory of Newton and Castel about the color formation
(Figure from Castel’s book “L’optique des couleurs” [Castel, 1740])

Later, in 1810, Johann Wolfgang von Goethe® got published the book Theory
of Colours (in German “Zur Farbenlehre”). In his book, Goethe focused more in
the human perception from a psychologist perspective, and less about the physics
(Newton’s approach). The author tried to point that Newton theory was not com-
pletely correct and shown that depending on the distance from the prism to the wall
the central color changed from white to green. This idea was not new as Castel’s
book “L’optique des couleurs” from 1740 already criticised the work of Newton and
proposed a new idea (see Figure 3.6). Both authors claimed that the experiments
performed by Newton were a special case, in which the distance of the projection
was fixed. Based on the experiments, they proposed that the light was separated
into two beams of red-yellow and blue-cyan light in a cone shape and the overlapped
region formed the green.

Goethe created a new colour wheel; in this case symmetric. In this wheel, the
opponent colors were situated at opposite sides, anticipating the Opponent process
theory of Ewald Hering.

In 1802, T. Young [Young, 1802| proposed that the human retina should have
three different photoreceptors, as there are three primary colors.

In 1892, Ewald Hering proposed the opponent color theory, in which the author
showed that yellow and blue, and red and green are opposites. Also, the combination
of one pair can not generate another hue; there is no bluish-yellow or reddish-green.
Figure 3.8 shows a representation of the intersection of the opponent colors and two
examples where the intersection can be perceived as an additional color.

The two initial ideas were: either we have three photoreceptors for the primary
colors, or the red-green, blue-yellow and white-black are the basic components of
the human color perception. Later, physiologists [Nathans et al., 1986] discovered
that both theories were correct in different parts of the brain. The LMS color space

3Johann Wolfgang von Goethe (Frankfurt-am-Main, Germany; August 28, 1749 — March
22, 1832) was a writer, poet, novelist and natural philosopher. He also did several studies about
natural science some of them focused on color.

3.3. LMS COLOR SPACE AND COLOR PERCEPTION 33

IA_ IA_

) Blue (b) Short cones ¢) Cyan

IA_ W

) Green (f) Medium cones (g) Yellow

.___L.L_L

) Red i) Long cones k) Magenta

(d) Short + medium cones
(h) Medium + long cones

(1) Short + long cones

Figure 3.7: Human perception of the primary colors in the activation of the
retinal cone cells.

.L_‘.LA;

a) Magenta

(b) Blue + red (d) Blue + yellow
e) Orange

() Yellow + red (h) Green + red

Figure 3.8: Human perception of opponent colors in the activation of the
retinal cone cells, the center of the bars contain a color mixture of both sides at
50%. In the intersection of opposite colors there is no bluish yellow or redish green.

was detected in the retina, while the opponent process was performed in the LGN
region of the thalamus.

34

CHAPTER 3. NEURO VISION

Chapter 4

Artificial Neural Networks

“My mind seems to have become a kind of
machine for grinding general laws out of large
collections of facts”

— Charles Darwin

In this chapter, we give a brief introduction to Artificial Neural Network (ANN)
and show how they can be used to solve pattern recognition problems. In the
previous Chapter 2, we saw that image classification algorithms require a set of
feature descriptors that best represents the classes and that discriminates between
different categories. With the set of features, a classification algorithm can study
the statistical distribution of each class and finally classify the images. In general,
the features are designed in a preprocessing step, and later, their performance is
validated by using a variety of datasets.

The design of the features is commonly laborious, and frequently hand designed.
For that reason, it is difficult to find features that can be useful in a variety of
situations, while sometimes it is impossible to find descriptors if these are counter-
intuitive. For that reason, this approach does not scale to larger problems or tasks
that are continuously changing.

On the other hand, ANN can solve the previous problems by learning automati-
cally the set of feature representations that are good for the classification task, given
a large number of image samples. Both parts of the problem are learned and solved
simultaneously and ANNs have demonstrated to outperform other techniques in a
large range of classification and regression problems.

We start the chapter by explaining what is an artificial neuron in Section 4.1.
These neurons can be excited in different ways, and we simulate these activities
by adding a variety of activation functions in Section 4.2. Then, we show the
simplest architecture that is possible to create with a single neuron in Section 4.3.
Three examples of simple networks are presented: one architecture to solve linear
regressions in Section 4.3.1 and two architectures to solve pattern recognition tasks
in Sections 4.3.2 and 4.3.3.

After explaining the simplest models, we extend the basic model with three
architectures that are able to solve very complex tasks: in Section 4.4 we present

35

36 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

+1
w1 b
Wao wo o
Y
Wq

Figure 4.1: Artificial neuron computing the sum of their weighted inputs and bias
term.

the Multilayer Feedforward Neural Network (MFNN), in Section 4.6 the Extreme
Learning Machine (ELM) and in Section 4.7 a Recurrent Neural Network (RNN).
Once we shown a variety of architectures, we explain how to train an ANN in Sec-
tion 4.5. Also, we explain how to control the potential of ANNs using regularization
techniques in Section 4.5.5.
Finally, we present a small discussion about the new term deep learning that has
been gaining attention in the machine learning community in Section 4.8

4.1 The artificial neuron

In this section we present the basic element of all ANNs: the neuron (often called in
the context of machine learning a unit). Although this is not a biological neuron, we
will use this term in all this chapter to simplify the reading (to see a description of
the real biological neuron see Section 3.1). Similarly to biological neurons, artificial
neurons receive signals trough the connections from other neurons. Depending on the
strength of their input connections the neurons respond with more or less intensity
to the incoming signals. The intensity is represented mathematically as a set of
positive or negative factor weights w that amplifies or reduces the signals. The
neuron also incorporates a bias b that increases or decreases the normal activity of
the neuron. This description can be represented with the next equation:

D
a(x) =b+ Z wir; = b+ wix (4.1)

i=1

Where D is the number of incoming neurons and x is the activity of each neuron,
in this case the x can represent the set of features of one sample. In order to simplify
the equations it is common to add the bias term as another input with the fixed
value of 41, and incorporate one weight that acts as bias. Using this simplification,
we rewrite the summation 4.1 with the next simplified version.

D D
a(x) = wol + Z Wix; = Z wiT; = W' X (4.2)
i=1 i=0

4.2. ACTIVATION FUNCTION 37

Other types of ANNs compute the distance — instead of the scalar product — be-
tween the weights w and the input pattern x, for example by computing || w? —x ||?
(e.g. the Radial Basis Function (RBF) or the Self-Organizing Map (SOM)). In this
case, activations with values close to zero are more similar to the training patterns.
In this chapter, we focus on the version with the scalar product, however, the ex-
planations can be extended to the versions of the distance with small modifications.

Additionally, it is possible to change the linear response of the neuron by adding
an activation function h(-) after the summation:

z = h(a(x)) = h(w'x) (4.3)

Being able to change the activation function increases the range of possible pat-
terns that the neuron can approximate. In the most basic case the function h(:)
performs the identity function while more complex cases use non-linear functions.
We will see that multiple hidden neurons using non-linear activation functions can
approximate any pattern; given the sufficient number of neurons. For that reason,
ANN are known to be universal approximators [Hornik et al., 1989].

4.2 Activation function

There is a large variety of activation functions that have demonstrated good per-
formance on different tasks. Initially, when McCulloch and Pitts [McCulloch and
Pitts, 1943] designed the first ANN only one activation was specified. As they were
modeling biological neurons they choose an “all-or-none” law by using a Threshold
Function; also referred as Heaviside function in engineering literature (Figure 4.2a).
This function evaluates to one when the input is positive, and zero when the input
is negative (the behaviour at the zero is commonly indifferent):

1 ifa>0
Ma) :{ 0 ifa<0 (4.4)

However, nowadays some of the most common activation functions are sigmoidal
functions (functions with “S” shape). The reason is their behaviour at the “center”.
These functions can behave as linear or as step function depending on the parameters
of the network. One example of sigmoidal function is the logistic function (see Figure
4.2f):

1
hig) = ——M— 4.5
R e (4.5)
Also, the hyperbolic tangent is commonly used (see Figure 4.2¢):
h(a) = tanh(a) (4.6)

The rectified linear unit (ReLU) was a fundamental part for the training of
deep networks for image classification (see Figure 4.3e); specially in the case of
CNNs. ReLU behaves as a linear function if the input is positive, and equals zero

38 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

otherwise. One of the benefits of this activation function is that it creates sparse
hidden representations, that demonstrated to benefit the training. While training
networks with other activation functions creates more complicated gradients.

a ifa>0
hla) = { 0 ifa<0 (47)
More recently, a new form of rectification called Parametric Rectified Linear
Unit (PReLU) improved the best results on ImageNet 2012 classification dataset.
In the work [He et al., 2015], instead of forcing the negative activations to become
completely zero, the authors added one parameter to control the steepness s on the
negative side of a ReLLU, allowing the left side to become zero or to adapt to a linear
slope.

a ifa>0
h(a) = { as ifa<0 (4.8)

Figures 4.2 and 4.3 present a variety of activation functions and how they behave
differently when some of the parameters are modified. Additionally, Table 4.1 shows
some of the most common activation functions with their derivatives (this table can
be useful for the training phase).

Activation function name | function h(a) | derivative h/'(a)
Identity a 1
Logistic sigmoid e h(a)(1 — h(a))
Hyperbolic tangent tanh(a) = i;‘;i((‘;)) 1 — tanh?(a)
Softsign %MI (1+Ta\)2

Sin sin(a) cos(a)

Table 4.1: Activation function derivatives

4.3 Single layer feed-forward neural network

In Section 4.1, we have seen the capabilities of one isolated neuron. Additionally, it
is possible to aggregate different neurons to create more complex functions. These
neurons can connect each other forming different architectures. In this section, we
focus in the most basic architectures connecting the input features to one layer of
neurons. With one single layer and with different activation functions it is possible
to approximate a variety of functions. In the most basic case — with only one neuron
and the linear activation function — we can perform a linear regression (see Section
4.3.1). Furthermore, the linear regression is not limited to predict one unique output
signal, instead it could be formed by N neurons each one predicting some specific
target output.

4.3. SINGLE LAYER FEED-FORWARD NEURAL NETWORK 39

1.2 4
100 3r
0.8} Increasing bias 2
1l
0.6}
of
0.4}
-1}
0.2 ol ‘\". Increasing a
0.0} e—— 3l
-0.2 : : : ‘ ‘ : | B
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 o0 1 2 3 4
(a) threshold (b) linear
19F - - - - - . . 1.5
1.0 - g 1.0}
o8l . ,
R 0.5}
0.6} \ N |
0.0}
0.4 N R
I -0.5} 1
0.2 S~ 1 . Increasing weight
Increasing weight
0.0 g -1.0}
—0.2 L L L L L L . -15 " L L L L L
-4 -3 -2 -1 0 1 2 3 4 —4 -3 -2 -1 0 1 2 3 4
(c) Linear piecewise (d) Linear piecewise symmetric
1.2
1.0}
1.0-
0.5 K 4 0.8}
0.6}
0.01
0.4}
—_05k j‘ Increasing weight |
: . 0.2 Increasing a
0.0
_10 -
-4 -3 -2 -1 o 1 2 3 s VT 1 2 3)
(e) tanh (f) logistic

Figure 4.2: Example of activation functions (A)

Another possibility is to use the last layer for pattern classification (see Sections
4.3.2 and 4.3.3). In this case, sigmoid activation function is commonly used. When
the target is the classification of a pattern into multiple classes the output of all the
neurons is normalized using Softmax, offering a probability distribution trough all
the possible categories.

4.3.1 Linear regression

One of the most simple tasks can be performed with one unique neuron. We previ-
ously saw that one neuron can have one weight w; per input z; plus one bias term b.
When only one dependent variable ¢ is being predicted with only one explanatory
variable z, the neuron can solve a simple linear regression. However, it can perform
a multiple linear regression when more than one explanatory variables x are consid-

40 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS
1.2
1.0}
1.0f . .)
Increasing « Increasing «
0.8f 0.5}
0.6
0.0
0.4f
0.2} -0.5}
0.0
-1.0}
027 2 1 o 1 2 3 4 4 3 2 -1 o 1 2 3 4
(a) gaussian (b) gaussian symmetric
1.0k - - e 1.0}
pecreasing | ["\ . [| | A ettt
0.5 weight 0.5 .
0.0 0.0
-0.5 -0.5 . Increasing weight
X/ \/ | |
-1.0p ‘e -1.0
- 2 1 o0 1 2 3 4 -4 3 2 1 o0 1 2 3
(¢) sin (d) softsign
4l al
3k
3k
2k
2f 1L Increasing a or weight
1t O e
Increasing weight 1 L Increasing weight
[1]8
L L L I 1 1 -2 L L L L L L
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
(e) relu (f) prelu

Figure 4.3: Example of activation functions (B)

ered as inputs. In this scenario and given that the bias is added as an additional
weight the regression can be solved by the Least Squares method, which looks for
the set of parameters w that minimizes the error between the prediction y(x) and
the target t.

AW = argmin(t — y(x))? = arg min(t — w’ x)? (4.9)

w

Additionally, ANNs with one output layer can predict multiple dependent vari-
ables or outputs t at the same time. This type of regression is known as a mul-
tivariate linear regression, and is the same as performing various multiple linear
regressions in parallel. It can be implemented by just augmenting the target vari-
able t with a vector of targets t and the vector w by a matrix W.

4.3. SINGLE LAYER FEED-FORWARD NEURAL NETWORK 41

(a) Single layer (b) One hidden layer

Figure 4.4: Single and Multilayer feedforward neural networks (a) Example
of a Single layer Feed-forward neural network (FNN) with 4 input features and 3
output units. (b) Example of a MFNN with 3 input features, 4 hidden units and 3
output units.

4.3.2 Perceptron

The Perceptron was one of the first neural networks that was able to classify binary
patterns. Rosenblatt designed the neural network with several input nodes and one
output node with a Heaviside step function 4.4. It was possible to classify binary
patterns by finding a linear hyperplane that separated both classes on the positive
and negative side. However, at the beginning, there was no algorithm to learn the
set of correct parameters. Nevertheless, in 1958 Rosenblatt got published a report
|[Rosenblatt, 1958 on how to train the Perceptron using a set of pattern examples.
Training consisted on testing the performance of the Perceptron on all the samples
until all the patterns were correctly classified. At each prediction, if the target was
wrongly classified the weights were updated with the following equation:

Wi = Wy + 2aix (4.10)

The same equation could be modified to be applied after each prediction (besides
it was correctly or wrongly classified). In this case, when the prediction was right,
the term (¢ — y) was canceled and did not modify the weights:

Wi = Wi + ot —y)x (4.11)

In both cases, the term « is a learning rate that is possible to tune for the specific
task, t is the target value, y is the prediction of the network, and w; are the weights
at time-step t.

Figure 4.5 shows a training example of a Perceptron, in which, one sample is
being misclassified as a false positive. In order to simplify the demonstration the
parameters do not have the bias term, but just two weights; one per input. The
weights are represented by the green vector and the green dot at the tip of the arrow.
The orthogonal green line represents the hyperplane that separates both predictions

42 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

4 af 4
3 3F 3
o o o
2 © 2 © 2 ©
o | o o
1 o, 1 05 1 %o
[¢] [¢] [¢]
0 o 0 o 0 o
-1 -1t -1
-2 [‘\ Wrong -2 [q\ Wrong -2 [q\ Wrong
L L L]
L L L
_3 ° -3 ° 3 o
-4, . . . A . . . -4, . . . A . . s -4, . . . A . . s
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
(a) False positive (b) Vectorial representation (¢) Scale and invert
4 afr 4
3+ 3k
o]
2 © 2 o
I I o
1 O 5 1 0O 5
[¢] [¢]
0 e 0
- f
a .
-2 ° Wrong -2 L]
L] L
o L]
))
-4, . . . A . . s -4, s -4, s
-4 -3 -2 -1 [1 2 3 4 -4 -3 -2 -1 [1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
(d) Sum to the weights (e) Result of sum (f) Now is a true negative

Figure 4.5: Example of Perceptron training This is a toy example where a
Perceptron tries to classify between black and white circles. The green dot represents
the weight vector. The orthogonal green line corresponds to the hyperplane that
separates the prediction between the positive and negative sides. The orange dot is
the sample being analyzed, in the first figure the orange dot corresponds to a black
point that is being missclassified as white. An extended description of the example
can be found in the text.

between the positive and the negative side (predicts white and black circles respec-
tively). In Figure 4.5a, the orange dot is being analyzed and it corresponds to a
black dot that is being misclassified by the hyperplane. Figure 4.5b shows the vector
associated to the misclassified sample in orange. Then, in Figure 4.5¢, as the target
class is negative, the corresponding vector is inverted and it is scaled by the learning
rate o producing a smaller red vector in the opposite direction. In Figure 4.5d this
vector is added to the weights vector and the result of the update is shown in Figure
4.5e. Finally, in Figure 4.5f the Perceptron classifies correctly all the samples. If
some of the samples were still misclassified the same procedure could be continued.
If the points are linearly separable this algorithm was demonstrated to converge to
a correct solution; given a sufficiently small learning rate.

4.4. MULTILAYER FEED-FORWARD NEURAL NETWORK 43

4.3.3 Logistic regression

ANNs can perform a logistic regression to classify patterns into two — or more —
classes. This can be achieved in a similar way to the Perceptron but using a sigmoid
function as an activation function. In this case, we do not assume Gaussian noise in
the output distribution, but the dependent variable is assumed to follow a Bernoulli
distribution. The output neuron usually performs a logistic function or a hyperbolic
tangent function after its activation.

To perform a multi-class classification, the same model can be extended by
adding one output per each class. To predict the class, the output of each neuron is
usually normalized with a softmax function (also known as normalized exponential).
After the normalization the output of each neuron remains in the interval (0,1) and
all the outputs sum to one, creating a probability distribution over the different
categories.

Qo

y(@), = —=p—— (4.12)
20:1 et
Where a are the activation functions of the last neurons, and O is the number
of categories.

4.4 Multilayer feed-forward neural network

As we saw in the previous sections, a single layer feed-forward neural network can
approximate various signals or classify different patterns. However, these networks
can not solve more complex problems. In the late 60s, Marvin Minsky and Seymour
Papert got published the book “Perceptrons” [Minsky and Papert, 1969], where the
authors demonstrated that neural networks with only one input and output layer
were not able to solve the Exclusive OR logical function and in general any non-
linear classification problems. In order to solve these cases, a set of more complex
features was required. Nevertheless, later, it was shown that it was possible to get
the required non-linear features by adding an additional layer between the inputs
and the outputs (see an example in Figure 4.4b). This layer was referred as a hidden
layer, and it was demonstrated that by adding only one hidden layer an ANNs was
able to approximate any function; given a sufficient number of hidden neurons. With
only one hidden layer the output of the network can be represented with the next
equation:

y(x) = h(wg h(w),x)) (4.13)

In which, there is one set of weights for the hidden layer w; and one for the
output layer w,. In this example, the same activation function h(:) is used on
every neuron, but it is possible to assign different functions to each layer or neuron.
Additionally, more hidden layers can be incorporated making the final function more
complex and strongly non-linear. Additionally, networks that use sigmoid function

44

Mean squared error

o
o
R

0.07

o
o
>

o
o
a

o
o
b

g
o
@

CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

- original
— target
eee samples|]

(a) Initial prediction

target

output

— target
- original
eee samples|]

. . . .
jar -2 0 2 4
X

(b) Final prediction

hz0
hzl

- original - -
— prediction - -

hz2
- hbias

e®e samples

o
o
=

S B

. L L L
50 100 150 200 -4 -2 0 2 4 6
Epoch input

o
o
S

(c) Training error (d) Hidden representation

Figure 4.6: Example of a MLP fitting a linear pattern

can fit linear problems if the weights are kept in the central regime of the sigmoid
function.

MFNNs are trained using the backpropagation algorithm (see details in Section
4.5.1). Figures 4.6 and 4.7 show two examples of MFNNs using the hyperbolic
tangent activation function to fit linear and non-linear data respectively. If we focus
in the linear pattern example, Figure 4.6a shows the original pattern with a dotted
red line, the available random samples with large red dots and the actual prediction
of the network with a blue line. The weights are first randomly initialized following
a Gaussian distribution with zero mean and a small standard deviation. Figure
4.6b shows the final prediction after 200 training epochs (one epoch corresponds to
all the sample set). Figure 4.6¢ depicts the training error during the 200 epochs.
Finally, Figure 4.6d presents all the hidden representations learned by the hidden
layer. The hidden representations are combined in the output layer to perform the
final prediction. The same description can be applied to the non-linear example in
Figure 4.7.

The performance of these networks can easily improve with the number of neu-
rons and hidden layers. Furthermore, ANNs can approximate any function given

4.5. TRAINING 45

2.5 T T T T T 2.5 T T
- original — target

20} % . — target |J 20k - original |
. ; ". e®e samples eee samples
1.5¢ e L 1.5}
e .
> 1.0 ué\ 1.0
8
0.5} 0.5F
0.0+ 0.0} e’ %o
~0 _o. ‘
—a) 0 2 4 —1) 0 2 4
X X
(a) Initial prediction (b) Final prediction
0.16 i i i 4 - - original - - hzl hz4 -~ hbias
— prediction hz2 -- hz5 eee samples
0.14 - 1-- h20 - _
0.12 - 150 ,
5 ;
3 o. - 1.0} RN SN | s g
e 4 B
o 5 ; >
S0 g osf .
g 3 S
< 0. 0.0} !
(3
= L z
0.04} -0.5 -
0.02 -1.0 B
0.00 . . . 15 ‘ ‘ ‘ ‘ ‘
50 100 150 200 —4 -2 0 2 4
Epoch input
(c) Training error (d) Hidden representation

Figure 4.7: Example of a MLP fitting a sin(cos(x)) pattern

the sufficient number of hidden units. However, augmenting the number of neurons
and layers also increases the complexity of the model, making the training computa-
tionally more expensive, and possibly increasing the generalization error. Figure 4.8
shows the common behaviour on the training and test error when the complexity of
a model is progressively increased.

4.5 Training

Training ANNs has been one of the most important and difficult problems. The
first ideas from McCulloch and Pitts in 1943 required the manual specification of
the weights [McCulloch and Pitts, 1943|. It was not until 1957 that Frank Rosenblatt
designed an algorithm to train the Perceptron to classify binary patterns [Rosen-
blatt, 1957] (we saw the training procedure of the Perceptron in Section 4.3.2).
Nevertheless, this procedure was not able to train networks with one hidden layer,
while Minsky demonstrated that without a hidden layer these networks were se-
riously limited. In another university, Bernard Widrow and Hoff designed a new
architecture that was able to use the derivative of the error to update the weights,

1943

1957

1974

1986

46 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

Error

Model complexity

Figure 4.8: Generalization error. Common situation when the model complexity
is increased

the technique was called “Delta Rule” (also known as “Widrow-Hoff”, “Adaline Rule”
or “Least Mean Squares Rule”).

In 1974, Werbos proposed the “dynamic feedback” algorithm to propagate the
error from the output to the input of a network. This algorithm was actually the
backpropagation, however, it did not gain the importance that it deserved. Later in
1986, Rumelhart, Hinton and Williams introduced by the first time the concept of
backpropagation in the field of ANNs [Rumelhart et al., 1986]. Although it was not
a new technique, it was one of the first papers that got the attention of the research
community. From this point, backpropagation has been the most common method
to train ANNSs until the date. However, multiple tricks have been applied to improve
the learning. For example, the initialization of the weights, the activation function,
adding momentum, updating dynamically learning rates, weight sharing, and other
modifications in the architecture.

4.5.1 Backpropagation

The problem of the Perceptron was that the step function did not allow the error
to propagate from the output to the input. The step function is not differentiable
and the error could not be propagated. Nevertheless, with a differentiable activation
function like sigmoid functions it was possible to compute the gradient and propagate
the output error. In Section 4.5.1 we introduce the equations for an ANN without
hidden layer. Then, we extend the explanation to the case of multiple layers in
Section 4.5.1.

Single layer network

Although in the single layer network the backpropagation algorithm is not applied,
we give here the basic maths that will be used in the multilayer network. To train
a single layer neural network first we need to compute an error value for all the

4.5. TRAINING 47

€o

Figure 4.9: Analogy of backpropagation illustrated in a single layer network

predictions. We want to minimize the total error of the training samples:

N
Erorar = Y &n (4.14)
n=1

Where N is the number of training samples. However, to facilitate all the math-
ematical notation, in this section we will assume that minimizing the error of one
sample &, minimizes the total error Erorar. Then, in the next equations, the
subscript corresponding to the sample n will be omitted. This description will be
generalized and explained in Sections stochastic 4.5.2, mini-batch 4.5.4 and batch
4.5.3 gradient descent.

First, we need to choose an error function to derive all the equations. One
of the most typical functions is the least squares, assuming that the error on the
predictions follows a Gaussian distribution. In this method, the error is the sum of
all the squared differences between the target outputs t and the predictions y:

o}
Z 6(2) = Z(to - yo)2 (415)

o=1 o=1

g:

DN | =
DN | —

Where O is the number of outputs; in regressions and binary classifications it is
commonly one. The initial fraction 1/2 is added to simplify the derivative during
the backpropagation. This change do not affect the direction of the error gradient.

Then, given that our prediction is computed by a differentiable function h(-) of
the activation a, the prediction can be written as:

Yo="h (Z wo,ixi> = h(w,X) (4.16)

To update the input weight w,; of an output neuron o for a given sample x we
can compute the gradient of the error surface in the actual parameter space. If we
apply the partial derivative respect the specific input weight w,; on both sides of
Equation 4.15 and apply the chain rule we get:

ot 9E 0Oa, OE de, dy, Oa,
Ow, ; ~ Oa, oW, ; e, Oy, Da, Ow,,;

(4.17)

48 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

function partial derivative
5(e) = %Zon 6(2) 36_:; = 6o
e(y) = (t—y) e =1
yla) = h(a) 2 — I(a)
— T dap __
a(x) = wx o = Ti

Table 4.2: Summary of derivatives for the backpropagation chain rule

The first part of the derivation with the opposite sign is usually called the error
or local gradient of one specific neuron and it is symbolized by 9,.

o€

_8ao

Next we show the complete derivation step by step. Also Table 4.2 shows a
summary of the partial derivatives.

0o = = e,h/ (Ww!'x) (4.18)

0 0 0 |1,
0w, e, 0w, [5;6"]

de 0 [&)
—608—% ow, ; [Zl(to ~Y)]

oy 9 . . (4.19)
Oa, 0w, ; [h(w X)}

D
= — €, h'(WTX) aiz [Z U)Zl’z]

1=0

=¢,(—1)

= —e, b (W'x)z;

The direction of the gradient indicates the direction that maximizes the error.
As we are interested on minimizing the error, we can take a step into the opposite
direction by changing the sign. The step length is determined by a learning rate 7
that is previously decided or adapted following some policy. Then, we can update
the weight using the gradient of Equation 4.19:

o€
awo,i
—wo; + 1 € hiy(W'X) - ; (4.20)

Wo,i <_wo,i —1n-

=Wo,i +n- 60 * Ty
=Wy, + Awo,i

4.5. TRAINING 49

The update of the weights with the Aw,; is commonly called delta rule. We will
see that the local gradient is useful when backpropagation is applied.

Figure 4.9 shows an example of how the error must be back-propagated with a
single input and output layer. The blue line correspond to the weight being updated,
while the red lines are the errors being propagated from the output to the weight.
Given that the activation function A(-) is differentiable.

Multilayer

It is also possible to use the same approach to train a MEFNN. We saw in the last
section that in order to compute the update of a specific weight we need: the input
value of the specific weight, the activation value of the actual unit and the error
made by this unit. Of these three values, the input and the activation value can be
extracted with a forward pass in the network using a specific sample. However, the
responsibility of the error by a hidden neuron is not that easy to know. This problem
is known as the credit-assignment problem. In addition, the gradient can propagate
through an exponential number of paths, however, the backpropagation algorithm
uses dynamical programming to compute the gradient layer by layer, reducing the
complexity to an acceptable level.

In MFNNSs all the weights to be updated belong to one of the next three cases:

1. First hidden layer: The weight to be updated is in the first layer and its
corresponding inputs are the original vector of features x.

2. Intermediate hidden layer: The weight to be updated is in the middle of the
network, in that case its inputs are the outputs of the previous hidden layer
Zj_1.

3. Output layer: To compute the gradient we have the output error. e,.

Then, we follow a similar procedure than the single layer network. First, we
forward propagate the input values through all the network and store all the in-
termediate activation and output values. Then, we compute the error using the
squared error or other loss function.

(3) The weights of the output layer can be updated using exactly the same
method previously seen in the single layer network. With the exception that we
need to substitute the x vector by the outputs of the previous layer namely z;_; (see
the similarity between the weight updating in Figure 4.9 and Figure 4.10).

(1,2) We saw previously in Equation 4.20 that in order to update one weight we
need to compute first the local gradient or error §; and the input z; associated to
the weight w;,;. In the case of hidden units the input value z; is instead the output
of the previous hidden unit, namely z,_;. In this case, we can get the input value
7z, from the forward propagation, while the d; is missing. From the definition of ¢,
— that we saw in Equation 4.18 — we can find the delta in a hidden layer expanding
first the partial derivative:

50 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

Figure 4.10: Error backpropagation in an output layer of a MFNN

H’ H O
hidden layer hidden layer output layer L
D@D
W1,
€1
: :
Wo,k
D))
€o

Figure 4.11: Error backpropagation in a hidden layer of a MFNN

o€ o0& 0y;
=0 = 0% (4.21)
0a]~ 8yj 6aj
In this case the error caused by the neuron j affects several output errors. If we
solve the first partial derivative of the error in the previous equation the summation

over all the output errors remains in the equation; all of the errors contribute to the
gradient.

E K e,

= =) e, 4.22
dy; = Oy; 4.2

On the other hand, the second partial derivative of Equation 4.21 only depends

4.5. TRAINING 51

on the activation function of the actual neuron:

ayj /
Next if we apply the chain rule to the partial derivative of Equation 4.22 we get:
de, Oe, Oa,
o T2 (4.24)
dy; Oa, Oy
As in previous cases, the error e of the neuron o is:
€o =to — Yo =t, — h(ay,) (4.25)

Where the target value ¢ corresponds to the sample desired output and in a
hidden layer corresponds to the desired output of the activation function. In both
cases the first term is constant and the partial derivative is

Oe,
da,

Then, given that the activation of the next layer is

= —1(a,) (4.26)

H
(o = Z Wo,;Yj (4.27)
7=0

the second partial derivative in Equation 4.24 is

da,

dy;

Finally, we can combine the partial derivatives 4.24, 4.26 and 4.28 into Equation
4.22. Here is done step by step.

= Wo,j (428)

08 L e,
—_ = 60 JE—
0y; Z y;

o=1
3, deo Oag
p ?0a, Ay,
o
da
=Y e, (—h(a,)) =2 4.29
>0 (H () (4.20)
o
= Z eo (—h(ao)) wo,
o=1

52 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

Where in the last line we added the d, as described previously in Equation 4.18,
however, in this case, the activations come from the previous layer instead of the
input features.

Finally the local gradient of neuron j can be computed using the previous Equa-
tions 4.21, 4.23 and 4.29:

050

dy; da;
O

= Z (SOU)OJ' %
o1 aaj
O

= <Z 5owo,j) W (a;)
o=1

o)
=h(a;) Y 6ot
o=1

(4.30)

Then, the corresponding update in each hidden or output weight is

Wi Wi — 15—

w1 e hyag) -z (4.31)
<—wj7i + n- 5j < Z
%w]”i + Awm»

where
| tj—hj(a;) if neuron j is an output (4.32)
T D Okwy if neuron j is hidden ’

4.5.2 Stochastic gradient descent

Stochastic Gradient Descent (SGD) is a method to train an ANN where the gradient
is computed and updated using individual samples. The method described in previ-
ous Section 4.5.1 used this approach. Every time that the complete set of training
samples is used is considered an epoch. This technique makes the gradient to change
direction more abruptly than other methods. This can be beneficial when the error
space is very non-convex as it is more probable that the weights scape from some
local minima. However, this technique do not exploit the parallelizable capabilities
of some computer architectures. As the order of the samples is usually randomized,
the final solution is not deterministic, making the solution of each execution possibly
different.

4.5. TRAINING 53

4.5.3 Batch gradient descent

Batch gradient descent is a method that uses all the training data to compute the
gradient of the error surface. The backpropagation method described in Section 4.5.1
can be used with slight modifications. We can compute the gradient for each sample
and average all of them to perform one step. Or we can compute all the updates at
the same time by changing every vector by a matrix. However, the computational
complexity with respect to memory size becomes prohibitive with some datasets as
it needs to load all the matrices in memory. In this case the gradient is more stable
and it can be fast to find a local minimum if the error surface is locally convex. On
the other hand, it is less probable to escape from any local minimum as it will follow
directly the sum of all the gradients. One possible benefit of batch gradient descent
is that it is deterministic, as it always uses all the training samples to perform an
update.

4.5.4 Mini-batch gradient descent

Mini-batch gradient descent (some times called stochastic mini-batch gradient de-
scent) is a method that aggregates the updates of a subset of the training samples.
This approach allows to find directions of the gradient that average over several
samples. This makes the direction of the gradient more stable than Stochastic Gra-
dient Descent (SGD), while it exploits the computational capabilities of modern
computers.

4.5.5 Regularization and other advices

Neural networks are commonly difficult to train. Some of the reasons are their high
capability to approximate any function given the sufficient number of neurons and
the large number of parameters that need to be learned. Several techniques have
been designed to improve their generalization error, training time and convergence to
local minima. In this section we give a brief description of some common techniques.

Weight decay

One typical technique for generalization is to use weight decay. This method adds
a penalty to the size of the weights in the cost function.

~ A
E=E+ EWWT (433)
Then, the weight update is modified following the next equation:

wi; — wy; + Aw;i — nAw;;

4.34
< wj,i(l — T])\) + ij,i ()

The penalty forces a normal distribution centered in zero in the values of the
parameters, reducing the possible complexity of the network. In some cases it can
help to generalize better, however it can limit the potential of the network.

54 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

Momentum

To speed up the training it is possible to use momentum. This method adds in each
learning step a proportion of the previous weight update. Using this approach, it
is possible to perform mini-batch gradient descent of certain size, while using the
information of the previous batch to update the weights. It can help to find a local
minima with a more stable direction for the gradients.

Wji < Wj; + AWjj actual + CAW; 4 01 (4.35)

Adaptive learning

Adaptive learning consists on the modification of the learning rate during the train-
ing. It is common for ANNs to stop learning at some point during the training
and oscillate in a local minima. These oscillations appear because the learning rate
modifies the parameters with a specific step size that does not allow the error to
reach the local minimum. Some techniques reduce the learning rate value in a fixed
way, while other methods automatically adjusts the learning rate by observing the
training error fluctuations.

Dropout

Dropout [Srivastava and Hinton, 2014| has demonstrated to improve the generaliza-
tion of networks with fully connected layers. It is well known that the aggregation
of multiple models is usually better than one unique model. Based on this idea,
dropout is designed to learn multiple networks that occasionally share some of their
weights and neurons, and finally, in the test phase, their predictions are averaged
and aggregated. In order to do that, this technique inhibits randomly some neurons
during the training. The number of neurons is usually a proportion of the neurons
of a specific layer, and it is usually different depending on the task and deepness of
the layer. After the training, in the test phase, the weights of the neurons need to be
rescaled in order to compensate the larger training values, creating the aggregation
of multiple networks.

Weight sharing

Occasionally, it is possible to reduce the number of parameters by adding a strong
prior that allows the reuse of specific weights. CNNs are an extreme case, where we
assume a translation invariance in all the input space. A more detailed explanation
of CNNs can be seen in Chapter 5.

4.6 Extreme Learning Machines

An Extreme Learning Machine (ELM) [Huang et al., 2004] is a MENN — usually —
with one unique hidden layer, in which, the weights of the hidden layer are randomly
chosen and fixed during the training process. Only the output weights are trained,

4.7. RECURRENT NEURAL NETWORK 55

allowing a very fast learning procedure. This approach is very efficient and does not
lose the generalization power of a MENN. The first layer creates a highly non-linear
hidden representation that can be used to train the last layer. Despite it is possible
to train a MFNN with backpropagation, this algorithm is slow in comparison, and
has problems on local minima and plateaus. On the other hand, Extreme Learning
Machine (ELM)s is linear-in-the-parameter space and can learn the optimal solution
numerically given the fixed hidden representation.

ELMs were used initially for regression and classification problems, but more re-
cently, they are being used for clustering, feature selection, representational learning
and other complex tasks. A more detailed description and additional information
about ELMs can be found the recent review [Huang et al., 2015].

4.7 Recurrent Neural Network

Recurrent Neural Network (RNN)s are a specific type of ANN that incorporate
cycles; usually in a hidden layer (see Figure 4.12). The first RNN appeared in 1982
in the work [Hopfield, 1982]. The Hopfield network was a network with stochastic
units that tried to minimize an internal energy state, and was able to store memories
in a biological inspired manner. Since then, multiple architectures have emerged:
Simple Recurrent Networks (SRN) by Elman and Jordan [Elman, 1991], Continuous-
time RNN (CTRNN) [Funahashi and Nakamura, 1993|, Long Short Term Memory
(LSTM) network [Hochreiter and Schmidhuber, 1997|, Bi-directional RNN (BRNN)
[Schuster and Paliwal, 1997], Echo State Network (ESN) [Jaeger and Haas, 2004].

The biggest problem of these networks is on finding a good way to train them.
Some of them use backpropagation as a learning algorithm but the publications
[Hochreiter, 1991] and [Bengio et al., 1994] have shown that the gradient decays
(or explodes) exponentially in deep networks; we consider RNN to be very deep
networks. Some solutions to this problem involve the use of sparsified connections
and Hessian Free optimization (see [Martens, 2010; Martens and Sutskever, 2011;
Sutskever et al., 2011]). These solutions have shown to avoid some gradient de-
scent problems and demonstrated to be able to correctly predict some pathological
synthetic datasets; which were previously arduous to learn with other techniques.

Recently in the report [Sutskever et al., 2011|, the authors trained a special kind
of RNN named Multiplicative RNNs (MRNN) that enabled each input unit to train
their own hidden-to-hidden weight matrix, augmenting their expressiveness. Using
this new architecture the authors got very good results, outperforming the standard
RNNSs on text generation at character level.

A RNN with one input, output and hidden layer and recurrent connections be-
tween the previous hidden state and the actual one can be modeled following the
next equations:

ht = tanh(thxt + Whhhtfl -+ bh) (436)

Oy = Wohht + bO (437)

1980

1983

1989

56 CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

step t-1

Figure 4.12: Recurrent Neural Network with three input features, three hidden
neurons and two output neurons. The output of the hidden layer at the previous
step is stored and used as an input. The network needs to learn an additional set
of parameters for the previous step values.

Where x;, h; and o; are the input, hidden and output units values at time step ¢
respectively, b, and b, are hidden and output biases, and W5 are the transformation
matrices with the first (;) and second (3) subindex indicating destination and origin
respectively.

To train RNNs, we can use backpropagation through time (BPTT) [Rumelhart
et al., 1986]. This method consists of unfolding the network for some time-steps ¢
and backpropagating the error through the various time steps. However, training
a network with several layers could make the gradients to explode or vanish. In
order to mitigate this problem we can sparsify the hidden-to-hidden connections
and decrease the weights of each unit so as to ensure that the largest eigenvalue is
smaller than one (this technique has demonstrated to improve the training).

4.8 Deep learning

During the last decade, the term deep learning has got a huge attention. This
term refers to networks with multiple hidden layers that can extract a hierarchical
representation of the input data. It is unclear which number of layers is considered
to be deep, as this number is continuously increasing.

We could consider one of the first deep architectures the Neocognitron from
[Fukushima, 1980|. Fukushima designed an architecture simplifying some ideas from
the visual system, and used them to recognize numbers in small images; sometimes
adding noise. Three years later , Fukushima managed to use the same Neocognitron
to recognize hand-written digits [Fukushima et al., 1983].

Later in 1989, Yann LeCun et al. [LeCun et al., 1989] applied backpropagation
to a Convolutional Neural Network (CNN) to classify handwritten digits that the
authors compiled from the New York post office. The network that the authors

4.8. DEEP LEARNING 57

presented was adopted by the post offices in the U.S. to read the postal code of
large amounts of letters.

From 1995, Hinton and Dayan et al. [Hinton et al., 1995; Dayan et al., 1995;
Dayan and Hinton, 1996] were trying to train deep generative and recognition net-
works; that they called Helmholtz Machines. The authors designed an method called
wake-sleep algorithm, that iterated during the training between the generative and
the recognition model in an unsupervised manner. Later in 2006, Hinton et al. [Hin-
ton et al., 2006] managed to train a Deep Belief Network (DBN) using a modified
version of the wake-sleep algorithm to pre-train the network. After the pre-training,
the authors fine-tuned the weights using backpropagation. The innovative idea was
to generalize a stack of Restricted Boltzmann Machines (RBMs) to finally represent
two Belief Networks (BNs). After this finding, the term Deep learning started to be
used and the idea of unsupervised learning using deep networks has been broadly
extended.

In 2012, Krizevsky, Sutskever and Hinton |[Krizhevsky et al., 2012] trained a
deep CNN in a purely supervised manner to classify large images. After the success
of this approach, multiple research groups adopted similar ideas and designed neu-
ral networks with increasing number of layers [Szegedy et al., 2014; Simonyan and
Zisserman, 2014; He et al., 2015].

1995

2006

2012

58

CHAPTER 4. ARTIFICIAL NEURAL NETWORKS

Chapter 5

Convolutional Neural Network

“Twice and thrice over, as they say, good is it
to repeat and review what is good”

— Plato

CNNs are a specific class of ANNs that exploits the local correlations in the
neighbourhood of the features, usually in the spatial or temporal dimension (e.g.
images, audio or video). CNNs are designed to reduce the number of free parameters
while maintaining a high level of performance. The trick consists on reusing most
of the weights through the input space assuming local correlations in the features
and translation invariance. In image classification, these networks are commonly
composed by convolution layers, pooling functions, ReLLU activation functions, fully
connected layers and a final softmax function. The distribution of these compo-
nents is designed by trying different compositions and validating their performance.
Lately, CNNs achieved state-of-the-art results in computer vision, surpassing other
techniques that used Bag of Visual words (BoV), Histogram of Oriented Gradients
(HOG), Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features
(SURF), and applied a linear SVM to classify. These are some successful applica-
tion examples on different tasks: Speech recognition [Abdel-Hamid and Mohamed,
2012|, object recognition [Agrawal et al., 2014|, image classification [Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2014; He et al., 2015].
For an extended description of CNNs see the book [Bengio et al., 2015].

5.1 Convolution layer

The convolution layer consist on a certain number of kernels that are convolved
through all their inputs. Each kernel behaves as a filter that searches for strips,
colors, circles, edges, and other patterns. Each kernel is assigned to a feature map
that convolves the kernel trough all the input image and creates a map of activations,
the stronger is the activation the smaller is the angle between the input values and
the weight values; as it computes the dot product. These kernels are usually defined
by a height and width, by specifying the number of pixels or input units; a stride, by
specifying the number of pixels to jump when convolving the kernel; and a padding,

29

60 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORK

stride
.......... padding
kernel —_ _g}_he_lght_ "~
height | |
pasing e |
Ywidth . channel
i | height
L___l J
— _
channel
width

Figure 5.1: Convolution parameters kernel size, stride and padding in one chan-
nel (more details in the text)

original image (2x3pixels)

LB B W N Convolutional layer 5

image —_
unfolded 1

Figure 5.2: Convolutional Network example

by specifying the additional zeros that are added at the margins of the channel.
Figure 5.1 shows an example of a kernel being convolved in a previous channel. The
same idea can be generalized to multiple channels with a kernel moving through
all the channels simultaneously. The red square represents the kernel, and the
stride determines the number of pixels to displace when it is convolved. The same
displacement size applies between the subsequent rows.

When the network is implemented, instead of moving the kernel trough all the
channels, the feature maps are unfolded and the network can be seen as a complete
network with local connection to the previous channels. Figure 5.2 shows a simplified
representation of a convolution on a kernel with size 2 x 2 pixels, convolved through
an image of size 3 x 2 pixels. The initial channel can be unfolded. Then, the feature
map is locally connected to four adjacent pixels. The two neurons share the same
set of 4 weights.

5.2 Grouping

Grouping is a technique to reduce the training complexity. This technique consists
on the division of the feature maps into subgroups. This reduces the number of

5.3. RECTIFICATION 61

Grouping: X2 NONE
Layer: 1 2 3
e —
bl B ml? f ;,1[231
m miy mily
il B m 3 ;nﬁ”]

Figure 5.3: Grouping in a CNN. In this example, the first layer of feature maps
is grouped into 2 groups in the second layer. The third layer is an example without
grouping; a fully connected convolution. Although it is possible to use any number
of groups, two groups is commonly used in order to distribute the computational
resources into 2 different GPUs. This allows to train bigger CNNs and speed up the
training.

connections, it also allows the distribution of the subgroups into different machines
or Graphics Processing Unit (GPU)s. This technique was used in AlexNet network,
and surprisingly the resulting filters were specialized into two distinctive filters, one
with luminance and the other with chrominance. Although, the original reason of
the grouping was to divide the computation complexity into two GPUs. Figure 5.3
presents an example of a grouping into two subgroups.

5.3 Rectification

One of the most common activation functions for CNNs is the rectified linear unit
(ReLU) (see Section 4.2 on page 37). One of the reasons is that the typical sigmoid
functions demonstrated a very slow rate of convergence, while ReLLU has shown
a fast convergence [Krizhevsky et al., 2012]. Furthermore, the absolute zeros at
the negative side of the activation function create more sparse representations in
the hidden layers. Sparse representations have demonstrated to be specially useful
during the training.

Currently, the new Parametric Rectified Linear Unit (PReLU) [He et al., 2015]
was shown to improve the results of ReLLU, with the simple addition of one extra
parameter (see Section 4.2). This is a generalization of the ReLLU where the negative
side has a parameter that determines the slope, in the ReLLU case the slope is always
equal to zero.

62 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORK

5.4 Pooling

The pooling function is occasionally incorporated after the rectification of the con-
volution layer. It consists on a kernel of a specific size that computes the maximum
or average of the inputs; or chooses stochastically depending on the input values.
The pooling is useful to alleviate possible noise on the input, and to reduce the
dimensionality of the channels as the network becomes deeper. The pooling kernel
also has a padding and a stride that can reduce the output size.

5.5 Local Normalization

Some works shown an increase on the performance of CNNs by adding local nor-
malization of the output of the hidden layers. In AlexNet, a Local Response Nor-
malization (LRN) was applied after each of the two first convolutions. In this case,
the normalized response b;y of the kernel i at the position (z,y) was equal to:

min(N—1,i4n/2) A

by=d,/ | k+a > () (5.1)
j=max(0,i—n/2)

Where a;y is the rectified activation of the kernel ¢ at position (z,y); and the
constants k, o, n, and [are hyper-parameters adjusted by cross-validation. Using
Local Response Normalization (LRN), AlexNet got an improvement of 2% on the
test error. In some cases the normalization is situated after the pooling.

5.6 Fully connected layers

A certain number of fully connected layers is commonly added on top of all the previ-
ous convolutions, poolings and normalizations (see AlexNet A.2 on page 136). These
layers create a non-linear transformation of the final mappings, and the last layer
reduces the dimensionality to the number of categories of the classification problem.
The largest number of parameters is usually concentrated in this part. However, in
new architectures the fully connected layers are being reduced or distributed into
different outputs (see GoogleNet A.4 on page 138).

5.7 Soft-max

Finally, a soft-max function is commonly applied to the final activations. This is
used to normalize the predictions of the different classes. The output of the soft-max
can be interpreted as a probability density function of the given sample belonging
to the various categories.

5.8. COMPLETE EXAMPLE 63

In order to compute the soft-max it is sufficient to compute the following equation
for each output unit j.

esi

- 5.2
Zf:l ek >

o(z);

5.8 Complete example

One possible architecture that uses all the previously mentioned parts to create
a CNN can be seen in the Appendix A Figure A.5 on page 139. This CNN is a
modified version of a network designed by Alex Krizhevsky and modified in the
Caffe framework. It is composed by three convolution layers, three max-pooling,
two normalizations, three ReLLUs, one fully connected layer with ten outputs and
a soft-max. This architecture is designed to classify the CIFAR10 dataset which
contains ten different categories.

Figure 5.4 shows the activations of each layer when a picture of a cat is presented
to the previous network. The caption of the image contains a complete description
of each sub-figure.

5.9 Best practices

Training CNNs can be computationally expensive. Moreover, depending on the
parameters and configuration the final performance can be bad. These are some
recommendations before starting the training of one of these networks.

As it is common in every machine learning task, a large dataset can improve
drastically the final performance of the model. In the case of CNNs this can be
more accentuated, as it needs to learn the features with the only supervision of the
label. For example, in image datasets, the training set can be augmented by cropping
different sections, applying affine transformations, translations, scaling, rotations, or
mirroring. The cropping is very efficient, as sometimes, training with the original
images becomes computationally prohibitive. Also, in most of the cases, mirroring
can be applied without loss of generality. In more specific cases it is possible to
apply affine transformations that preserve the original properties. For example, in
datasets of handwritten digits an affine transformation do not destroy the numbers.
In more extreme cases, it is possible to apply elastic deformations (e.g. ‘“elastic
deformations that could resemble the uncontrolled oscillations of the hand muscles,
damped by inertia” for MNIST dataset in [Simard et al., 2003|). Furthermore, the
addition of structured random noise can increase the number of samples and force
the network to find useful information.

Nevertheless, some of the typical regularization methods from ANNs are not
needed when we limit the number of parameters, the structure, and the activation
functions. For that reason, CNNs do not need usually momentum, weight decay,
averaging layers, or fine-tuning.

64 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORK

0O 5 10 15 20 25 30 0 5 10 15 20 25 30 35
(a) Input image (b) Filters Convl

(¢) Activation of Convl

50 100 150

(e) Activation of Conv3

15 1.0 T T T T T T T
10 0.8}
5} 0.6
0 0.4}
-5} 0.2}

_10 1 1 1 1 1 1 1 1 0.0 | | Il Il Il Il

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

(f) Activation of FC1 (g) Softmax (final probabilities)

Figure 5.4: Example of a forward pass in a CNN. This examples shows all
the activations of a CNN trained with CIFAR10 dataset. The input image 5.4a is
convolved with the filters of the first convolution 5.4b giving the output 5.4d, then
after a rectifier, a pooling and a normalization it is convolved again by the second
convolution. Its outpuis 5.4d. The same process happens with the third convolution
giving as an output 5.4e. Then a fully connected layer computes the inner product
and outputs ten values 5.4f (one neuron per class). Finally a softmax is computed
giving the final probabilities 5.4g where: 0: airplane, 1: automobile, 2: bird, 3: cat,
4: deer, 5: dog, 6: frog, 7: horse, 8: ship, and 9: truck,

Chapter 6

A brief history of Connectionism

“Do not believe in anything simply because you
have heard it. Do not believe in anything
simply because it is spoken and rumored by
many. Do not believe in anything simply
because it is found written in your religious
books. Do not believe in anything merely on the
authority of your teachers and elders. Do not
believe in traditions because they have been
handed down for many generations. But after
observation and analysis, when you find that
anything agrees with reason and is conducive to
the good and benefit of one and all, then accept
it and live up to it.”

— The Buddha

In this chapter, I explain briefly my own perception about the history of Con-
nectionism®. These facts may help to understand the different findings, ideas and
advances that had been achieved in the field of Artificial Neural Networks (ANNs).

Although Connectionism is a novel paradigm of Artificial Intelligence (AI), the
basic ideas started from the understanding of our brain, perception, and behaviour.
For that reason, this history starts from ancient times when all the explanations were
foggy philosophical speculations; at that time, it was impossible to make any empirial
analysis on brains. Only three centuries ago, some psychologists and philosophers
continued with some of the old ideas and created a movement called Associationism.
This paradigm tried to theorize and explain the memories and mental states. But
it was not after the 18th century, when the technology allowed the visualization of

IThe first part of the history is more subjective, as it is almost impossible to find the roots of
the original ideas. More recent facts are also more objective and easier to define. The majority of
these facts are based on the references: large part between years 1749 and 1911 from [Wilkes and
Wade, 1997], some historical notes between years 1890 and 1987 from [Anderson and Rosenfeld,
1988] and [Anderson et al., 1990], and additional references [Haykin, 1994; Garson, 1998; Mehrotra
et al., 1997; Sutton and Barto, 1998; Gabbay et al., 2006; Vemuri, 1992; Fu, 2003; Boden, 2006].
Some of the information about the authors has been extracted from Wikipedia.

65

300
BCE

1700

66 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

the nervous system and brain cells. From that moment, some prominent biologists
become interested on how the brain and their most simple cells worked. Some of
the first drawings of nervous cells date to the end of 18th century. At the beginning
of the 19th century more biologist continued the work, but in late 30s, some mathe-
maticians tried to model the brain with simple threshold logic. It was in 1943 when
a very famous publication by McCulloch and Pitts got published: “A logical calcu-
lus of the ideas immanent in nervous activity”. The authors developed a simplified
mathematical model of a neuron, that in principle, could solve any logical function.
From that point, we could say that the Connectionism paradigm started, and in
a small amount of time, other psychologists, biologists, mathematicians, engineers
and physicists became interested on these computational models.

Some parts of the history are not directly related to Connectionism but
they become correlated afterward. These sections are highlighted with a
different background and can be skipped during the reading. The format of
the actual paragraph is an example.

6.1 First insights into the human perception

The philosophical idea of how our brain works started long time ago. Some of
the first evidences of people theorising about “how we retain our ideas” and “what
are our perceptions” date from the Ancient Greece. A well known example is the
work of Plato? and his student Aristoteles. Plato developed the theory of Forms
or theory of Ideas that tried to define the material and non-material objects, and
their ideal representation. Although the connection is not clear, the idea of the
creation of a universal abstraction of objects or patterns is an inherent part on
some topics of Machine Learning. For example, techniques like feature extraction
and selection or embedding try to find abstractions that can facilitate the tasks
of pattern recognition. Another very useful concept by Plato was the Anamnesis,
in which he claimed that our knowledge is impressed in our soul and that the act
of learning something new, is nothing but retrieving and old knowledge. Aristotle
continued similar work on the same line, he thought that similar images or memories
could be somehow associated by evoking similar sensations. These ideas inspired
some psychologists and philosophers on later centuries to develop Associationism
ideas.

6.2 Human behaviour
During the 17th century, some psychologists continued studding the same ideas

about memories and their associations. It was John Locke? followed by David Hume,
David Hartley and others that wrote about the “association of ideas”. It was first

2Plato (Athens; 428/427 or 424/423 — 348/347 BCE) was a philosopher and mathematician
from the Classical Greece. He founded the Academy in Athenes and was one of the important
figures on science and the western philosophy.

6.3. THE CENTRAL NERVOUS SYSTEM 67

mentioned in 1700 by John Locke in his third edition of “An Essay Concerning
Human Understanding” [Locke, 1700], where he pointed that men associates different
ideas together creating strong connections that makes them stack together. He also
wrote that different men associate ideas in different manners depending on their
education, interests, and other personal reasons (see p.3 [Howard C. Warren, 1921]).
These ideas initiated the Associationism movement.

In 1749, David Hartley? — one of the members of the British “Associationist
School” — got published his book “Observations on man” |[Hartley, 1749|. In his
book, Hartley proposed that the perceptions in our brain were mere vibrations, and
memories were these same vibrations at a lower scale.

The Baye’s theorem appears the first time in 1763 within the publication
“An Essay towards solving a Problem in the Doctrine of Chances”, after the
death of Thomas Bayes® . It solved the problem of the inverse probabilities,
and it played a crucial role in all the probabilistic approaches of machine
learning and Connectionism.

6.3 The central nervous system

During the 18th century various neuroanatomists developed different methods to
stain some parts of the nervous system. These techniques allowed for the first
time to visualize the neurons and all their parts. Some of these techniques are
attributed to Gerlach 1858 (carmine), Nissl 1858 (methylene blue), Waldeyerin 1863
(hematoxylin), Golgi 1873 (silver). The better visualization of the nervous system
served as an inspiration to later researchers.

In 1873, Alexander Bain® wrote the book “Mind and body. The theories of their
relation” [Bain, 1873]. In his book, Bain described perceptions and their reminis-
cence as currents in the nervous system. These currents were stronger when the real
perceptions were originated and lower when they were remembered. A very good
example of this explanation can be seen in the next paragraph extracted from the
mentioned book:

“If we suppose the sound of a bell striking the ear, and then ceasing, there
is a certain continuing impression of a feebler kind, the idea or memory
of the note of the bell; and it would take some very good reason to deter us
from the obvious inference that the continuing impression is the persisting
(although reduced) nerve currents aroused by the original shock. And if

3John Locke (Wrington, Somerset, England; August 29, 1632 — October 28, 1704) was an
English philosopher and physician and one of the most influential Enlightenment thinkers.

‘David Hartley (Halifax, Yorkshire, England; August 8, 1705 — August 28, 1757) was an
English philosopher, psychologist and the founder of the Associationist school of psychology.

®Thomas Bayes (London, England; 1701 — April 6, 1761) was a statistician, philosopher and
Presbyterian minister. Best known by his formulation of a specific case of the Bayes’ theorem.

6Alexander Bain (Aberdeen, Scotland; 11 June 1818 — 18 September 1903) was a Scottish
philosopher and educationalist. He founded the journal Mind, the first on psychology and analytical
philosophy.

1749

1763

1800

1873

1890

1889

1909

68 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

that be so with ideas surviving their originals, the same s likely to be the
case with ideas resuscitated from the past — the remembrance of a former
sound of the bell.” (p. 89-90 [Bain, 1873])

The idea was very similar to the ideas from David Hartley one century before,
but he extended them. Another interesting idea that appeared in his book was
that neurons are grouped in clusters because they are used simultaneously; the cell
junctions grow when neurons perform the same task. Additionally, it is a necessary
condition for the individual neurons to participate in different tasks, and react in a
different manner depending on the context of other neurons.

In 1890, William James in his book “The principles of psychology” [William
James, 1890 suggested similar ideas. However, James did not know about Bain’s
work. He stated that the unique “elementary law of association” is the “neural habit”
and it stands for the habituation of different neurons to be activated at the same
time, reinforcing their connections. On the other hand, their connections become
weaker if they are not used:

“When two elementary brain-processes have been active together or in
immediate succession, one of them, on reoccurring, tends to propagate
its excitement into the other.” (p. 566 [William James, 1890])

And he continued by indicating that the activation of a neuron depends on the
sum of their input neurons, and that their strength depends on the number of times
that they had been activated together:

“The amount of activity at any given point in the brain-cortex is the sum
of the tendencies of all other points to discharge into it, such tendencies
being proportionate (1) to the number of times the excitement of each
other point may have accompanied that of the point in question; (2) to
the intensity of such excitements; and (3) to the absence of any rival point
functionally disconnected with the first point, into which the discharges
might be diverted.” (p. 567 [William James, 1890))

At the end of the 18th century and beginning of the 19th, Ramoén y Cajal”
was studying the biological structure of the brain and the nervous system. He was
one of the most prominent researchers on neuroscience, and he is at the moment
an important reference. Some of his most important postulates were: the neuron
doctrine, neurons act as individual units in a discretized manner; and the law of
functional or dynamic polarization, each neuron receives signals from other neurons
to its dendrites and transmits the signal through their axons as action potentials
[Cajal, 1909|. Figure 6.1 is an example of his drawings of neurons.

"Santiago Ramén y Cajal (Petilla de Aragon, Spain; 1 May 1852 — 18 Octover 1934) was
a Spanish pathologist, histologist, neuroscientist and Nobel laureate. Famous by his work on
neuroscience and hundreds of drawings of the intricate brain cells.

6.4. MATHEMATICAL BIOPHYSICS 69

¥a

wa wepyluses safopueg TN

®0q 9p empnty

AR FN] I SOTOMIMI G133

A ¥R

Figure 6.1: Drawing of neurons by Ramén y Cajal

6.4 Mathematical Biophysics

Prior to that moment, there were small mathematical foundations about Biology
and more specifically the nervous system. It was in 1938, when Rashevsky® got
published his book on mathematical biology and biophysics entitled “Mathematical
Biophysics: Physico-Mathematical Foundations of Biology” [Rashevsky, 1938|. The
intention of this book was to create fundamental equations and give a mathemat-
ical basis to the field of Biology. Some of the most important ideas were about
the nervous system, and how to model it using linear differential equations, and
describe the activations and propagations of the electrical impulses of neurons. He
proposed to model the output of the neurons with binary threshold functions, and
demonstrated the possibility to compute some logic functions. In 1940, Rashevsky
founded the section of Mathematical Biophysics in the University of Chicago. This
new multidisciplinary area involved a variety of fields like mathematics, physics,
biology, zoology, chemistry and psychology (A review of the work done by Nicolas
Rashevsky can be found in [Cull, 2007]).

In the same University of Chicago, in 1943, McCulloch® and Pitts'? got published
the influential work “A logical calculus of the ideas immanent in nervous activity”
[McCulloch and Pitts, 1943] (at that time McCulloch was professor of psychiatry and
psychology while Pitts was a student of Mathematical Biology). In this article, the
authors designed a simplified mathematical model of a neuron. The simplification
had several assumptions, as stated in the original article:

8Nicolas Rashevsky (Chernigov, Russian Empire; November 9, 1899 — January 16, 1972) was
a American theoretical physicist that pioneered the mathematical biology.

‘Warren Sturgis McCulloch (Orange, New Jersey; November 16, 1898 — September 24,
1969) was an American neurophysiologist and “cybernetician”. Known by his work on mathematical
models of the neurons and one of the initiators of the Connectionism.

OWalter Pitts (Detroit. Michigan; April 23, 1923 — May 14, 1969) was a mathematician and
logician. He was a brilliant mathematician from a young age, and was accepted as a member on
Rashevsky’s group being only 14 years old (p. 189 [Boden, 2006]). Some of his main contribu-
tions were in cognitive science, psychology, philosophy, neuroscience, computer science, artificial

1938

1940

1943

1944

1945

70 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

1. The actwity of the neuron is an “all-or-none” process.

2. A certain fized number of synapses must be excited within the period
of latent addition in order to excite a meuron at any time, and
this number is independent of previous activity and position on the
neuron.

3. The only significant delay within the nervous system is synaptic
delay.

4. The activity of any inhibitory synapse absolutely prevents excitation
of the neuron at that time.

5. The structure of the net does not change with time.

Following these assumptions, the authors discretized the time and binarized the
output of the neurons. At each time step, a neuron was fired “only if” the sum of
all its inputs from other binary neurons surpassed an ezcitation threshold. This fact
was modeled with the next equation:

ni(t) =1 (Z wing(t — 1) > ej) (6.1)

1—]

Where the neurons n; were connected to the neuron n; at time ¢, w;; were
attenuation weights with values in the interval [0, 1], and 6; was the excitation
threshold of the neuron n;. With this model, neurons could perform some logical
operations like the AND operation, if the threshold was set to 2; the INCLUSIVE
OR, if the threshold was set to 1. They called this logic Temporal Propositional
Expression (TPE), and a finite number of neurons — without circles — could compute
any logical function (p.9 [Miihlenbein, 2009]); the authors claimed to have “proved,
in substance, the equivalence of all general Turing machines — man-made or begotten”
(p. 298 |Glimm et al., 2006]).

6.5 Machine intelligence

In 1944, J.W. Mauchly!! and J. P. Eckert!? finished the design of the first electronic
general-purpose computer ENTAC (Electronic Numerical Integrator And Computer).
Before the construction of the ENTAC, Mauchly and Eckert started to design the
EDVAC (Electronic Discrete Variable Automatic Computer) with the consulting
help of J. von Neumann'® . Neumann used to discuss with McCulloch and Pitts
about their work, and inspired by some of the ideas in their work [McCulloch and
Pitts, 1943| he finished the “First Draft of a Report on the EDVAC” [von Neumann,
1945] in the Spring of 1945 (p. 73 Chapter 2, [Norberg, 2005]). Von Neumann con-

intelligence and artificial neural networks.

6.5. MACHINE INTELLIGENCE 71

tinued his research career creating new automatas, inspired by the biological theories
of McCulloch and Pitts and the computational theories of Alan Turing.

During that period of time, Alan Turing!* was also interested in the creation of
new computer machines able to learn by themselves. Turing designed one type of
machines by using simple neurons randomly organized; what he called “unorganized
machines”. In 1948, Turing wrote a report in the National Physical Laboratory of
London with the title “Intelligent Machinery”. This paper was never published until
1965, because “it was a schoolboy essay” (this sentence is attributed to the head-
master director of the laboratory Sir Charles Darwin; see [Copeland and Proudfoot,
1999]). The manuscript contained some insights to the posterior ideas of Artificial
Neural Networks (ANNs). One of the ideas was a type of neural network that he
called “B-type unorganised machine”. These networks were composed by set of neu-
rons with some connections between them. The connections could be adjusted with
connection-modifiers that enabled or disabled the output of the neurons (for more
details see [Copeland and Proudfoot, 1996, 1999]).

Norbert Wiener!'® was also interested on Turing’s ideas about learning and Ra-
shevsky’s mathematical foundations on mathematical biology and biophysics. Wiener
extended the work of Rashevsky and in 1948 published the book “Cybernetics
or Control and Communication in the Animal and the Machine” [Wiener, 1948].
This book contained very useful mathematical tools for control, communication
and statistical signal processing, amongst others (for more information see p. 332
|Copeland, 2012]).

In the same year, William Ross Ashby!® created the “Homeostat” at Barnwood
House Hospital [Ashby, 1949]. The Homeostat was one of the first electronic devices
able to adapt automatically to external changes. It was controlled by four “Royal Air
Force” bomb control units, and was connected with some loops. Figure 6.2 shows a

1John William Mauchly (Cincinnati, Ohio, United States; August 30, 1907 — January 8,
1980) was an American physicist, who co-designed the first electronic general-purpose computer
ENTAC, followed by the EDVAC, BINAC and UNIVAC L.

12John Adam Presper Eckert (Philadelphia, Pennsylvania; April 9, 1919 — June 3, 1995) was
an American electrical engineer, who co-designed the first electronic general-purpose computer
ENTAC, followed by the computer EDVAC.

13John von Neumann (Budapest, Austria-Hungary; December 28, 1903 — February 8, 1957)
was a Hungarian and later American pure and applied mathematician, physicist, and principal
member of the Manhattan Project. He designed the Von Neumann computer architecture consist-
ing on a Memory, and an Arithmetic Logic Unit (ALU) mediated by a Control Unit.

14 Alan Mathison Turing (Warrington Crescent, London; June 23, 1912 — June 7, 1954) was
an British mathematician, cryptanalyst, logician, computer scientist, and cognitive scientist. With
the age of 22 he invented the abstract computing machines (Turing machines). He also helped
on the decryption of the Enigma machine at the end of the World War II. In 1952 he declared
to the police about his homosexuality, this made him to choose between imprisonment or some
experimental treatment that he finally choose. In 1954 he was found died in his apartment. They
autopsy reported that he died because of cyanide, and it was declared suicide, although it was
never proven. In September 10, 2009 the British government apologized for their persecution for
being homosexual.

5Norbert Wiener (Columbia, Missouri; November 26, 1894 — March 18, 1964) was an Ameri-
can mathematician, philosopher, and professor at MIT. Considered one of the precursors of cyber-
netics.

1948

1949

1951

72 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

Fig. |—The homeostat, with its four units, each one of which reacts on all the others.

Figure 6.2: The Homeostat created by William Ross Ashby. Original text:
The homeostat, with its four units, each one of which reacts on all the others (p. 78
“The Electronic Brain” [Ashby, 1949]).

picture of the Homeostat.

After the second World War, in 1949, Donald Olding Hebb!” inspired by Ramoén
y Cajal and Lashley'® published the book “The Organization of Behavior” [Hebb,
1949]. In this book Hebb introduced one of the most used ideas about synaptic
learning. His “learning postulate” (also known as “Hebb’s postulate” and “Hebbian
theory”) proposed that biological neurons that are repeatedly activated increased
their strength, in such a way that future activations became easier. On the other
hand, if a pair of neurons were never activated together their connections became
weaker, making their future responses more difficult. In Hebb’s words:

“When an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growhth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased” (p. 50 Chapter 4 “The Organization
of Behavior”)

This was one of the first signs of neural networks learning their “weights” (short-
term neural memory), however, it was a biological theory and — at that moment —
it had little impact on engineering and computer science.

In 1951, Marvin Minsky'® was studding his PhD in mathematics in Princeton

16William Ross Ashby (Londres, England; September 6, 1903 — November 15, 1972) was
an English psychiatrist and pioneer in cybernetics. He created the Homeostat in 1948; a device
capable of adapting itself to the environment.

"Donald Olding Hebb (Chester, Nova Scotia, Canada; July 22, 1904 — August 20, 1985) was
a Canadian psychologist, interested on learning processes. He influentiet in the area of neuropsy-
chology, the function of neurons and developed the theory of Hebbian learning.

18Karl Spencer Lashley (Davis, West Virginia; June 7, 1890 — August 7, 1958) was an Amer-
ican psychologist and behaviorist. Known by his contributions on the process of learning and
memory. He tried to localize memories in different parts of the brain (regions that he called en-
grams), however, after years of search he concluded that the memories had to be distributed across
the cortex.

6.5. MACHINE INTELLIGENCE 73

Figure 6.3: One neuron from the SNARC. Neuron of the maze-solving computer
that Marvin Minsky shown to Gregory Loan.

University. Minsky got fascinated by the articles of McCulloch and Pitts, and de-
cided to implement a self-learning device. Later, Minsky created one of the first
physical neural net machines called the SNARC (Stochastic Neural Analog Re-
inforcement Calculator) . This device was composed by a set of vacuum tubes
with some connections, and it was able to modify the connections automatically.
Although it never carried any useful function, it provided inspiration to other re-
searchers (see more about Minsky in [Bernstein, 1981]). Figure 6.3 shows a neuron
of the SNARC constructed with vacuum tubes.

In 1952, Ashby published the book “Design for a Brain: The Origin of Adaptive
Behavior” [Ashby, 1960].In his book, Ashby exposed the flexibility of our brain in

order to learn and adapt to new situations.

In 1953, Metropolis?® et. al. proposed the “Metropolis-Hastings algorithm”,
a Markov chain Monte Carlo (MCMC) method to obtain samples of complex
probability distributions, in which is possible to obtain values proportional
to the original density distribution [Metropolis et al., 1953]. This algorithm
served as the basis to some Connectionism approaches like Boltzmann Ma-
chine (BM) in 1985.

In 1954, Minsky finished his doctoral thesis entitled “Theory of Neural-Analog
Reinforcement Systems and Its Application to the Brain-Model Problem” [Minsky,
1954]. In his thesis, Minsky described an analog machine that learned using rein-
forcement learning, and was composed by smaller units also called SNARCs (p. 18
[Sutton and Barto, 1998|).

In the same year, at the Massachusetts Institute of Technology, B.G Farley and
W.A. Clark performed one of the first simulations of a neural network on a digi-
tal computer|Farley and Clark, 1954]. The network contained approximately 128
neurons, in two layers connected with randomly initialized weights (p. 441 [Gab-

Marvin Lee Minsky (New York City, United States; 9 August 1927) is an American cognitive
scientist, mostly interested on artificial intelligence, and co-founder of the Massachusetts Institute
of Technology’s Al lab.

2ONicholas Constantine Metropolis (Chicago, Illinois, USA; June 11, 1915 — October 17,
1999) was a Greek and American physicist. He and a group of researchers at Los Alamos designed
the Monte Carlo method.

1952

1953

19

6

74 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

bay et al., 2006]). The authors designed a trial-and-error experiment and used a
modified “Hebbian rule” to learn and recognize two different patterns. The authors
noticed that in order to achieve the correct solution the different patterns had to
be presented alternatively. At each step one of the patterns was shown, then the
weights were increased or decreased depending on its correctness: if the prediction
went into the correct direction the weights were increased, otherwise the weights
were decreased.

From a physics perspective, G.G. Cragg and H.N.V. Temperly formuled from
the first time the possible similarity between the interaction between neurons and
the spin-glass problem in his article “Memory: the Analogy with Ferromagnetic
Hysteresis” [Cragg and Temperley, 1955]. The spin-glass problem was well known
in the physics community, and thanks to this analogy, some physicists shown interest
on the use of Artificial Neural Network (ANN) to model physical systems (p. 74
[Neelakanta and DeGroff, 1994]).

In the discipline of communication theory, Gabbor?' proposed the idea of a
“nonlinear adaptive filter” that could be used to learn from past patterns, by
using the mean squared error of the prediction and gradient descent [Gabor,
1954] (see also p. 24 [Liu et al., 2011]). Later, this idea was used to train
Artificial Neural Networks (ANNs).

In 1956, at the IBM Research Laboratory of New York, N. Rochester, J.H.
Holland, L.H. Haibt and W.L. Duda made another simulation of a neural network
on the IVM Type 704 Electronic Calculator [Rochester and Holland, 1956|. The
researchers got inspired by the ideas of Brenda Milner?? and the book of Hebb
“The Organization of Behavior” about how the brain could work. They made two
different experiments arranging neurons in one layer and connecting randomly to
a second layer of neurons. The first experiment simulated 69 neurons, and tested
the ideas of Hebbs in his monograph work. The second experiment simulated 512
neurons, and was addressed to test the theory of Milner; revision of Hebbs theory
“F.M. Model”. During the experiments the authors had to modify some aspects of
the learning process. One of the problems was that using Hebbs rule the synaptic
weights increased without bounds. They had to normalize the weights to sum up to
some constant. The use of a normalization enabled to increase the desired weights
while at the same time decreased the non-desired. Another conclusion was that it
was necessary that the network contained excitatory and inhibitory neurons in order
to respond to different patterns.

The same year in Princeton University, Uttley?® demonstrated empirically the
possibility to train a neural network to classify two different patterns as a binary
classes, using the weights as conditional probabilities |[Uttley, 1956b,a]. In his ex-

2'Dennis Gabor (Ungaria; 5 June 1900 — 8 February 1979) was a Hungarian and British
electrical engineer and physicist, who invented the holography. Received the 1971 Nobel Prize in
Physics for his invention of the holographic method.

22Brenda Milner (Manchester, England; July 15, 1918) is a Canadian neuropsychologist with
important contributions in the field of clinical neuropsychology.

6.6. THE RENAISSANCE OF CONNECTIONISM 75

periments, Uttley used Shannon’s entropy measure.

Von Neumann found a solution to the reliability of the networks through redun-
dancy in got published the paper “Probabilistic logics and the synthesis of reliable
organisms from unreliable components” [von Neumann, 1956]. Neumann proposes
the use of probabilistic neurons to form the network. However, he did not like the
idea because these units were more reliable and simpler than the real biological neu-
rons. He formalized the probabilistic logic, and then, he extended these ideas to
create the “complicated automata” also called the “cellular automata. Nonetheless,
the cellular automata had limited reliability and — at that time — there was a lack
of logical theory of automata.

Another important work was initiated by Wilfrid K. Taylor, who applied the
theory of Hebbian learning to create one of the first associative memories |Taylor,
1956]. In his work, he was computing the associations between different pairs of
visual patterns (e.g. alphabetic letters). The network was composed by a layer of
sensory inputs (mimicking the retina), and a second layer of associative neurons
that received only the maximum signals on a neighbourhood of input neurons. This
machine was able to learn the necessary features by itself, using Hebbian learning
(see p.892 [Boden, 2006]).

M. Minsky, J. McCarthy?** , N. Rochester?> | C. Shannon?® organized the
first “International conference on artificial intelligence” — the Dartmouth
Summer Research Project on Artificial Intelligence, sponsored by the Rock-
efeller Foundation.

6.6 The renaissance of Connectionism

In 1957, the psychologist Frank Rosenblatt wrote the first report about the Percep-
tron entitled “The Perceptron, a Perceiving and Recognizing Automaton” [Rosen-
blatt, 1957|. The idea was inspired by the visual nervous system. A ‘“retinal” image
was sent to the “Association” units (or “A-units”), these signals were scaled by some
weight connections, then summed, and their output was sent to the “Response” units
(or “R~units”) that applied a threshold to the signal, producing a binary output.
One year later, Rosenblatt extended his Perceptron and got published one of his
most famous articles “The Perceptron: a probabilistic model for information storage
and organization in the brain” [Rosenblatt, 1958|. Rosenblatt designed a supervised

23 Albert M Uttley (;) mathematician, computer scientist and experimental psychologist, who
contributed to cybernetics movement.

24John McCarthy (Boston, Massachusetts, United States; 4 September 1927 — 4 October 2011)
was an American computer scientist, and cognitive scientist. He coined the term of “Artificial
Intelligence” (AI) and developed Lisp programming language.

Z’Nathaniel Rochester (United States; 14 January 1919 — 8 June 2001) was an American
electrical engineer. He designed the IBM 701, wrote the first symbolic assembler and participated
in the founding of the field of Artificial Intelligence.

26Claude Elwood Shannon (Medford, Massachusetts, United States; 30 April 1916 — 24
February 2001) was an American mathematician, electronic engineer, cryptographer. He is known
as the ‘the father of information theory”.

76 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

(a) Rosenblatt working on a A-unit (b) MARK I Perceptron in cornell aeronau-
tical laboratory

Figure 6.4: Pictures of Rosenblatt work

learning method to train the Perceptron to classify different patterns. The idea
was to present all the sample patterns and after each pattern compare the network
prediction with the correct class. If the result did not coincide then the weights were
updated using a type of Hebbian learning equation:

W1 = Wy + 2aix (6.2)

Where the x was the input vector, the a corresponded to the learning rate, ¢
was the target class, and w was the connection weight. The same equation could
be adapted to incorporate the correctness of the prediction by adding the actual
prediction of the network y.

Wi =W + ot — y)x (6.3)

Applying the new equation after each pattern only modified the weights after
the wrong predictions, while in the correct prediction the term (¢t — y) was equal to
zero, canceling the update.

Rosenblatt demonstrated with the “perceptron convergence theorem” that this
algorithm always found a solution in a finite time; having some assumptions. The
initial weights of the Perceptron were selected randomly without prior information,
and the network was able to self-organize by adjusting its weights to memorize the
correct output. See more about the history of the Perceptron in page 903 of the
book “Mind as machine: A history of cognitive science. Vol.1” [Boden, 2006].

To test these ideas, Rosenblatt, Charles Wightman and other researchers created
the Mark I Perceptron at Cornell University. It was used for character recognition
of binary images of size 20 x 20 = 400 pixels. The network was composed by 512
weights (associator units, A-units) in a 8 X 8 x 8 array of potentiometers driven by
electric motors, 400 photosensitive receptors and 8 response units (R-units). See
more detail about the experiment in page 5 of [Hecht-Nielsen, 1989).

In the same year, O.G. Selfridge?” proposed the use of the “hill climbing” algo-
rithm to learn the weights of an ANN that he called “Pandemonium” in his pub-

6.6. THE RENAISSANCE OF CONNECTIONISM 7

lication [Selfridge, 1958]. The idea was to change randomly all the weights of the
network and evaluate the new performance, if the change improved the predictions
it was accepted, if not the network was not modified. Using this algorithm, the
network only improved or remained equal. With this approach, it was possible to
learn systems with multiple layers of feature detectors, with very complex hidden
features.

Also the unfinished book by John von Neumann “The Computer and the Brain”
was finally published; one year after his dead. In the book, Neumann exposed the
differences between the brain and computer machines in terms of computational
power, processing speed and parallelism.

In , Bernard Widrow?® and Hoff (one of his graduate students) designed one type
of physical resistor that could be used as a memory. This resistor could be modified
externally with electricity and could store one of ten possible values for long periods
of time (from 1 to 10 ohms). They called this new type of resistor a memistor.
Widrow and his student created an electrical device using multiple memistors and
called it Adaline (Adaptive Linear Neuron or Adaptive Linear Element) [Widrow,
1960]. Adaline was composed by a single layer of memistors acting as weights. The
authors also designed one method to teach the Adaline to classify different patterns,
using a similar method as in the Perceptron. However, their method modified the
weights using the derivative of the error, and followed the direction with the smallest
error. This technique was called the “Delta Rule” and it converged to the least

squares error (the “Delta Rule” is also known as Widrow-Hoff rule, Adaline Rule or
Least Mean Squares (LMS) Rule).

Roger Barron and Lewey Gilstrap founded the Adaptronics Corportaion.
One of the first companies to sell neurocomputing applications.

In 1961, Minsky got published the report “Steps Toward Artificial Intelligence” in
which he dedicates some sections to networks. The early version of this publication
was finished on 1957 with the title “Heuristic aspects of the artificial intelligence
problem” but it was not published, however, copies of the publication reached various
research groups.

Steinbuch?’ and Piske continued the work of Taylor about associative memories
by using a “learning matrix”; a binary and an analog associative network [Steinbuch
and Piske, 1963|. Additionally, the authors proposed some electronic circuits able
to run the learning algorithms.

270Oliver Gordon Selfridge (London; May 10, 1926 — December 3, 2008) was an English
and American mathematician. Studied in Massachusetts Institute of Technology from 1942-1950.
After 2 years at Signal Corps Laboratories at Fort Montmouth, New Jersey, he joined Lincoln
Laboratories in Group 34, Communication Techniques, were he was Group Leader (partially from
the biographical note in p.512 [Sutherland, 1959]. He contributed on neural networks, pattern
recognition and machine learning and created the Pandemonium.

Bernard Widrow (United States; 24 December 1929) is an American professor of Electrical
Engineer in Standford University. He is the co-inventor of the least mean squares filter (LMS)
adaptive algorithm.

2Karl W. Steinbuch (Stuttgart-Bad Cannstatt, Germany; 15 June 1917 — 4 June 2005) was a
German computer scientist, cyberneticist, and electrical engineer. Pioneer on his work on artificial

1960

1961

1962

1963

1965

78 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

oscilloscope

amplifier @ loudspeaker

screen

micrometric advancer

microelectrode

receptive field

flashing or moving stimulus

Figure 6.5: Hubel and Wiesel experiment about the visual cortex of a cat

Frank Rosenblatt wrote the huge report (626 pages) “Principles of Neurodymaics:
Perceptrons and the theory of brain mechanisms” [Rosenblatt, 1961]. In which,
Rosenblatt compiled all the ideas about the creation of models that were able to
perceive the environment and to learn how to recognize objects. The author explains
that Hebbian learning can be used to solve these tasks, and that the Perceptron and
the brain were constrained in a similar way. Additionally, the report compiled
and explained the the results of previous experiments of the Perceptrons. He also
proposes a backpropagation algorithm to train the Perceptron, however, at that
moment the gradient could not be computed — the activation functions were step
functions — and the solution was just an heuristic (see page 292 from the original
report [Rosenblatt, 1961]).

In 1962, Novikoff got published the article “On convergence proofs on percep-
trons” [Novikoff, 1962] and H.D. Block “The Perceptron: a model for brain function-
ing. I7 [Block, 1962|. In both papers the authors proved the “Perception Convergence
Theorem”. For a detailed explanation of the algorithm and the convergence proof
consult page 304 of [Bezdek et al., 2013].

In area of neurophysiology, Hubel and Wiesel discovered a more complex type
of cells in the visual cortex of cats [Hubel and Wiesel, 1962|. Some of the complex
cells were more responsable on detecting contrasts, edges, and rectangular bars at
different orientations.

In 1963, Winograd and Cowan proposed a distributed and redundant represen-
tation for ANNs following the initial ideas of von Neumann, McCulloch and Pitts
[Winograd and Cowan, 1963|. The ideas indicated that it was possible to store
and represent simple information with complex structures of large amounts of neu-
rons. This should increase the robustness of the stored information towards small
perturbations.

In 1965, Nilsson®® published the book “Learning machines: foundations of train-
able pattern-classifying systems” [Nilsson, 1965|. The book made a great summary
about previous work on pattern classification. The main topic was about linearly

neural networks.

6.6. THE RENAISSANCE OF CONNECTIONISM 79

separable problems and hypersurfaces.

In 1966, Arhur W. Burdks edited and completed the unfinished work of Von
Neumann about automates, that Neumann gave in 1949 as a series of lectures in the
University of Illinois with the title “Theory of Self-Reproducing Automata” [Neu-
mann and Burks, 1966]. In these lectures, Von Neumann discussed some of the ideas
of McCulloch and Pitts and their work on ANNs.

In 1967, Marvin Minsky published the book “Computation: Finite and Infinite
Machines”, in which Minsky extended the theories of automatas based on von Neu-
mann, McCulloch and Pitts [Minsky, 1967].

In the same year, S. Amari*! used the stochastic gradient method to train a pat-
tern classification model in his publication “A theory of adaptive pattern classifiers”
[Amari, 1967]. He claimed that his learning method converged to the optimal set of
weight even in the case of nonseparable patterns.

Grossberg?? was developing mathematical models able to memoryze lists of terms
or facts in his work “Nonlinear difference-differential equations in prediction and
learning theory” |Grossberg, 1967|. This type of memorization was called short-
term memory (STM) also known as Additive and Shunting models and became the
Hopfield networks in 1984.

In 1968, Hubel and Wiesel continued doing research on the visual system. In
the article “Receptive fields and functional architecture of monkey stritate cortex”
they studied the macaque and monkey visual cortex, and discovered different types
of cells that were strongly activated when a certain visual pattern was presented
to the subject. These types of cells were the simple, complex, and low-order and
higher-order hypercomplex cells.

During this period of time, Minsky and Papert®? carried some research about
Artificial Neural Networks (ANNs) and the Connectionism ideas, and they wrote a
technical manuscript that was not published. However, the manuscript started cir-
culating at some scientific research groups and was finally published in 1969 with the
name “Perceptrons” [Minsky and Papert, 1969|. In this book, the authors demon-
strated mathematically some of the most basic limitations on single layer neural
networks (e.g. it was not possible to learn the exclusive or logical function). How-
ever, they could not demonstrate that these limitations were extensible to multiple
layers. The authors were discouraging the use of methods from the field of neuro-
computing, as can be seen in some their quotes:

“Our discussions will include some rather sharp criticisms of earlier work

30Nils John Nilsson (United States; 1933) is an American professor Emeritus of Engineering
in Computer Science at Standford University. Particularly known by his contributions in the fields
of search, planning, knowledge representation and robotics.

31Shun’ichi Amari (Tokyo, Japan; 1936) is a professor of mathematical engineering. He is
known for “information geometry”.

32Stephen Grossberg (Woodside, Queens, New York City; 31 December, 1939) is an American
mathematician, cognitive scientist, neuroscientist, biomedial engineer and neuromorphic technol-
ogist. He contributed to the area of competitive learning and Self-Organizing Maps (SOMs) and
developed the adaptive resonance theory (ART).

33Seymour Aubrey Papert (Pretoria, South Africa; February 29, 1928) is an American math-
ematician, computer scientis and educator. One of the inventors of Logo (programming language).

1966

1967

1968

1969

1970

80 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

in this area. Perceptrons have been widely publicized as “pattern recogni-
tion” or “learning” machines and as such have been discussed in a large
number of books, journal articles, and voluminous “reports”. Most of this
writing (some exceptions are mentioned in our bibliography) is without
scientific value and we will not usually refer by name to the works we
criticize.” (p.4 [Minsky and Papert, 1969])

Despite of the title of the book “Perceptrons”, the authors were not critizising only
this model but others with several similarities. For example, the work of Bernard
Widrow with his network “Adaline”, and despite the fact that it is not mentioned
in their book, almost everything could be applied to this model. From the words of
Widrow:

“When the Minsky and Papert book came out, entitled “Perceptrons”, I
somehow got a copy of it. Publishers send me zillions of books, so this one
came into my office one day. I looked at that book, and I saw that they’d
done some serious work here, and there was some good mathematics in
this book, but I said, “My God, what a hatchet job.” I was so relieved
that they called this thing the perceptron rather than the Adaline because
actually what they were mostly talking about was the Adaline, not the
perceptron.” (interview by Edward Rosenfeld to Bernard Widrow p.60
[Anderson and Rosenfeld, 2000])

In the same year, Willshaw, Buneman and Longuet-Higgins got published a paper
about “Non-holographic associative memory” [Willshaw et al., 1969]. The authors
created an optical system capable of storing information in a similar manner than
an ANNs. They shown a very simple experiment where it was possible to store
visual information in a projected screen. There was a source of light (screen A)
that traveled through holes in an opaque screen, the light diverged because of one
lens, and hit a second screen B. The authors demonstrated that it was possible to
retrieve the original image by projecting back the image from the second screen B.
First they projected from screen A to screen B. Then, they marked in the screen
B the points where the light hit. Next, they projected light from the points of
the screen B through the intermediate opaque lamina and the lens. Finally, the
light reached the screen A with a stronger intensity of light at the original points.
By adjusting a threshold the level of light it was possible to visualize the original
pattern. This model was able to associate multiple inputs to multiple outputs.

6.7 The winter of the Connectionism

During the previous years, researchers approached the problems of neurocomputing
by doing qualitative experiments without a strict analytical emphasis. Additionally,
the economical and technological situation — and possibly the previous criticism of
the Connectionism methods by Minsky and Papert — generated an bad impact in
the field of Connectionism. Searching funding for projects was very difficult, and for

6.7. THE WINTER OF THE CONNECTIONISM 81

(a) Example with 3 points (b) Example with 4 points

Figure 6.6: VC dimension. An hyperplane in a R? space can shatter up to 3
points.

that reason, some researchers left the field and moved to more theoretically proven
topics. The area of Artificial Neural Networks (ANNs) required new ideas to keep
the topic alive and get resources. Additionally, all the previous ideas were inspired
by biological processes and claimed to achieve intelligent machines, this level of hype
was hurting the area, making the situation worst. However, some researchers con-
tinued working on biological neural networks, psychology, and neuroscience, while
some early pioneers on ANNs continued doing research in the same direction.

In 1971, Vapnik3* and Chervonenkis developed a theory to measure the capacity
of a model to classify training data and generalize to external data; what they called
Vapnik-Chervonenkis dimension (VC dimension). This method was very useful to
find upper bounds on the test error for some classification models. Figure 6.6 shows
an example of a two dimensional space where 3 points belonging to two classes can
always be separated, but not with four.

Some researchers like T. Kohonen, J. Anderson and K. Nakano independently
continued the work about associative memories. In 1972, Kohonen®® got published
the article “Correlation matrix memories” [Kohonen, 1972|, in which, Kohonen pro-
posed to approximate the data samples with a matrix of parameters. With the
sufficient number of units it could store every sample pattern. The author did not
use any analogy to neural networks although it could be seen as one, and he contin-
ued his research in neural networks.

Anderson®® got published “A simple neural network generating an interactive
memory” with a more biological connotation [Anderson, 1972].

Nakano got published the work “Associatron — a model of associative memory”
[Nakano, 1972|, where, Nakano related the association mechanism in the human
brain with his simplified version of a neural network with only local connections and

31Vladimir Naumovich Vapnik (Soviet Union; December 6, 1936) is a mathematician, statis-
tician, and computer scientist. He is the main developer of the Vapnik-Chervonenkis theory and
co-inventor of the Support Vector Machine (SVM).

1971

1972

1973

1974

1975

82 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

closed loops. He also proposed a hardware implementation for the Associatron.

In the same year, S. Amari studied the stochastic states on macroscopic neuron-
like elements with analog signals, and made a comparison with the discrete activation
functions of McCulloch and Pitts in his work [Amari, 1972] .

In 1973, L.N. Cooper®” got published the work “A Possible Organization of An-
imal Memory and Learning” [Cooper, 2012] following the ideas of Anderson about
assoclation memories.

In the same year, Malsburg®® got published the work “Self-organization of ori-
entation sensitive cells in the striate cortex” about a plausible model of the visual
cortex in vertebrates [von der Malsburg, 1973|. Malsburg implemented an artifi-
cial neural network with 338 neurones connected to 19 cells representing the retinal
photoreceptors, and trained the network to recognize specific patterns. The learning
algorithm self-organized each neuron to become specialized into some of the sample
patterns. After the training, when a pattern from the sample was presented a few
neurons were highly active while they become insensitive to patterns not present
during the training.

In 1974, P.J. Werbos* finished his PhD thesis in Harvard University in which
Werbos proposed one kind of backpropagation — at that time called “dynamic feed-
back” [Werbos, 1974]. Later in 1994, it was recognized by the IEEE Neural Network
Society with a Pioneer Award for developing the backpropagation algorithm, and
his PhD thesis was reprinted with the title “The Roots of Backpropagation: From
Ordered Derivatives to Neural Netwoks and Political Forecasting” [Werbos, 1994].

In 1975, W. Little and G.L. Shaw*’ proposed a probabilistic model of a biological
neuron |Little and Shaw, 1975]. In previous cases, the neurons where deterministic,
firing when some specific threshold surpassed a certain value. However in their work,
the authors point that there are several sources of noise in the biological neurons
that can interfere in the deterministic firing of the neurons. For that reason, they
proposed the use of stochastic activations that react with certain probability. This
approach was used later in 1985 for the Boltzmann Machine (BM).

3°Teuvo Kohonen (Finland; July 11, 1934) is a professor emeritus of the Academy of Finland.
Prof. Kohonen made several contributions to the field of Artificial Neural Networks (ANNs),
including work on the learning vector quantization and associative memories with his famous Self-
Organizing Maps (SOMs) (also known as Kohonen maps).

36James A. Anderson (Detroit, Michigan; 1940) is an American physicist, psychologist, pro-
fessor of cognitive science at Brown University. Interested in biology, neuroscience, computer
science.

3"Leon N Cooper (New York City, United States; February 28, 1930) is an American physicist
and Nobel Prize laureate who co-developed the BCM theory; a physical theory of learning in the
visual cortex.

38Christoph von der Malsburg (Kassel; 8 May 1942) is a German physicist, and neurobiol-
ogist. His main interests are in pattern recognition in the brain, neural networks and computer
vision.

39Paul John Werbos (; 1947) is a scientist whose main interests are pattern recognition,
artificial neural networks, machine learning. He has also written in areas of physics like quantum
mechanics. He was recognized by the IEEE Neural Network Society with a Pioneer Award for
developing the backpropagation algorithm in his PhD thesis.

40Gordon L. Shaw (Atlantic City, New Jersey; 1932 — 2005) is an American physicist, thesis

6.7. THE WINTER OF THE CONNECTIONISM 83

Figure 6.7: Neocognitron Schematic diagram illustrating the interconections be-
tween layers [Fukushima, 1980]

In 1976, C. von der Malsburg and D. Willshaw got published one of the first arti-
cles about Self-Organizing Maps (SOMs) with the title “A mechanism for producing
continuous neural mappings: ocularity dominance stripes and ordered retino-tectal
projections” [von der Malsburg and Willshaw, 1976|.

In 1977, Kohonen got published the book “Associative Memory: A System-
Theoretical Approach” [Kohonen, 1977|, where he summarized the previous work
about associative memories.

In 1979, Uttley got published the book “Information transmission in the nervous
system” [Uttley, 1979] in which he summarized his previous work on neural networks.
One of the most known ideas was that the statistical correlation between neurons
was determined by the fluctuation of states. Some of his ideas were important later
for the maximum mutual information (Infomax).

In 1980 K. Fukushima designed a type of Artificial Neural Network (ANN) that
he called Neocognitron [Fukushima, 1980]. It was based on the visual nervous system
that Hubel and Wiesel proposed in the 60s [Hubel and Wiesel, 1962, 1968|. The
Neocognitron was composed by units that simulated simple and complex cells (S-
cells and C-cells). These cells were arranged into different layers specialized in one of
the types. The first layer only contained simple cells while complex cells followed at
the next layer. The third and fourth layers corresponded to lower-order and higher
order hypercomplex cells, but their structure was similar to the simple and complex
cells (see architecture in Figure 6.7). Although the biological architecture was not
specified for more than four layers, Fukushima stacked several pairs of these layers.
The connections of the network were trained in an unsupervised manner, and after
the training, the last layer of C-cells was specialized on one specific type of stimulus.
Figure 6.7 shows a diagram of the architecture of the Neocognitron.

In the same year, Grossberg got published the article “How does a brain build
a cognitive code?” where he discussed a new principle for Self-Organizing Maps

on nuclear physics. After that he research on memory and learning. Famous by his experiment
on using music for improving the spatio temporal reasoning. This experiment coined the term of
“Mozart Effect”.

1976

1977

1979

1980

1982

1983

84 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

(SOMs), the Adaptive Resonance Theory (ART); an unsupervised learning model
for error correction [Grossberg, 1980].

6.8 Connectionism as a doctrine

After several years of recession in the Connectionism area, researchers started com-
ing back progressively as more applications demonstrated promising results. In 1982,
Feldman and Ballard wrote an article that emphasized the benefits of using “dis-
tributed representations” instead of the “grandmother cell” approach [Feldman and
Ballard, 1982]. In addition, the authors proposed the use of discrete values at the
output of the neurons from -10 to 10 to encode binary classifications with the sign
and — in addition — a sub-classification with the discrete values from 0 to 10. In their
work, they applied the technique to recognize if a specific symbol was a character
and in the positive case which was the type of font. The authors also introduced
the Winner-Take-All (WTA) idea; if a neuron received various signals, the unit with
the largest value inhibited the responses of the others.

Another important work came from J.J. Hopfield! . In his work “Neural networks
and physical systems with emergent collective computational abilities” [Hopfield,
1982|. Hopfield presented a theoretical foundation for an addressable memory with
binary threshold nodes. Each unit was connected to the rest with symmetric weights
to guaranty the convergence of the network — after various iterations — into a stable
low energy level state. The publication was written with terms from physics and
was based on the principle of energy minimization. For that reason, the publication
got the attention of physicists and they started showing interest on these type of
models. This architecture was a special case of the Cohen and Grossberg neural
network that was finally called Hopfield networks (see also [Hopfield, 1984] and a
historical summary made by Grossberg [Grossberg, 1988]).

In the same year, Kohonen got published one of his important articles “Self-
organized formation of topologically correct feature maps” [Kohonen, 1982|. In this
work, Kohonen organized a set of neurons in a 1 or 2 dimensional array and trained
the network to map the input signals. The resulting mapping in certain conditions
was topologically correct, organizing the different events into different regions of the
map. The visualization of the resulting map is usually very informative, although it
needs a careful interpretation as the space can be highly complex, and non-linear.

In 1983, the Connectionism ideas got more attention. For example, in the pro-
gram of Defense Sciences Office at DARPA, the program manager Ira Skurnick opted
to try the new approaches that neurocomputing researchers were proposing. From
that point, Skurnick started funding research projects that applied these ideas. Also,
other research organizations started funding similar projects.

Also, one of the first publications about reinforcement learning was published
written by Barto, Sutton, and C.W. Anderson. The authors exposed a control
problem to stabilize a pole over a movable cart, and solved the problem using a

41John Joseph Hopfield (Chicago, Illinois, United States; July 15, 1933) is an American
physicists. He is known by his work in artificial neural networks and the Hopfield Networks.

6.8. CONNECTIONISM AS A DOCTRINE 85

neural network that learned by himself [Barto et al., 1983]. The authors needed to
solve the problem of “credit assignment” to decide the influence of each parameter
various steps before the error. They used two adaptive devices: an associative search
element that matched all the inputs to an associative output, and an adaptive critic
element that tried to predict the next reinforcement depending on the actual action.
The learning rule of the associative search element used the expected prediction to
modify its weights. Altogugh they only used one element of each, they pointed that
the system should be extensible to multiple elements.

Fukushima et.al. [Fukushima et al., 1983] used his Neocognitron to classify
handwritten characters invariant to position. The model worked successfully also
by adding some noise to the input pattern.

Kirkpatrick, Gelatt and Vecchi developed the “simulated annealing” algo-
rithm to find better local optima in optimization problems that could be
applied to discrete cases |[Kirkpatrick et al., 1983|. It was based on the met-
allurgy, where metals are cooled with a nonlinear and stochastic procedure;
and on “Metropolis-Hastings algorithm”, a “Monte Carlo method” designed
in 1953.

Cohen and Grossberg had been working on addressable memories for some years
and they finally got published an article about one type of ANN that could be used
as a content addressable memory (CAM) [Cohen and Grossberg, 1983]. It included
the Hopfield network as a special.

In 1985 Ackley, Hinton*? and Sejnowski*® designed the Boltzmann Machine (BM)
[Ackley et al., 1985]. A Recurrent Neural Network (RNN) with stochastic units. It
was based on statistical mechanics.

Judea Pearl** developed the Belief Networks (BNs); a probabilistic graphical
model with directed and acyclic connections [Pearl, 1985|. Three years latter he
got published the book “Probabilistic reasoning in intelligent Systems: Networks of
Plausible Inference” [Pearl, 1988], a very cited book about plausible reasoning under
uncertainty.

In 1985 and 1986, Rumelhart, Hinton and Williams got published two of the
most famous articles about backpropagation: “Learning internal representations by
error propagation” [Rumelhart et al., 1985] and “Learning representations by back-
propagating errors” [Rumelhart et al., 1986]. The authors claimed that the hidden
units were able to represent some features of the original patterns that were not
present in the input space. Although the idea of propagating the error was not new,
this was one of the first times to apply the backpropagation algorithm to train a

12Geoffrey Everest Hinton (Wimbledon, London; December 6, 1947) is a British and Cana-
dian computer scientist and psychologist. His main interests are in artificial intelligence, artificial
neural networks. He is the co-inventors of Boltzmann machines, backpropagation and contrastive
divergence.

43Terrence Joseph Sejnowski (Cleveland, Ohio, United States; 1947) is an American physi-
cist. He got the PhD from Princeton University in 1978 under the supervision of John Hopfield.

44Judea Pearl (Tel Aviv, British Mandate for Palestine (Israel); 1936) is an American electrical
engineer, computer scientist and philosopher. His research interests is in artificial intelligence
focusing on probabilistic approaches.

1985

1986

1987

1988

1989

86 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

ANN. For example, the same concept was proposed in Werbos PhD thesis [Werbos,
1974], and was simultaneously applied by Yann Le Cun® in his PhD thesis [LeCun,
1985; Le Cun, 1986] to propagate “virtual target values” and one year earlier by
Parker in his report “Learning-logic” [Parker, 1985]. Older applications of similar
methods for optimal programming and control from Bryson et.al. date from the
60s the “Optimal programming problems with inequality constraints” |Bryson et al.,
1963| and the book “Applied Optimal Control” [Bryson, 1975].

In 1987, the International Neural Network Society (INNS) was formed, and the
first open conference on Neural Networks was organized “IEEE International Con-
ference on Neural Networks” in San Diego with 1700 attenders.

In the same year, Sejnowski and Rosenberg demonstrated the usefulness of
MENN with NETtalk [Sejnowski and Rosenberg, 1987|, a neural network that
learned to pronounce English text. The authors demonstrated empirically that the
internal representation was distributed through all the neurons, making it robust
small perturbations.

In 1988, Broomhead and Lowe proposed the use of Radial Basis Function (RBF)
networks in his publication [Broomhead and Lowe, 1988]; a type of ANN where the
activation functions are radial basis (commonly a Gaussians).

Also, one of the most famous books of Rumelhart and McClelland “Parallel
Distributed Processing, Volumes I and II” was published [Rumelhart et al., 1988]|.
The authors made a summary about all the Connectionism ideas, and how the
biological nervous system is able to represent all the concepts in a distributed way
throughout the neural network.

Linsker?® got published an article exposing the idea of maximum mutual
information (Infomax) [Linsker, 1988]. The idea relied on the maximization
of the retention of information when some constrains are applied. Linsker
focused on the visual perception of animals, but he made analogies to other
problems. This idea was the basis for the posterior development of the
Independent Component Analysis (ICA)

In 1989, the academic journal Neural Computation was founded, focused on the
topics of psychology, physics, computer science, neuroscience, and artificial intelli-
gence, among others. .

In the same year, Yann Le Cunn collected a small dataset of hand-written digits
(predecessor of the MNIST dataset) with 480 binary images of size 16 x 13 pixels,
and demonstrated that constraining the parameters of a MEFNN reduced the size of
the network while improved its performance [LeCun, 1989|. This network was one
of the first successful Convolutional Neural Networks (CNNs) and was called LeNet

45Yann Le Cun (near Paris, France; 1960) is a researcher in computer science, with special focus
on machine learning, computer vision, mobile robotics, computational neuroscience. During his
PhD he proposed one version of backpropagation. He designed one of the first Convolutional Neural
Networks (CNNs) called LeNet and measured its performance with a handwriting recognition
dataset with successful results. He participated in the creation of the image compression technology
DjVu.

46Ralph Linsker (Canada; September 12, 1956) is a researcher in the IBM T.J. Watson Re-
search Center. His main interests are in the field of neuroscience, machine perception and leanring.

6.8. CONNECTIONISM AS A DOCTRINE 87

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 @28x S2: . maps
6@14x14

84 10

Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Figure 6.8: LeNet-5. One of the first implementations of a Convolutional Neural
Network (CNN) for handwritten character recognition

(see Figure 6.8. After the success of the CNN on recognizing digits, Le Cunn et.al.
collected 9298 hand-written digit images from the U.S. mail of New York post office
[LeCun et al., 1989]. The model of this work was posteriorly used in the post offices
of the U.S. Additional work was done in 1990 [LeCun et al., 1990]. In the same
year, the IEEE Transactions on Neural Networks was founded. Figure 6.8 shows the
architecture of LeNet-5.

In 1992, Vapnik et.al. designed a pattern recognition technique called Support
Vector Machine (SVM) [Boser et al., 1992]. This technique was able to find the
optimal hyperplane that separated the input patterns in a transformed space. It
was a non-parametric model that only required to store some of the sample points;
the patterns that “support” the hyperplane that they called support vectors. The
authors presented a very theoretical foundation and explained the boundaries of
its generalization. Furthermore, when selecting a hyperbolic tangent as a kernel
function, the resulting classifier could be interpreted as a ANN with one hidden
layer and a variable number of hidden units that was chosen automatically during
the training and made the separation optimum for the given task.

The same year, R.M. Neal?” developed the sigmoid belief networks, which he
introduced in the article “Connectionist learning of belief networks” [Neal, 1992].
Neal shows empirically that the training of sigmoid belief networks can be faster
than in a Boltzmann Machine (BM), as the directed connections of belief network
do not need to compute the “negative phase”.

In 1995, Bell and Sejnowski proposed to use the principle of Infomax to the
blind separation problem [Bell and Sejnowski, 1995]; specifically in the cocktail party
problem. The problem consisted on the separation of different voices and sounds
that were previously recorded by various sources in a room with people talking and
other noise.

In the same year, Hinton, Dayan, Neal and Frey designed the “wake-sleep” al-
gorithm to train simultaneously recognition and generation models with the same
hidden representations [Hinton et al., 1995]. It consisted on two phases: during the
wake phase (1), the recognition model was used to infer the latent variables from a

4"Radford M Neal (Canada; September 12, 1956) is a professor of statistics and machine
learning in the University of Toronto. He got his PhD in 1995 in Toronnto “Bayesian Learning for
Neural Networks” under the supervision of Geoffrey Hinton.

1990

1992

1995

1996

2000

2004

2006

2007

2009

88 CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

real sample and the generative model was trained to recreate the hidden and vis-
ible variables, while in the sleep phase (2), the generative model created a sample
and the recognition model was trained to recognize the hidden variables. The au-
thors applied this technique to two directed graphical models that they called the
Helmholtz Machine (HM) [Dayan et al., 1995]. More information about the HM and
the wake-sleep algorithm can be found in [Dayan and Hinton, 1996; Dayan, 2000;
Kirby, 2006].

In 1996, Saul, Jakkolla, and Jordan were working with the problem of training
sigmoid belief networks and they demonstrated the possibility to use mean field the-
ory to train them. improves the training of sigmoid belief networks using mean field
theory [Saul et al., 1996]. The authors shown the performance on the classification
of hand-written digits.

In 2000, the organizers of the Neural Information Processing System (NIPS)
pointed that having the words “neural networks” in the title was negatively correlated
with the acceptance of the paper, on the other hand Support Vector Machine (SVM),
Belief Network (BN) and variational methods were encouraged (p. 1 [Simard et al.,
2003]).

In 2004, Jaeger and Hass got published the first paper about Echo State Network
(ESNs) |Jaeger and Haas, 2004|. In this work, the authors shown the potential of
these networks to predict very complex time series.

6.9 The birth of Deep learning

In 2006, Hinton and Salakhutdinov developed an algorithm to train Belief Networks
(BNs) with multiple hidden layers [Hinton et al., 2006]; what they called Deep Belief
Network (DBN)s. The idea was to pre-train the network with the same algorithm
used on Restricted Boltzmann Machines (RBMs) in each pair of layers, starting
from the first pair of layers and ending at the output layer. Once the network was
pre-trained, it was finetuned with some steps of the up-down algorithm (a variant
of the wake-sleep algorithm |[Hinton et al., 1995]), and Contrastive Divergence to
speed-up the training [Carreira-Perpinan and Hinton, 2005].

In 2007, after the success of training a Deep Belief Network (DBN) by using an
unsupervised pre-training phase [Hinton et al., 2006|, the interest on unsupervised
learning of deep hierarchical features started growing. Some researchers compared
the advances in deep learning with other methods like kernel methods [Bengio and
LeCun, 2007].

In 2009 Honglak Lee et.al. designed a probabilistic maxpooling to create a
convolutional Deep Belief Network (DBN). This architecture could recognize and
generate samples by performing a forward or backward pass |Lee et al., 2009].

Other researchers focused on the analysis of the deep architectures and found
that in CNNs the ReLLU was a very important activation function, the learned filters
were better than hardwired, and multiple stages of features were better than one
(deep architectures were better than shallow) [Jarrett et al., 2009).

In the same year, Yoshua Bengio published the book “Learning Deep Architec-

6.9. THE BIRTH OF DEEP LEARNING 89

X" ”’v, "v,‘ 5 - i:’»:, 2\
AN 204t S5ae \dense
48 128 204 208
X y s : 13
224 I R B L
= t e ’ dense dense|
o - 27 T\ O\ 13
N s 1000
A 128 Max L] L]
; 204 4
228\ iStride Max 128 Max pooling 2 2048
of 4 pooling pooling

3 48

Figure 6.9: AlexNet deep CNN. Architecture that won the classification task in
the ILSVRC 2012

tures for AI” [Bengio, 2009], in which he summarized the advances in deep learning
and the representational power of the new architectures.

One of the largest datasets of natural images was released with the name
ImageNet, and the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2010 is celebrated with two challenges: the image classification
and localization. 1.000 categories for the dataset where extracted from
WordNet (a large lexical database of English). The first release contained
1.2 million of images but this number grown to 14 million images in 2015.
The difference with other datasets was the number of images, categories,
and sizes usually larger than 256 x 256 pixels.

In 2012, researchers from Google published a famous article about large scale
unsupervised learning to extract hidden representations from a large number of
images (individual frames from YouTube videos). After the training, the researchers
found neurons acting as “grandmother cells”, showing a maximum activity when a
specific object was presented to the network like cat faces, human faces, or human
bodies |Le et al., 2012].

In the same year, Alex Krizhevsky and other researchers from University of
Toronto participated in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012 with a deep Convolutional Neural Network (CNN) reaching the
first position on the classification task. It was one of the largest networks until
date with multiple convolution, an fully connected layers. The training was fully
supervised and most of the improvement was done by using the ReLLU activation
function, dropout and Local Response Normalization (LRN) (see architecture in
Figure 6.9).

In 2013 and 2014, the state-of-the-art approaches for image classifications were
deep Convolutional Neural Networks (CNNs) with small changes in the number of
layers, convolution sizes and a variety of heuristics [Szegedy et al., 2014; Simonyan
and Zisserman, 2014; Ioffe and Szegedy, 2015; He et al., 2015|.

2012

2014

90

CHAPTER 6. A BRIEF HISTORY OF CONNECTIONISM

Chapter 7

Method and Material

“It is common sense to take a method and try
it. If it fails, admit it frankly and try another.
But above all, try something.”

— Franklin D. Roosevelt

In this chapter, we introduce the methodology followed to elaborate and test the
experiments of this thesis. First, we give a brief introduction of the initial analysis
and the experiments in Section 7.1 — however more details and a deep description
can be found in Chapter 8; page 99. Second, we describe the datasets used in the
initial analysis and the experiments in Section 7.2. Third, we discuss our color space
selection in Section 7.3. Then, we describe how to merge particular color channels
using techniques from multimodal learning in Section 7.4. Finally, we present a list of
libraries and software available to train neural networks and explain our motivation
to choose the framework used in this thesis in Section 7.5.

7.1 Initial analysis, experiments, and test

We divided the experiments of this thesis into three different phases. First, we
evaluated the initial motivation and analyzed various CNNs. The basic idea was to
study the importance of luminance and chrominance in the first convolution layer,
and the distribution of the weights on each filter. Once the initial analysis was
completed, we proceeded with various more specific experiments. Each experiment
focused on one specific motivation, and multiple models were analyzed. Finally, we
compared certain models having high validation accuracies using various statistical
tests. During the statistical tests, we repeated the training of each model several
times with random initializations and recorded their validation accuracies. With all
the accuracy samples, we performed several statistical tests, each with particular
assumptions about the real distribution. More details and an extensive description
can be found in Chapter 8.

91

92 CHAPTER 7. METHOD AND MATERIAL

e AT - EEAE
wonee DB AR E B
o Emall WL ¥ RIS
« FECHSEEEs P
o LTV A
N e o [
v EEEREDDNE
ore BRI 3 R B S
N T
v G e A

Figure 7.1: CIFAR-10 examples

7.2 Datasets

We saw in Section 2.9 a subset of the available datasets for image classification and
object recognition. In order to select an appropriate dataset, we had various issues
to take into account.

First, the initial motivation of the thesis was based on a CNN trained with the
ImageNet 2012 dataset. However, the training of these networks is computationally
expensive, thus requiring high performance GPUs and often more than one week of
training. For that reason, the initial analysis was performed using the specification
of some CNNs previously trained with ImageNet data, but in order to test all the
hypotheses and run all the experiments of this thesis we chose a smaller dataset (we
refer here as “small dataset” ones with less images, images of smaller height and with
a smaller number of pixels, and a reduced number of categories). One smaller dataset
is CIFAR-10, collected by Alex Krizhevsky, Vinod Nair and Geoffrey Hinton (see
Chapter 3 of |Krizhevsky and Hinton, 2009]). It is composed of 60.000 small images
of 32 x 32 pixels, with every image belonging to one of 10 classes. These classes do
not overlap, thus simplifying the training. For example, the class “automobile” does
not contain any big cars that could be confused with the class “truck”. Figure 7.1
shows ten examples per class.

The reasons for choosing CIFAR-10 dataset include:

1. The reduced size of the images and the small number of classes allowed the
size of the network to be reduced.

2. Despite having at our disposal several GPUs in our department, only one was
powerful enough to train large models like AlexNet in a reasonable amount of
time.

3. The training time of AlexNet required about 8 days, while training the models
with CIFAR-10 took approximately 12 hours.

4. Our experiments involved training of multiple architectures and developing

7.3. COLOR SPACES 93

R G B Y u \Y,

Figure 7.2: Set of channels used in our experiments. From the RGB channels
it is possible to extract the YUV channels with a linear transformation

statistical tests repeating each experiment several times. This analysis would
be unfeasible with large networks.

5. In case that the results on CIFAR-10 are successful, it should be possible to
try a reduced set of larger architectures on bigger datasets.

7.3 Color spaces

As discussed in Section 2.7, there are multiple color spaces that can be used to rep-
resent images. However, our motivation was to exploit the separability of luminance
and chrominance. Consequently, we needed a color space that divides the chromi-
nance and luminance information into separate channels. Some available options
were HSL, HSV, YIQ, and YUV. From these options, we focused on color spaces
that need only a linear transformation from RGB. This restriction was decided for
the re-usability of our framework and other implementations. The linear transfor-
mation can be a preprocessing step and only implies one matrix multiplication. The
same transformation can be done to the average of the images in order to subtract
the mean from every input image (this is done as a preprocessing step for each image
to help the training of the network). We chose the YUV color space, as it fulfills all
the mentioned requirements. Also, YUV has been used in previous works for skin
color classification [Chai and Bouzerdoum, 2000| and segmentation [Chai and Ngan,
1999; Phung et al., 2005], facial region location [Chai and Ngan, 1998|, and fast
image segmentation for interactive robots [Bruce et al., 2000]. Other color spaces
are left as a future work. The more common RGB color space was used in different
contexts: (1) as a reference model, (2) to test ideas of multimodal learning, and (3)
to combine different color spaces in the same network.

7.4 CNN architectures

During the experiments, we proposed and used several CNN architectures and con-
figurations. In some cases, only the number of feature maps was modified. However,
most of the experiments focused on learning specific filters for different channels.

94 CHAPTER 7. METHOD AND MATERIAL

Input Input

N

(961) X2 X3

QO QO

noow W noow W
(a) Early fusion (b) Medium fusion (c) Late fusion

Figure 7.3: Multimodal learning example with three different methods of merg-
ing the input features

This idea of merging the input features at different levels has been previously used
in the context of multimodal learning.

7.4.1 Multimodal learning

Multimodal learning is a set of techniques that explore how to learn from different
sources of features in order to solve a pattern recognition problem (see e.g. [Snoek
et al., 2005]). Some examples of applying techniques are the classification of videos
using audio, image, and motion features [Ngiam et al., 2011], and learning image
representations and their corresponding textual captions [Fang et al., 2014]. As
the number of features increase, the solution complexity also grow, and multimodal
learning uses different approaches to simplify this problem. One of the approaches
is to train individual models for each type of feature and then average all the model
predictions. However, this approach does not exploit the possible correlations be-
tween the different features. On the opposite side, it is also possible to learn only one
model using all the features. Nevertheless, this approach involves a larger number
of parameters to learn, thus increasing the complexity of learning and occasionally
the training time and the required number of samples. Moreover, in the case of
ANNS, if the initial features are not correlated and we assigned random weights in
their connections, the learning algorithm will need to suppress these connections
(approaching the corresponding weights to zero), thus making the training slower
and requiring additional epochs or data samples to converge. These different ap-
proaches can be named as early fusion when the features are not separated, medium
fusion when the features are merged after some preprocessing steps, and late fusion
when the features are merged in a later level of abstraction.

7.5. SOFTWARE 95

Figure 7.3 shows an example of the three merging methods used in this thesis.
The example is a simplification where only three inputs are depicted. Figure 7.3a
represents early fusion where all the inputs are merged at the first layer. Figure
7.3a represents medium fusion where the first layer learns individual features from
features z; and from x5 and x3 together. The medium fusion can be seen in the
context of this thesis with the luminance channel as a vector of inputs x; and the
chrominance channels as x5 and x3. In this case, the first layers of features learn
specific filters for luminance and for chrominance. Figure 7.3c represents late fusion
which merges the features in the output layer.

7.5 Software

The great success of CNNs on image classification has accelerated the development
of new machine learning implementations and frameworks focused on speed and
usability. In addition, the recent advances in computational power and modern
GPUs have reduced the training time and the maximum number of parameters per
model that can be learned. Several research groups and software developers have
implemented excellent versions of CNNs. These implementations are able to explode
the most recent computational capabilities. In order to develop these systems in an
efficient and scalable way and in a reasonable amount of time, some of the systems
are open source and available on GitHub. This enables rapid growth and reuse of
the code.

Because of the complexity of these systems and the lack of time to evaluate
the experiments during the thesis, we performed an initial analysis of the available
frameworks. Some of the available options are described in this section.

7.5.1 OverFeat

Overfeat [Sermanet et al., 2014| is an implementation of the CNN that won the lo-
calization task in ILSVRC2013. Overfeat was initially developed by a research group
at the New York University and was trained with Torch7 (an extension of the Lua
programming language). It is able to use C/CUDA to accelerate the computation.
This implementation offers a trained CNN and can be used to extract features or
classify images. The authors offer a library in C++ and have developed wrappers
for Python and Lua (they are also developing one for Matlab).

7.5.2 Caffe

Caffe [Jia et al., 2014] is a framework for rapid development of various kinds of neural
networks. It is implemented in C++ and has wrappers for Matlab and Python.
The definition of the neural networks is given in a plain text file, where every layer,
activation function, and initialization is specified. Caffe was developed by Yangqing
Jia during his PhD at Berkeley University. It can utilize the GPU to accelerate the
training process and it has been one of the fastest CNN implementations.

96 CHAPTER 7. METHOD AND MATERIAL

— Theano/Theano — BVLC/caffe

— lisa-lab/pylearn2 —— sermanet/OverFeat
180 T T T I I

num. of commits
=
o
o

1

30 40 50

0 1 !
0 10 20

last 52 weeks (updated 29/11/2014)

(o))
o

Figure 7.4: CNN libraries comparison in number of commits per week during
my thesis

7.5.3 Theano

Theano |Bastien et al., 2012] is a Python library that optimizes some parts of the
code in C to speed up the calculations. The implementation works on top of NumPy,
one of the most extended libraries for Python for scientific programming. The library
allows the use of the GPU in a transparent manner. It also implements automatic
and efficient symbolic differentiation, given the specification of a function. Theano
is being developed by members of the LISA Lab at Université de Montréal. The
library is a exceptional tool to learn how different machine learning algorithms work.
The authors also offer very good tutorials on how to implement common algorithms
using this library.

7.5.4 Pylearn2

Pylearn2 [Goodfellow et al., 2013] is a library implemented on top of Theano that
incorporates different machine learning algorithms ready to use. It offers a set of
common tools for scientific experimentation, as well as an appropriate structure
to use different datasets, models, training algorithms, and tests. It is also being
developed in the LISA Lab at Université de Montréal.

7.5.5 Blocks

Blocks is a recent library implemented on top of Theano. It is similar to Pylearn2,
as it incorporates already implemented machine learning algorithms. Also, it in-
corporates some facilities for training, monitoring and optimizing ANNs. It is also
being developed in the LISA Lab at Université de Montréal.

7.6. COMPUTER HARDWARE 97

7.5.6 In this thesis

In this thesis we chose to use the Caffe framework. The principal reasons for pre-
ferring Caffe were: (1) the number of parameters to train is huge. Training with a
large number of parameters is computationally expensive and we required one of the
fastest implementations of CNNs. The Caffe implementation is written in C++ and
optimized for Cuda, which accelerate the training and allowed us to test a larger
number of architectures. (2) We needed to specify a large variety of architectures
and the Caffe implementation allowed us to modify a plain text file and run the
same exact code with different configurations easily. (3) We wanted to try different
state-of-the-art networks and some of them are available — or are easy to specify —
in Caffe. (4) During the thesis the community developing Caffe was very active, im-
proving the implementations and adding new features and architectures periodically
(see Figure 7.4).

7.6 Computer hardware

CNNs5s usually require high computational resources during training. Modern GPUs
can accelerate the training from 40 to 140 times with respect to CPUs. However, the
memory size of the GPU limits the number of parameters of the network. Nowadays,
state-of-the-art networks require a large amount of distributed computers, or high
performance GPUs. In the department of Computer Science in Aalto University
we had at our disposal one cluster of CPUs and GPUs. Table 7.1 list the GPUs
that were available during our experiments. However, only one machine (named
“gpu8”) was powerful and fast enough to run the experiments with large networks;
in a reasonable amount of time.

machine name | CPUs | Speed | GPU c.c. | cores | Mem. (GB)
gpu001:gpull11 12 2666 | Tesla M2090 | 2.0 512 6
gpul:gpu7 4 1600 | GTX480 2.0 | 448

gpus 4 1600 | GTX Titan | 3.5 | 2880 6

Table 7.1: Different machine architectures used during all the experiments.
The columns stand for: (machine name) name of the machine; (CPUs) number of
CPUs; (Speed) Speed of the CPUs in MHz; (GPU) model of the NVIDIA CUDA
GPU; (c.c.) CUDA computational capability; (cores) number of cores in the GPU;
(Mem.) Memory size of the GPU in gigabytes.

98

CHAPTER 7. METHOD AND MATERIAL

Chapter 8

Experiments

“It’s not an experiment if you know it’s going
to work.”

— Jeff Bezos

In this chapter, we explain the motivation for each performed analysis and ex-
periment. First, we give a description of the initial analysis in Section 8.1. This
section discusses the original hypothesis about the importance of chrominance and
luminance in the first convolution layer in two different networks.

Next, we present a detailed description of each individual experiment in Section
8.2. Each of these descriptions include: (1) the motivation for the experiment, (2)
the color spaces that were used, (3) the architectures that were compared, and (4)
details about the number of feature maps in each layer.

Finally, we compare the best architectures with multiple executions to check the
statistical significance of the findings in Section 8.3. We also give a brief explanation
about the different statistical tests in the same section.

8.1 Initial analysis

The initial analysis evaluated one of the principal motivations of this thesis: Do
CNNs learn two different types of filters? Are they divided by luminance and
chrominance? To answer these questions, we took several pre-trained networks !
and analysed their weights at the first layer. These weights can be interpreted as
visual filters or features. If we assume that the luminance filters do not contain
chrominance information, then all the weights must be approximately in the diag-
onal of the RGB color space. The diagonal contains a grey-scale from the absolute
white to the complete dark, and corresponds to all the pixels p; ;s of the filter f
represented as p; ;. ; € R® = [w,, w,, wy); j; where w, = w, = w,. On the other hand,
the filters that focus on chrominance should not expand excessively in the direction
of the luminance axis. However, as the six remaining corners of the RGB cube —

LAll the models are available for the Caffe framework in http://caffe.berkeleyvision.org/

99

http://caffe.berkeleyvision.org/

100 CHAPTER 8. EXPERIMENTS

red, green, blue, magenta, yellow and cyan — are not on the same plane, it is impos-
sible to create an exact chrominance plane. For that reason, we do not compute the
amount of chrominance in the features, but only the level of luminance.

We first analyze a modified version of AlexNet [Krizhevsky et al., 2012] (see
original AlexNet in Figure A.2 and a modified version in Figure A.3). This CNN
won the classification and localization tasks in ILSVRC2012 [Russakovsky et al.,
2014]. We analyze this network once it has been pre-trained with the ImageNet 2012
dataset. AlexNet is composed of five convolutional layers — some of them followed
by normalization and/or pooling — and of three fully connected layers including
dropout. The first convolution layer contains 96 feature maps with a kernel size of
11 and a stride of 4. Although the original network separates the first convolution
into two parts, in our case they were not separated.

The second network was designed in Berkeley University based on the network by
Alex Krizhevsky and trained with CIFAR10 dataset (see Figure A.5). This network
is composed of three convolutional layers, each one followed by pooling and the first
two performing a normalization. The last layer is a fully connected layer with ten
outputs, that is, one output per class. The first convolution contains 32 feature
maps with a kernel size of 5 and a stride of 1.

Both networks perform a rectification of the convolutional layers with the ReLU
activation function and both use a softmax layer on top of the last fully connected
layer to predict the category of the input images.

Finally, we show a brief analysis of two recent state-of-the-art networks. However,
we could not develop an extended analysis in this thesis, and it is left for future work.

8.2 Description of the experiments

In this section we describe the motivation and objectives of each experiment and
the architectures that we used to evaluate each hypothesis. We expose a detailed
description of each architecture concerning the color space, the number of feature
maps on each convolutional layer, and the type of multimodal fusion used. Figure
8.1 summarizes the architectures used in each experiment with simplified diagrams,
not including the variation in the number of feature maps.

The Berkeley network is used in all the experiments as a reference model. We
found a set of hyperparameters to maximize its performance when using five random
crops and mirroring in the RGB color space. Each of the modified architectures use
the same hyperparameters with the exception of the number of units and layers.
These are explained in detail in each individual section. However, the code that we
implemented during the project (that incorporate the color transformations) does
not support mirroring or cropping. Therefore, it must be possible to find a better set
of parameters for all the architectures, that would improve the validation accuracies.
Nevertheless, we leave this optimization as a possible extension of the current work.

Because of the large amount of architectures examined in this thesis, we assigned
representative names to each of the networks. Each name contains all the informa-
tion regarding the number of input channels, the color spaces, the number of layers,

8.2. DESCRIPTION OF THE EXPERIMENTS 101

Example | Complete name Simplified name | Fusion
(1) rgh32-32-64 E rgh32 E Early
(2) yuv32-32-64 E yuv32 E Early
(3) y32 uv32 32-64 M y32 uv32 M Medium
(4) y16-32 uv16-32 64 L | y16-32_uv16-32 L | Late

Table 8.1: Examples of nomenclature used per each architecture

the number of feature maps per layer, and the used multimodal fusion method. To
understand the nomenclature we show four examples and explain each part of the
name (Table 8.1 summarizes the four examples). (1) The reference architecture
is the Berkeley University version trained with the RGB channels and symbolized
as rgb32-32-64 E. The first part rgb32 indicates that the channels RGB are
merged in a convolution layer with 32 feature maps. Then each number separated
by a dash (-) corresponds to a new convolution layer with the specified number of
feature maps. The underscore () is used to finish the current path of convolutions
and the character E corresponds to Early fusion, while in other cases it can be an
M for Medium fusion or an L for Late fusion. Because all the architectures use
this network as a base we simplified the nomenclature to rgb32 E and assumed
always that there are a total of 3 layers of convolutions where if omitted the second
layer contains 32 feature maps and the third layer 64 maps. (2) The next exam-
ple uses the YUV color space and is merged in Early fusion, and is symbolized as
yuv32 E. (3) A more complex example is y32 uv32 M, indicating that there
are 32 feature maps for the Y channel and 32 feature maps for the UV channels.
The next two convolutional layers of 32 channels are omitted (without omitting the
last layers it would be represented as y32 uv32 32-64 M). (4) Finally one of
the most complex examples is y16-32 uv16-32 L, containing one path of two
convolutional layers for the Y channel, the first one with 16 feature maps and the
second with 32 feature maps, and at the same time, the channels UV have their own
convolutions with 16 and 32 channels. Only the last convolution is omitted here,
corresponding to the last 64 feature maps (without omitting the last layer it would
be represented as y16-32 uv16-32 64 L). As explained previously, the final L
corresponds to Late fusion.

8.2.1 Experiment 1: Color channels

The first experiment evaluates the importance of each individual color channel for
image classification. We test individually the colors red, green, blue channels, and
the two chrominance components (U and V) from the YUV color space. In addition,
the luminance channel (Y) is also included. We use two reference models to perform
the comparison: one trained with all the RGB channels, and another using the
YUV channels. The eight architectures use the same hyperparameters and number
of feature maps per channel. However, due to the difference in the number of input

102 CHAPTER 8. EXPERIMENTS

E@llﬂ@@?@

C’)ééééé o O

a) Experiment 1: Color channels

I Ty

o O
6 é é (c) Experiment 3: RGB

b) Experiment 2: YUV

W@

o

(d) Expenment 4: Y + RGB (e) Experiment 5: RGB + Y + UV

Figure 8.1: Simplified diagram of different architectures per experiment.
Note that in some experiments the same architecture is used with different numbers
of feature maps and these diagrams do not represent these changes. In addition, we
only show the separated layers, merging layers, and output layers. The dashed lines
indicate the remaining convolution layers.

channels the initial convolutions have different numbers of parameters. In the models
with only one channel there are 1 x 5% + 1 = 26 parameters per initial feature map,
while the models with three channels contain 3 x 52 + 1 = 76 parameters. Table 8.2
shows the different networks and their respective numbers of parameters.

model #parameters
One feature channel: red, green, blue, Y, U, V 3.88e+05
Three feature channels: RGB, YUV 3.89e+-05

Table 8.2: Experiment 1: models and numbers of parameters

8.2.2 Experiment 2: YUV early/medium/late fusion

This is the main experiment of the thesis and tries to answer the following question:
Does merging the luminance and chrominance in medium or late fusion deteriorate
or improve the performance of the network? If we assume that during training the

8.2. DESCRIPTION OF THE EXPERIMENTS 103

CNN creates two differentiated types of filters, for chrominance and luminance, then
it should be possible to learn these filters and then merge them in an upper layer.
To test this hypothesis, we train three different architectures using luminance as
one feature and the two chrominance channels as another set of features. These
features are merged in early, medium or late fusion. Aside from the merging level,
we compare different numbers of feature maps for each architecture. Table 8.3 shows
the different networks and their respective numbers of parameters.

model #parameters
yuv3d2 E 3.89e+05
yuv6d B 4.17e+05
y12 uv20 M 3.88e-+05
y20 _uvl2 M 3.88e+05
yl6 _uvle M 3.88e+05
y32_ uvle M 4.01e+05
y32 _uv3d2 M 4.15e+05
y16-16 _uvl6-16 L 3.75e+05
y16-32 uvl6-32 L 4.4e+05
y32-32 _uv32-32 L 4.66e+05

Table 8.3: Experiment 2: models and numbers of parameters

8.2.3 Experiment 3: RGB early and medium fusion

Experiment 2 demonstrated good performance with medium fusion, but not with
late fusion (See the results on Section 9.2.2). In this experiment we study medium
fusion in the RGB color space. However, if we separate the three basic channels at
the beginning, the filters can only learn 1/3 of the luminance and 2/3 of the specific
color in each channel. Then on the second layer, the models can combine the initial
filters to create gray-scale filters. We use the RGB model with early fusion as a
reference. For the medium fusion we try different numbers of feature maps (8, 11,
20, 30, 40 and 50 filters per channel). Table 8.4 shows the different networks and
their respective numbers of parameters.

8.2.4 Experiment 4: RGB + Y early and medium fusion

The fourth experiment checks if it is possible to improve the performance of models
that use RGB by adding an additional luminance channel. The Y channel should
focus on the learning of luminance filters, while the RGB channels can focus entirely
on the chrominance part. However, the RGB channels can still create some variations
in the luminance component if it is strictly necessary. In this experiment the RGB

104 CHAPTER 8. EXPERIMENTS

model #parameters
rgh32 3.89e+05
r8 g8 b8 M 3.81e+05

11l gll bll M 3.89¢+05
120 g20 b20 M 4.11e+05
r30_g30_b30_ M 4.36e+05
r40 g0 b40 M 4.61e+05
50 g50 b50 M 4.85¢-+05

Table 8.4: Experiment 3: models and numbers of parameters

channels are always merged in early fusion, while the Y channel is merged in early or
medium fusion. Table 8.5 shows the different networks and their respective numbers
of parameters.

model #parameters
rgh 3.89¢e+-05
yrgh32 E 3.9e+05

yl6 rghl6 M 3.89e+05
y32_1gh32 M 4.16e+-05

Table 8.5: Experiment 4: models and numbers of parameters

8.2.5 Experiment 5: RGB + Y + UV medium fusion

This experiment is an extension of the fourth one while the previous experiment
we added a redundant luminance channel, in this experiment we further add two
chrominance channels. In this case, the Y channel should focus on creating the lumi-
nance filters, the UV channels should focus on chrominance, and the RGB channels
should create the remaining non-specialized filters; or specialized if required. In this
case, the RGB channels are merged in early fusion, as well as the U and V channels
in their own specific layer. Then, all the features are merged in medium fusion. The
difference between the architectures resides in the number of feature maps in the
first layers. Table 8.6 shows the different networks and their respective numbers of
parameters.

8.3 Tests of Significance

All the previous experiments compared one training execution per each model. How-
ever, ANNs are randomly initialized making it uncertain if their performance dif-

8.3. TESTS OF SIGNIFICANCE 105

model #parameters
rgh32 E 3.89¢e+4-05
rgbll y11 uvll M 3.9e+05

rgh22 yl11 uvll M 3.99e+05
rgbll y22 uvll M 3.99e+05
rgbll y11 uv22 M 3.99e+4-05
rgh22 y22 uv22 M 4.18e+-05
rgh33 y22 uv22 M 4.27e+05
rgh22 y33 uv22 M 4.27e+05
rgh22 y22 uv33_ M 4.27e+05
rgh33 y33 uv33 M 4.46e+05

Table 8.6: Experiment 5: models and numbers of parameters

ferences are caused by the architecture or a random component. Consequently,
we perform a statistical tests with the models that demonstrated high validation
accuracies by training ten models per architecture randomly initialized.

In general, statistical tests require independent observations in their samples.
However, in our experiments the validation accuracies at different epochs are corre-
lated. Therefore, we performed one statistical test per epoch. This was, obtain a
curve per each model indicating the p-values during the training.

Some statistical tests assume that the samples follow a specific distribution.
Nonetheless, we do not know the underlying distribution of the accuracies when we
randomly modify the initial parameters. Consequently, we performed a set of tests
that assume different distributions and compare if there exist discrepancies.

We use the following methodology to carry out the statistical tests:

1. We formulate the null hypothesis Hy and the alternative hypothesis H,

e Hj :Observations are the result of pure chance
e H, :Observations show a real effect combined with a component of chance
variation

2. We identify a test statistic that fits our assumptions.

3. We choose an acceptance value « to refute or accept the hypothesis (in our
case a = 0.04).

4. We compute the p-value, which is the probability that the given samples have
been generated given the assumptions and the null hypothesis.

5. We compare the p-value to the previously chosen a. If p < a then the obser-
vation is statistically significant. This means that the null hypothesis is not
statistically plausible and the alternative hypothesis is accepted.

106 CHAPTER 8. EXPERIMENTS

The next list summarizes the different statistical tests used, and their respective
assumptions.

e Common in all tests

— Individuals are randomly selected from the population

— Each sample is independent from the rest
e Wilcoxon rank-sum

— The samples are ordinal

— Homoscedasticity (equal variance)
e Welch-Sapin Test (or Welch’s t-test)

— Two-sided test
— Normally distributed

— Sample sizes are likely the same size
e T-test of two independent samples

— Two-sided test

— Normally distributed

— Homoscedasticity

— Sample sizes are likely the same size

— Recommended when less than 30 samples are available
e One-way ANOVA test

— Reasonably normally distributed

— Reasonably same standard deviation

Chapter 9

Results

“There are three principal means of acquiring
knowledge. . . observation of nature, reflection,
and experimentation. Observation collects
facts; reflection combines them;
experimentation verifies the result of that

combination ”

— Denis Diderot

In this chapter we present all the results obtained during the thesis. The results
are divided in three sections. Section 9.1 shows a detailed description of the first
layers of filters in two CNNs. We also perform a superficial analysis of two state-
of-the-art networks from ILSVRC2014. Next, in Section 9.2 we present the results
of all the experiments and discuss the results with the initial motivation. Finally,
Section 9.3 presents the results of the significance tests for the models with larger
validation accuracy.

9.1 Initial analysis

In this section we analyze the first feature maps of two CNNs. Section 9.1.1 discusses
the well-known Alexnet architecture trained on the ImageNet 2012 dataset to classify
natural images. Section 9.1.2 focuses on an architecture by Berkeley University
trained on CIFAR10 dataset to classify tiny images.

9.1.1 Alexnet filters for ImageNet dataset

Since 2012, Alexnet has been one of the most well-known CNNs. In this analysis
we use a network by University of Berkeley based on AlexNet (see Figure A.2 for
the original AlexNet and Figure A.3 for the University of Berkeley version). The
first layer of this network contains 96 feature maps that are depicted in Figure 9.1a.
We can observe that some of the filters contain luminance information in particular,
while the rest contain different colors. In this figure, the filters have been sorted by
the amount of luminance in a descending order. The measure used is the sum of

107

108 CHAPTER 9. RESULTS

0.18
0.16
0.14}
0.12f
0.10}
0.08}
0.06}-

vg. dist. diagonal

a
o
o
5

0.02f
0.00

L 0 20 40 60 80 100
0 20 40 60 80 100 filter

(a) First convolution filters (b) Luminance information per filter

Figure 9.1: First convolution filters in Alexnet - In (a) the filters have been
sorted by amount of chrominance in ascending order. They are sorted from left to

right and top to bottom. Their respective amount of chrominance is depicted in
figure (b)

Euclidean distances from each “pixel” of the filter to the luminance diagonal line.
The plot at the right side shows the value of the sum per each filter. We see that
approximately the first 60 filters do not contain large amounts of color, but are
not completely zero either. After about the 60th filter, the amount of color grows
exponentially. It seems clear by this plot that there exist two different regions.

Figure 9.2 shows the mean and standard deviation per each channel and filter.
The mean of the first approximately 59 filters is almost equal for all the channels.
Also their standard deviation follows the same pattern in the three channels. Cu-
riously, the green channel has a larger variance than blue, and blue more than red.
(We will see later in the analysis and in Figure 9.3c that this could be the reason of
the greenish /bluish white part and the reddish black part present in all the filters).
The next filters show different means per each specific color, while their standard
deviations are not even.

Finally, Figure 9.3 depicts the distribution of all pixels of the first filters. Al-
though from the figure we can not see the real dependencies between the different
pixels, their distribution and the previous filter visualization in Figure 9.1 give us
some information about how to interpret them. It shows clearly that not the whole
RGB color space is useful for the classification task. If we imagine all the possible
values in an RGB cube, most of its inner space is empty and the filters seem to
focus on some specific directions. Also, these directions show a large dependency in
all the original coordinate axes and are not perpendicular to any of them. The most
prominent axis is the luminance diagonal, containing the largest amount of points in
a line. Figure 9.3c shows the first 56 feature maps, together with the boundaries of
an RGB cube and the ideal diagonal. However, there is a small difference between
the ideal diagonal of the cube and the diagonal made by the filters. The whitest
color in the filters is not completely white but greenish or bluish, and the black is in-
clined to brown or redd color. This could be the cause of the previously mentioned
difference in variances for the green, blue and red channels. In addition, Figure

9.1. INITIAL ANALYSIS 109

0.58

0.56 — red |]
— green||
— blue

0.54}

0.52

0.50

0.48 MQA? ———=

0.46

mean

0.44}

0.42

0 20 40 60 80 100
filter

(a) Mean weight values for the three channels

0.18
0.16}
0.14}
0.12}
0.10}
0.08}
0.06}
0.04}
0.02
0.00

std

filter

(b) Standard deviation for the three channels

Figure 9.2: Mean and standard deviation of first filters of Alexnet in the
RGB colorspace

9.3d shows the last 40 filters. It shows that there are multiple components that are
almost orthogonal to the luminance axis. They do not depict a perfect plane but
a star with the vertices at different degrees. Nevertheless, these chrominance axes
could be described using only a pair of orthogonal axis on a plane orthogonal to the
luminance.

On the other hand, we can visualize the same filters after applying a linear
transformation of the RGB color space into the YUV color space. Using this idea,
we can evaluate the importance of each filter towards luminance or chrominance.

Figure 9.4 shows the mean and standard deviation of each channel. First we
see that the transformation moves the center of the channels to different locations,
the Y channel at approximately 0.63 while U and V at 0.27 (this translation is
not important for our analysis). However, we can appreciate that the first filters
have a more constant mean than the last ones. Regarding the standard deviation,
approximately the first 58 filters exhibit a large variance in the luminance channel,
while the chrominance channels have small variances. In contrast, the last filters
generally present more variance in chrominance than in luminance.

Figure 9.5 shows the same cloud of filter pixels but in the YUV color space.
After the transformation, almost all the points from the most prominent axis (black
to white) is on the Y axis. The remaining filters then fall in the U and V plane.
This clearly indicates that in the first filters the weights towards the chrominance
channels tend to zero, whilst for the last filters the weights on the luminance axis
tend to zero. All these almost zero weights are useless once the network has been
trained, and the learning procedure needs to discover these zeros.

110 CHAPTER 9. RESULTS

121
1.0 1.2
L]
0.8 1.0
Blue
0.8
0.4+
0.6Blue
0.2
0.4
0.0
ﬁ 0.2
0.
g.
< 5
g o. 0.0
S 1.0
1.2 -0.2

09 08 07 06 05 04 03 02 0.1 0.0

Red

(a)
1.27 1.27

1.07 ‘oooooooooooooooooo 1.07 4.000000000000000.0
f A : A
0.87 9, pe 0.87 & 3
. ° . °
° ° ° % .
° ° ° % o
0.67 C [0.6 ° °
Blue : : Blue : :
° o, [] o,
0.47 ° o, 0.47 ° Q-
° ° ° °
° o ° o
0.27 : p 0.27 s 2
° o’ o o’
° o: ° » o:
L ° ° L ° o
0.07 'ooooooooooooooooo ° 0.0 'ooooooooooooooooo °

1.0 0.8 0.6 0.4 0.2 0.0 -0.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2
Red Red

() ()

Figure 9.3: Representation of the initial weights of Alexnet in the RGB
colorspace - (a,b) two different views of the weights, (c) first 56 filters with the
boundaries and the diagonal of an RGB cube, (d) last 40 filters in the same cube

9.1.2 Berkeley filters for CIFAR10 dataset

We have seen in AlexNet analysis a clear separation between luminance and chromi-
nance filters. Here we perform the same analysis for a smaller network. This net-
work specified by University of Berkeley is originally based on one network by Alex
Krizhevsky (see the architecture in Figure A.5).

9.1. INITIAL ANALYSIS 111
0.6
0.5} — Y|
U
0.4af v
< 0.3}
€ o2l
01}
0.0 \/\,\/JUM/—
0l 20 20 60 80 100

0.16

filter

(a)

0.14}+
0.12
0.10-

std

0.06
0.04}+

0.02

0.00
0

0.08

100

Figure 9.4: Mean and standard deviation of first filters of Alexnet in the
YUYV colorspace

O.ST
0.6T

0.3
0.4T

0.2
0.2T
Voot 0.1
-0.27 0.0
—0.4t

-0.1
-0.6T1

[]

-0.2
-0.87
iy 015.777 -0.3
-0. 0.
0. 0.4
0. .

Uoa Y0.2 -0.4
%612 10 08 06 04 02 00 -0z 90pg 03 02 01 00 -01 -02 -03
Y V]

(a) (b)

Figure 9.5: Representation of the initial weights of Alexnet in the YUV
colorspace

Figure 9.6 shows the 32 feature maps of the first layer, sorted by the sum of
Euclidean distances to the luminance diagonal. If in Alexnet the difference was

112 CHAPTER 9. RESULTS

= z
ISR
HNCNHE < oos|
hl.l:‘ FF;F\. 1 % 0.06|

5 10 15 20 25 30 35
filter

(b)

Figure 9.6: First layer of filters of Berkeley network trained with CIFAR10
dataset sorted by the sum of all the Euclidean distances from each pixel to the
luminance diagonal

clear, in this case the gradient is more subtle. Although there is still a slight visual
difference.

We do not know the reason why in this case it is not separated, however one
possible reason could be that the small number of filters force them to be reused on
different situations. For instance, a reddish black filter with white strips could be
used to detect red patterns or strips indifferently.

The weight distribution can be seen in Figure 9.7. Once more, there exist a
principal axis corresponding to the luminance. However, the luminance and chromi-
nance specialization in this case is less pronounced than in the case of AlexNet. If we
rotate the pixels towards the YUV color space we see again some pixels distributed
in the Y axis, while the rest is mostly spread in the U and V axes. However, in this
case the specialization is not very clean. As in the previous case, the luminance axis
created by the network is slightly greenish or bluish in the white region and reddish
in the black region. Despite of these results, the experiments are focused on this
network, and it is hoped they can generalize to AlexNet or newer state-of-the-art
networks.

9.1.3 ILSVRC2014 state-of-the-art CNNs

Although the next networks are not intensely analyzed, we show here the first filters
of the two winners of ILSVRC14 on classification, detection and localization tasks.
Simonyan and Zisserman [Simonyan and Zisserman, 2014| designed a CNN that
got the first and the second position in the localization and classification tasks
respectively. The authors used very small kernel sizes at the first convolution layers,
and stacked multiple convolutions without intermediate layers. Then, they added a
maxpooling layer and repeated a similar configuration in the upper layers. The small
kernel size and the multiple stacks of convolutions allowed the network to reduce
the number of parameters while increasing the deepness and consequent level of
abstraction. Because of the high non-linearities that this network involves from the

9.1. INITIAL ANALYSIS 113

1.21
1.07 15
0.87
1.0
0.67
Blue 0.8
0.47
0.6
0.27 Blue
° 0.4
0.0T1 ®
. 0.2
[]
i 0.0
0
0.
Reé)z —-0.2
10 08 06 04 02 o0 %912 10 08 06 04 02 00 -02
Red Green
(a) (b)
0.3t
0.27 0.3
0.1 0.2
[]
0.07 °
v 0.1
-0.1
0.0
-0.7 v
-0.1
0.3
®e -0.2
—0.4
y -0.3
I ~
<2012 10 o8 00,20 0.15 0.10 0.05 0.00 —0.05-0.10-0.15-0.20
Y u
(c) (d)

Figure 9.7: First convolutional filters on Berkeley for CIFAR10. Represen-
tation of the three component weights (red, green and blue) of each pixel of each
feature map in the first convolution layer. The color of each point corresponds to
the specific most responsive color

very beginning, it is not clear if the methods proposed in this thesis could work.
Nevertheless, Figure 9.8b shows that again the filters have some specialization in
luminance or chrominance, thus opening the possibility to try different levels for
merging the YUV channels.

114 CHAPTER 9. RESULTS

avg. dist. diagonal

10 20 30 40 50 60 70
filter

0.16

0.14
0.12
0.10
0.08
S 0.06

ist. diagonal

vg

© 0.04
0.02

000 L L L L L L
0 10 20 30 40 50 60 70
0 10 20 30 40 50 60 filter

() (d)

Figure 9.8: First layer of filters of two state-of-the-art networks on
ILSVRC14 - First column the visualization of the filters, second column the av-
erage of luminance of the kernels per filter (a,b) very deep neural network, (c,d)
GoogleNet

The last network studied here is GoogleNet [Szegedy et al., 2014| (see Figure
A.4). This network got the first position in the classification and detection tasks
in ILSVRC2014. The authors reduced the number of parameters with respect to
Alexnet by a factor of 12. To achieve this reduction, the authors designed a new
handcrafted sub-module called “Inception” (see Figure 9.9). Each instance of this
module incorporated several convolutions with kernel sizes 1 x 1, 3 x 3, and 5 x 5.
On some levels, various “Inception” submodules were stacked without maxpooling
layers in between, allowing the network to be deeper, with a total of 22 layers.
Figure 9.8c shows the first filters sorted by luminance. Once more, there is a clear
separation between luminance and chrominance filters that could be exploited with
our approach.

Although the first analysis of the state-of-the-art networks shows the possibility
of our method to improve their prediction, there is no place in this thesis to continue
the analysis and posterior experiments. These evaluations are left for future work.

9.2. EXPERIMENTS 115

Filter
Filter
e concatenation
oz oo o
Il >3 5x5 >3
1 L) [})
%' 1 D 33 max pooling

"

R Previous layer

(a) Inception module, naive version (b) Inception module with dimension reductions

Figure 9.9: Inception module Figures from [Szegedy et al., 2014]

9.1.4 Conclusions

After this analysis, we can conclude that CNNs using the RGB color space need
to coordinate the weights from the three channels to produce the luminance and
chrominance filters. However, if we train the network in the YUV color space, a
large part of the weights tends to zero at the end of the training. Consequently, these
weights are useless for two reasons: (1) during the training, the network needs to
learn that almost half of the weights are nearly zero, and (2) after the training, these
weights do not contribute to the final classification, thus making them useless. For
that reason, it must be possible to use all these computational resources and useless
parameters to train additional filters or reduce the dimensionality of the network,
thus accelerating the training.

9.2 Experiments

In this section we explain the results of all the different experiments. The analysis
focuses on the training and test errors, the accuracy on test data, and the size of
the models (number of parameters). Although on some occasions, the computation
time is an important measure to compare different models, all the experiments that
we carried out had similar training times. Moreover, we used a variety of different
computer architectures and GPUs, making impossible to do most of the comparisons.
Consequently there are no time comparisons in this thesis. However, the Table 9.1
depicts the different machines used during the experiments with their approximated
computational times to train the models.

We used CIFAR10 dataset to evaluate the models. The original dataset is com-
posed of 60.000 images, of which usually 10.000 are used for testing and 50.000 for
training. We divided the training part into training and validation with 40.000 and
10.000 respectively. This division is commonly used on this dataset. In addition,
the size of the validation set offers a very intuitive validation accuracy value as each
0.1 point of accuracy corresponds to 1.000 images correctly classified. Finally, the
test data was not used. The reason is that it was not available from the dataset

116 CHAPTER 9. RESULTS

machine name | GPU Memory (GB) | time (hours)
gpu001:gpul11 Tesla M2090 6 12
gpu0:gpu7 GTX480 1 13
gpu8 GTX Titan 6 8

Table 9.1: Different machine architectures used during all the experiments
- each column stands for: (machine name) name of the machine; (GPU) model of the
CUDA GPU; Memory size of the CUDA GPU in GigaBytes; (time) approximated
time of one training in hours.

source that we used!.

The hyperparameters were chosen previously for a network trained with RGB
channels, 32 feature maps in the first convolution and early fusion. The same hy-
perparameters were used for the rest of architectures. Every batch contained 100
images, the initial learning rate was 0.001 and it was decreased by a factor of 0.1
every 125 epochs. In addition, we choose a momentum of 0.9 and a weight decay of
0.004.

The basic architecture used is the predefined in Caffe software by Berkeley Uni-
versity shown in Figure A.5

9.2.1 Experiment 1: Color channels

In this experiment, we analyzed the difference between the basic colors and the
luminance and chrominance to classify CIFAR images. The experiment was executed
once per model during 500 epochs. During the training, the training error and the
validation accuracy were periodically annotated. Figures 9.10 and 9.11 show partial
information of the training, while Figure 9.12 and Table 9.2 contain a summary.

Training error Validation acc.

model || min avg | std max | avg | std #params
Red 0.108 | 0.36 | 0.291 || 0.768 | 0.725 | 0.0778 || 3.88e+05
Green || 0.126 | 0.365 | 0.291 || 0.762 | 0.728 | 0.078 3.88e+05
Blue 0.123 | 0.396 | 0.337 || 0.761 | 0.725 | 0.079 3.88e+-05

Y 0.108 | 0.36 | 0.294 || 0.773 | 0.735 | 0.0797 || 3.88e+05
U 0.547 | 0.868 | 0.323 || 0.611 | 0.584 | 0.0674 || 3.88e+05
\Y 0.439 | 0.813 | 0.349 || 0.597 | 0.561 | 0.064 3.88e+4-05

RGB 0.0571 | 0.265 | 0.256 || 0.803 | 0.765 | 0.083 3.89e+05
YUV 0.09 0.315 | 0.305 || 0.797 | 0.765 | 0.083 3.89e+05

Table 9.2: Color channels: summary table of results

The results show that using all available information from the three original
channels (red, green and blue) achieved the best validation accuracy. There was a

We got the dataset from www.kaggle.com

www.kaggle.com

9.2. EXPERIMENTS 117
1.6 y T reg y 1 T
° n e 1 09 - =
e 14 Green Y 08 |
o 12 Blue - RGB ---- 4
2 Y - YOV 0.7 1 1
s 08 ;;;;;;\;-I-;i 4 05 .
o065 : . 8-;‘ n i
S 04 Nl G .
= S S 02 Frnousto
S 02r e Al 4 o1l o]
0 \ w Tt N 0 :
100 200 300 400 500 200 250 300
epochs detail
Figure 9.10: Color channels: training error smoothed
0.85 0.8 ———
0.8 - I
o i 0.75 R
o 0.75 oo
5 ‘,‘y//“”\‘/J\‘
8 07 s —
@©
S
o 0.65
_‘(_U, 065 s —
el
E 06 A A Y A S A SO AN T N Ll N —
> 0.6 - .
0.55 —
0.5 ‘ ‘ ‘ ‘ 0.55 ‘
100 200 300 400 500 300 350
epochs detail

Figure 9.11: Color channels: test accuracy

small difference between RG B and YUV models in favour of RG B but the difference
did not seem significant. The reason could be related to the random initialization
of the parameters, as the YUV model was using simply a linear transformation of
the data that could be reversed by the weights of the first layer during the train-
ing. The YUV and RGB models contained 1.600 more parameters than the rest,
corresponding to the additional two channels in the first layer (2 x 5 x 5 x 32).

The Y model got the third position with respect to the validation accuracy. This
model used only the luminance of the image (gray scale image). We saw in Chapters
2 and 3 that one of the most important parts in vision is luminance, and some of the
image compression techniques use this knowledge to reduce the size of the images
without an appreciable difference.

The isolated colors (Red, Green and Blue) performed very similar to the Y
channel. The difference was about 0.01 in the average validation accuracy; this
difference corresponds to 100 images misclassified. The good performance of isolated
colors could be related to the intrinsic luminance that they encode. The luminance
is divided between the three channels, and possibly the learning algorithm was able

118

approx. #param.

389400
389200
389000
388800
388600
388400
388200
388000
387800
387600

validation accuracy

- S
r o
B c
— ©
L (0]
i S
L C
©
| I S— I e I S— N — . — had
& + ¢ L ya
IPGO’ Q@@ /(/Q /?O (/L
%
(a)

0.8 |

0.75 T T —

0.7 - Ji Jﬁ

0.65 % x X X

& X
0.6 - X
0.55 - ! X ! !

Red Green Blue Y

()
Figure 9.12: Color channels:

CHAPTER 9. RESULTS

0.9

0.8 - .

0.7 - .

0.6 =

0.5 4

0.4 -

0.3

o> T || | o

& Ve V
’?@0 Qb@/) /OQ ’?G& (/L
b)

4{;

X XH—— H-
X XK —

experimental results

9.2. EXPERIMENTS 119

to use this information, together with an individual color to achieve reasonably good
results.

Lastly, the chrominance part achieved the worst performance on validation ac-
curacy. It is clear here the importance of the luminance for classifying images or
objects. There was a small variation between the U (blue difference) and the V' (red
difference). In general, U was preferred to V' on this task as, although the training
error was larger, it generalized better. One possible reason could be the difference
of their range values, U € (—0.436,0.436) and V' € (—0.615,0.615). We did not
however analyze the real reason of this disparity.

9.2.2 Experiment 2: YUV early/medium/late fusion

This experiment explored the difference of merging the luminance and chrominance
at different convolution levels. We analyzed several architectures with an increas-
ing number of feature maps and consequently number of parameters. Each model
was trained once. Figure 9.13 shows the training error and Figure 9.14 shows the
validation accuracy. Table 9.3 and in Figure 9.15 show a summary of the results.

Training error Validation acc.

model min avg | std max | avg | std #params
yuv32 E 0.0848 | 0.278 | 0.275 || 0.798 | 0.767 | 0.0827 || 3.89e+05
yuvbd E 0.0783 | 0.328 | 0.283 || 0.798 | 0.767 | 0.083 4.17e+05
y12 uv20 M 0.0902 | 0.299 | 0.28 0.794 | 0.762 | 0.0816 || 3.88e+05
y20 uvl2 M 0.0946 | 0.33 | 0.313 || 0.799 | 0.767 | 0.0825 || 3.88e+05
yl6 uvle M 0.1 0.313 | 0.279 || 0.803 | 0.77 | 0.0834 || 3.88e+05
y32 uvle M 0.0804 | 0.308 | 0.284 || 0.8 0.764 | 0.0818 || 4.01e+05
y32 _uv32 M 0.0869 | 0.294 | 0.288 || 0.809 | 0.771 | 0.0842 || 4.15e+4-05
y16-16 uv16-16 L || 0.117 | 0.354 | 0.295 || 0.791 | 0.757 | 0.0834 || 3.75e+405
y16-32 uv16-32 L || 0.0737 | 0.283 | 0.281 || 0.8 0.767 | 0.0835 || 4.4e+05
y32-32 uv32-32 L || 0.0694 | 0.265 | 0.282 || 0.806 | 0.772 | 0.0827 || 4.66e+05

Table 9.3: YUV E/M/L: summary table of results

The results show that increasing the number of feature maps at the first layer
with early fusion did not improve the validation accuracy, although the number
of parameters increased and the training error decreased. However, merging the
luminance and the chrominance on upper layers got a better validation accuracy,
while the number of parameters decreased or increased slightly compared to the
early fusion models.

If we focus on medium fusion, we see that y16 _uvl6 M and y32 uv32 M got
the best results on validation accuracy. The first with the lowest number of param-
eters and with larger training error indicating that its generalization was higher;
y16_uvl6 M contains 800 parameters less than yuv32 M.

On the other hand, late fusion models improved with the number of parame-
ters but their training error decreased very fast. This behaviour could be bad for

120 CHAPTER 9. RESULTS

1 T T T 0.2 T
yuv3d2 E —— |
yuv6e4 E 0.18 - |
S y1l2_ uv20 M - o
E y20_uvl2_M 1 0.16 - o
& y1l6_uvle_M
‘T i y32_uvle_M 7 014 - 4
b=} £ y32_uv32_ M ---- |
3 o4l \ y16-16_uv16-16_L | 012 Ermlimed
s : k y16-32_uv16-32_L R S
8 03w y32:32.uv3232L - 4 g1 | I Bt
§ o2 f TR 1 008 B
0.1 - : e e ’ B]
0 : : : : 0.06 :
100 200 300 400 500 300 350
epochs detail
Figure 9.13: YUV E/M/L: training error smoothed
0.82 T T T T 0.805 T
0.8 |- o s T Py I o
Mo [" oo 08 W
0.78 [i 5 e S] i “\/\/'\ ‘”\“H ‘
g ! RN yuv32_E 0.795 ﬂ'w,’%;‘ o it \/\7\/\/;
5 0.76 ‘ : yuve4_E = ALY
9 y12_uv20 M 0.79 [---rmay
© 0.74 Kl ‘\ﬂ;n y20 uvl2 M ——— _ \ ' '
= ‘ y16_uvlié_M
> 072 I y32_uvl6 M | 0.785 A
’ b y32 uv32 M - - - -
o7 bt ~ yl6-16_uv16-16_L 1 o078k |
: i y16-32_uv16-32 L ———
y32-32_uv32-32. L — — -
0.68 : : T ‘ 0.775 ‘
100 200 300 400 500 300 350
epochs detail

Figure 9.14: YUV E/M/L: test accuracy

generalization and it could need more strict regularization.

9.2.3 Experiment 3: RGB early and medium fusion

In this experiment we compared the difference of merging the RGB colors at the first
layer (early fusion) and at the second layer (medium fusion). This restriction forces
the first feature maps to focus on one unique color and one third of the luminance.
We compared different number of feature maps at the first layer while the rest of
the layers remained with the same number of feature maps.

Figure 9.17 shows the training error while Figure 9.16 shows the validation ac-
curacy. A summary of this experiment can be seen in Figure 9.18 and Table 9.4.

The results show that the best validation accuracy corresponded to the early
fusion. Merging chrominance and luminance at the first feature maps enabled the
network to decide how to use each part of the colors with the possibility to create the
whole gray-scale palette. On the other hand, medium fusion performed 0.01 points
worse on average. The inability to merge the colors at the first layer deteriorated

9.2. EXPERIMENTS

470000

460000
450000
440000
430000
420000
410000
400000

approx. #parameters

%%WHHHHHH H

N 7 R R R N N
“. % % o e 1 R Fa “o5 23
NN Yo

5, 2.,
L (3
e Lo SN

Ny Ny Ny N 419”7

s %y

"’e

G NG,
%‘b g,

train mean error

OO0 000000
NAORNNCwwwwww
ONOOWRNWRGO

nm

4
7
<

b4

N N
Te Lo L) %y

4, 4 L 4, L L. 4, 4

0”@ L Jso S 2, "’e(/ Jo\ \)6\ \.7:_)
L\)G /?6\ L\,\ 6‘ v) o
Ny Ny Ny N, ‘@ ﬁf ﬁy

121

W

s % % Y6
NN NC ¢
(a) (b)
g 081
o .
5 0.8
S 079 T T T T L 1 L T L
© 0.78 Tﬁ -
S 077
g 0.76
£ ot Lh - | EHETT
>
.//(/1:9 J?///& .P‘Zv) .Pv)o -1,’26‘ J/o)e J»Q:) J/’z@ }'26: J/Q:-Z
R T N Ny, Ny N N e S D
&N T)O \}v) \}6‘ {6‘ O)v) NG NG NG
NN AN RN 7N JQ 362 Q)v)\
Ve W R
NN N(
(c)
Figure 9.15: YUV E/M/L: results of experiment
Training error Validation acc.
model min avg | std max | avg | std #params
rgh32 0.0571 | 0.265 | 0.256 || 0.803 | 0.765 | 0.083 3.89e+05
r8 g8 b8 M 0.0853 | 0.316 | 0.293 || 0.781 | 0.749 | 0.0805 || 3.81e+05
rll g1l bll M || 0.0891 | 0.313 | 0.318 || 0.783 | 0.752 | 0.0814 || 3.89e-+05
r20_g20 b20 M || 0.081 | 0.298 | 0.299 || 0.788 | 0.757 | 0.0824 || 4.11e+05
r30_g30 _b30_M || 0.076 | 0.305 | 0.306 || 0.793 | 0.758 | 0.0818 || 4.36e+05
r40 _g40 b40_ M || 0.0795 | 0.289 | 0.291 || 0.792 | 0.758 | 0.0824 || 4.61e+05
r50_gh0 b50_ M || 0.0802 | 0.294 | 0.288 || 0.79 | 0.756 | 0.082 4.85e+05

Table 9.4: RGB E/M: summary table of results

their potential performance. Although the results were better than using only the
luminance or the individual colors (see Section 9.2.1), medium fusion did not exploit
the possibility of creating good feature maps at upper layers. Otherwise, the number
of feature maps seemed to improve their performance, but they reached a limit when
the number of feature maps per channel was larger than 30 (see Figure 9.18c).

122 CHAPTER 9. RESULTS

0.9 : : ; ; 0.16
: RGB i L i
S 0.8 5 r8_g8 b8 M 0.15
50 0.7 e ril gll b1l M - 0.14 .
3 06 r20_g20_b20_M 4 013 =
2 L\ A r30_g30_b30_M i L i
g 05 2 r40_g40_b4o_ M 0.12
g 04r \ r50_g50 bsO M ---- | 011 F s
6 0.3 R 1 01 Fror Ty
.% 02 - : P S : 4 0.09 - S
—)
S 01+ M eeed 0,08 B
0 | | | | 0'07 |
100 200 300 400 500 300 350
epochs detail
Figure 9.16: RGB E/M: training error smoothed
0.82 y y y y 0.795 x
0.8 [I ‘ » 4079 N -
I"" - M o TSN 2V , A
k>; 078 * _A*‘\\;\'V//v;'.x,;,,: 0785 7=, Yo
5 | B RAED
§ 0.76 { RGB —— 0.78 - e Ry it
. { r8_g8 b8 M B YT
S 0.74 il ril g1l b1l M - 4 0.775 Fiiie i
I r20_g20_ b20 M ——-— R
(NG) S
LU S Ah o r30_g30_b30_M B | : 4
0.72 [t r40_g40_b40_M 0.77
i g r50_g50_b50 M - - - -
0.7 I ‘ ‘ ‘ 0.765 ‘
100 200 300 400 500 300 350
epochs detail

Figure 9.17: RGB E/M: test accuracy

9.2.4 Experiment 4: RGB + Y early and medium fusion

The previous experiments focused on different methods for merging the colors. How-
ever, in this experiment the luminance information was additionally incorporated
to the RGB color space, and it was merged at different levels. This adds redundant
information to the input, but this approach could create some specialized feature
maps at different convolution levels. Table 9.5 shows a summary of the performance
of each model.

Training error Validation acc.
model min avg | std max | avg | std #params
rgh 0.0571 | 0.265 | 0.256 || 0.803 | 0.765 | 0.083 3.89e+4-05
yrgh32 E 0.0634 | 0.269 | 0.299 || 0.797 | 0.763 | 0.0822 || 3.9e+05
y1l6 rgbl6 M || 0.0821 | 0.304 | 0.284 || 0.79 | 0.757 | 0.0816 || 3.89e+05
y32 rgb32 M || 0.0682 | 0.283 | 0.296 || 0.797 | 0.763 | 0.0824 || 4.16e+05

Table 9.5: RGB+Y E/M: summary table of results

The results show that the reference model (rgh or rgh32 E) achieved a better
validation accuracy than the models that incorporated additional luminance infor-

9.2. EXPERIMENTS

approx. #parameters

123
0.32
= 5 0.31 - B
S 5 0.3 | B
=4
- ¢ 0.29 -
1S
+ c 028
&
L = 0.27
. R N R By T Y BN R % % W
B % N9, Ngy (g o ‘g D N Ng, oy Ny N9y &
N R [4 (4 (% (% Nos ¢ [4 0 ° (2
4 \6{) \é")o \6\90 \670 \é‘s\o 1, \6(\) \690 \6&0 \6?0 \6\5\
(a) (b)
> 0.81 -
© 0.8 - _
3 079 X -
® 078 - é -
5 077} -
® 076 -
2 0.75 -
g 0.74 - % I I I I I -
e - ~ A, /% 2
T %, % o S &2 %
¢ N N, N Ny N
- 7 2 0 ° 0
4, \{i, \<z) \(29 NG \<2$
% o 0 % 0
N N Y N N
(c)
Figure 9.18: RGB E/M: experimental results
- 0.9
g 0.8 |- rgb —
2 8-% Loas yrgb32_E
) 0:5 ZA\\y;W)) . yl6_rghl6 M -
£ 04+ _ y32rgh32 M
o 03 N
c 0.2 : N :
s 01Ff OSSR N
b 0 1 1 1 1
100 200 300 400
epochs detail
Figure 9.19: RGB+Y E/M: training error smoothed
> 081 08—
e L s S .-
3 o7 v e LI T ok
8 077 !] i 7
c 076] .
o 075 | yrgh32_E B i
& 274 | y16_rgh16 M]]
S 073 : - -
= 072 F : y32_rgh32 M ——-— - .
g o071l : : :
>
100 200 300 400 500 300
epochs detail
Figure 9.20: RGB+Y E/M: test accuracy
mation (see Table 9.5 and Figures 9.20 and 9.21c). Although the latter models

500000
480000
460000
440000
420000
400000
380000

124 CHAPTER 9. RESULTS
,» 420000 0.305 § 0.81 _
@ 415000 [5 0209-2 r i £ 0.8 -
£ 410000 s 0o 1 S 0.;9 7
§ 405000 - S o285 |] © 078 -
% 400000 - g 028 § 077 _
% 395000 c 0275 = 0.76 _
S 390000 |- %40 % 0.75 _
385000 | [1= 0.26 m S o074 % X _

£ -P@é 4, J’\pe 9 /\bé o T 6 (X o 0
RN R s, % o Mo Moy
e R e R e R
\47 \/y \47 \47 \@
(a) (b) ©
Figure 9.21: RGB+Y E/M: experimental results

were able to learn the same set of weights with the addition of some specific fea-
ture maps, they did not learn sufficiently good filters. One possible reason could
be that the luminance channel did not add new useful information. Moreover, the
redundant information increased the number of weights to train, thus increasing the
learning complexity. However, their performance could be possibly improved by ad-
justing the hyperparameters. The tuning of the hyperparameters is open for future
experiments.

9.2.5 Experiment 5: RGB + Y + UV medium fusion

In the last experiment, we tested different proportions and number of feature maps
specialized on RGB, luminance, or chrominance. We merged these filters at the
second convolution layer. The RGB model with early fusion was used as a reference
model to asses the different performances. Table 9.6 and Figure 9.24 summarize the
results. Figures 9.22 and 9.23 show the training and validation errors during some

epochs.

Training error

Validation acc.

model min avg | std max | avg | std #params
rgh32 E 0.0571 | 0.265 | 0.256 || 0.803 | 0.765 | 0.083 3.89¢e+4-05
rgbll y11 uvll M || 0.0771 | 0.306 | 0.304 || 0.797 | 0.762 | 0.0811 || 3.9e+05
rgb22 yl11 uvll M || 0.0619 | 0.282 | 0.301 || 0.802 | 0.767 | 0.0831 || 3.99e+05
rgbll y22 uvll M || 0.0823 | 0.292 | 0.295 || 0.801 | 0.765 | 0.0827 || 3.99e+05
rgbll y11 uv22 M || 0.0741 | 0.289 | 0.293 || 0.801 | 0.762 | 0.082 3.99e+4-05
rgb22 y22 uv22 M || 0.0729 | 0.284 | 0.293 || 0.8 0.769 | 0.0833 || 4.18e+05
rgb33 y22 uv22 M || 0.0633 | 0.274 | 0.288 || 0.801 | 0.768 | 0.0829 || 4.27e+05
rgh22 y33 uv22 M || 0.073 | 0.293 | 0.295 || 0.804 | 0.769 | 0.0831 || 4.27e+4-05
rgb22 y22 uv33 M || 0.0725 | 0.3 0.293 || 0.802 | 0.771 | 0.0834 || 4.27e+05
rgh33 _y33 _uv33 M || 0.0696 | 0.287 | 0.286 || 0.799 | 0.769 | 0.0835 | 4.46e+-05

Table 9.6: RGB+Y+UV Medium:

summary table of results

9.2. EXPERIMENTS 125

1.2 T T T 0.095 T
rgh32_ g ——
- 1L - rgbll_yll uvll M i} 0.09 - -
. . rgh22 y11 uvll M - S
2 rgbll y22_uvil M — - 0.085 - B
2 0.8 1 rgbll_yll uv22_M 1 o008l
& I rgb22_y22 uv22_M :
5 06 - irgb33_y22 uv22 M ---- | 0075 b
s rgb22_y33_uv22_M R SS—
o rgb22_y22 uv33_M 0.07 - ~
g 04r rgb33 y33 uv33 M — — - | Lo
.% 0.065 - TS
5 0.2 - 0.06 - |
0 ‘ ‘ ‘ 1 0.055 |
100 200 300 400 500 400
epochs detail

Figure 9.22: RGB+Y-+UV Medium: training error smoothed

0.82 { { { { 0.794 {
0.8 |- 4 0.792 [T e
R i N T
> 078 ‘ S 079 Ay
5
v} rgh32 E —— | | i
g 076 rgbll yll uvll M 0.788
S rgh22_y11l uvll M - A
2 074 rgb11_y22_uvll M 1 0.786 oy
o i rgbll yll uv22_M
T 072 |l rgb22 y22 uv22 M 1 o784 | i
i rgb33_y22 uv22 M - - - -
| rgb22_y33_uv22_M | | |
0.7 rgb22_y22_uv33 M 0.782
rgb33 y33 uv3d3 M — — -
0.68 * * * * 0.78 *
100 200 300 400 500 400
epochs detail

Figure 9.23: RGB+Y-+UV Medium: test accuracy

The results show that in general the models slightly larger than the RGB one
were not able to surpass the performance of the reference model. We saw in other
experiments that the specialized features could work better than allowing the model
to find the correct weights. However, from this experiment we saw that the model
needed a larger number of feature maps if we restrict the number of connections. On
the other hand, as we increased the number of feature maps the validation accuracy
achieved comparable results. Surprisingly, the increase in the validation accuracy
corresponded to an increase in the training error. This could mean that these models
generalized better. The extreme case of these models was the rgh22 y22 uv33 M
which achieved one of the best validation accuracies with one of the largest training
errors. This model was selected for the test of statistical significance.

126 CHAPTER 9. RESULTS

«» 450000 0.31

@ L . 0.305 - -
2 440000 s 03 L]
g 430000 - @ 0.295 B
= L c 0.29 + -
g 420000 s 0.585

410000 - IS 0.28 |

% 400000 - £ 0275

3 zsoooo oy o [T £ ozes [y N

© 380000 0.26

5. 08, 5. 08, 5. 08,08 08 5. Y, . 08 s 08 s 5. s 8. s Y
%3, %5, %5, %, 5, 965 %, 96, %, %, %y, %, %, %, %, %, % %, 6*’e %5

0 0 0 0
\6\ J— \J' J— A5 } NLy L \J— L \<<\ \} \J, \J, \J, Ly NLy Ly Ly L
’2 (/ {)(/ ee(/ {)(/ 99(/ ee(/ \):P(/ e‘)(/ Q:P(/ J\(/ J\O er\)(/ J\(/ e‘:)(/ e\i(/ \)3{)(/ e‘i(x &\f(x
Ly s Uy sy Ny s sy Ly s s Sy ey s s ey L
LR, R, R e, R, e, % % R R o o D o o Y B

(a) (b)

>

§ 0805 -
< ; i -
;R | —L
© 0.785 _
s %78 -
=2 . T —
2 0.77 1 -
g 0'0792 I I I I I I I I -
g .

/s 7 /s P> P> 7 /s s o> P>
%y 6, Y%, %, %, %, %6, %, %, %
Re Ry 2, Uy 2y 2 R R, 2
{(,1/ {Ob AN Ob AN (,1/ {(,L ‘\)(,1/ \f(,b \ Ob \301/
Ny Ny Ny Ny Ny Ny Ny Ny N,

(c)
Figure 9.24: RGB+Y+UV Medium: experimental results

9.3 Statistical significance of the findings

As stated previously, all the experiments have been performed once per model. The
reason was the time complexity of each training. In this section, we selected the
models with the highest validation accuracies and inspected the statistical signifi-
cance of the findings towards the initial randomization of the weights. After running
the experiments ten times, we computed different statistics and show their p-values
to ensure the reliability of the models. As the statistical tests require independent
samples but each epoch was dependent from the previous, we computed the p-value
during the training on each epoch for all the models. Table 9.7 shows the four mod-
els with the average performance of ten executions and their respective numbers of
parameters.

Training error Validation acc.
model min avg | std max | avg | std #params
yuvd2 E 0.0803 | 0.308 | 0.29 0.803 | 0.769 | 0.0399 || 3.89e+05
yl6 uvle M 0.0761 | 0.317 | 0.296 || 0.807 | 0.77 | 0.0405 || 3.88e+05
y32 uv3d2 M 0.0699 | 0.291 | 0.285 || 0.809 | 0.775 | 0.0403 || 4.15e+4-05
rgh22 y22 uv3d3 M || 0.0623 | 0.279 | 0.284 || 0.805 | 0.771 | 0.0408 || 4.27e+4-05

Table 9.7: Statistical test: summary table of ten executions per model

9.3. STATISTICAL SIGNIFICANCE OF THE FINDINGS 127

. 0.7 ‘ 0.15
2 06 : yuv32_E 4014 |- -
v 0.5 -1 : y1l6 uvle M 4 013 -
£ 04 | y32_uv32 M - 1 012 & i
S o03p ‘\\ rgb22_y22 uv33_ M —-—- 4 011 F T
£ | | I 1 0.08 |

100 200 300 400 500 300 350

epochs detail

Figure 9.25: Statistical test: mean training error of ten executions per model

& 081 0.8

o 0.8 |- - 8.;82 s .
=] L = . o -
! 8:;2 L : 10794 - .
S 077 b yuw32 E | 0792 by
g 076+ 1 y1l6_uvl6_M 4 o788 L i
c 075 y32_Uuv32_ M o 7 0.786 |- Mt
3 074 i rgb22_y22 uv33 M —— - - 0.784 il
£ 0.73 HE ‘ ‘ = 0.782 ‘

100 200 300 400 500 300 350
epochs detail

Figure 9.26: Statistical test: test accuracy of ten executions per model

The models performed similarly in each execution. Figure 9.25 shows the average
of the training error for the ten executions, and Figure 9.26 shows the average of
the validation accuracy per model. During training, the largest model (the model
rgh22 y22 uv33 M that includes redundant information) got the smallest training
error. However, it was possibly due to overfitting to the training data as can be seen
from the poor validation accuracy. The model y32 uv32 M regularly got the best
performance in the validation set. On the other hand, the basic network joining
all the features in early fusion usually got a 0.006 points lower validation accuracy;
corresponding to 60 misclassified images. Summaries of the training error and the
validation accuracy can be seen in Figure 9.27. The boxplots show all values of each
of the ten trainings, where it is possible to see the slightly better performance of the
y32_uv32 M model over the yuv32 E one.

Every statistical test needed some assumptions about the sample distribution.
However, the distribution of validation accuracies in an ANN strongly depends on
the hyperparameters that we choose and the random initialization of the weights.
Therefore, we can not be sure about the real distribution at the validation accuracy
when we initialize randomly the parameters of the network. We could expect that the
samples will follow a normal distribution, however the high nonlinearities involved
in the predictions makes it very difficult to test. To overcome this situation we
performed several statistical tests and compared their results. Each of the statistical
tests had different assumptions (see a description of the tests with their assumptions
in Section 8.3).

In all tests, we compared the reference model YUV32 E against the models
that got the highest validation accuracies during the experiments. We tested if their

128 CHAPTER 9. RESULTS

> 0.82 -
. 02 | | ’ ’ - @ 081 -
g o4 S] S N e B I
2 03 - c 078 -
£ 02 - S 077 -
Eap EREIERES - g T :
0 B B B ! - $ o074 -
~
01’\9 Y6 >) 06\'1) J?’LQ, + s <L "’8 06‘)
N\ N\
Te % >k >R, e . % > L N
N % N2 N2 N \¢,
<N £
\47 \@
(a) Training loss (b) Validation accuracy

Figure 9.27: Statistical test: experimental results of ten executions per model

1.0

T 11
— yuv32_Evsyl6 uvle M
o8l| — Yuv32_Evsy32 uv32_M
— yuv32_E vs gb22_y22 uv33_M

i il)

0.2H

p-value

100 200 300 400 500
epoch

Figure 9.28: Wilcoxon rank-sum test YUV32 E vs all

means were significantly different. Hence, the null hypothesis Hy and the alternative
hypothesis H, were:

Null hypothesis: Hy: py — po =0 The population means are equal
Alternative hypothesis: H; : 1 — ps # 0 The population means are not equal
(9.1)

The first and most restrictive test was the Wilcoxon rank-sum test (Wilcoxon,
1945 [Wilcoxon, 1945]). The same test is also known as Mann-Whitney U test, as
it was designed independently by Mann and Whitney in 1947 [Mann and Whitney,
1947]. This is a nonparametric test that does not assume normal distributions in the
samples. However, it assumes homoscedasticity between both distributions (same
variance). In a situation of heteroscedasticity the analysis could became invalid (for
a detailed explanation see [Nachar, 2008]).

Figure 9.28 presents the p-value of the test for all the models during train-
ing. During the first 125 epochs there was no clear difference between the models.
However, when the learning rate was decreased by a factor of 0.1 and all models
improved their accuracy, there was a significant difference with respect to the model
Y32 UV32 M. Figure 9.29a illustrates in more detail the last epochs, comparing
only yuv32 E with y32 uv32 M. During the last epochs the p-value was almost

9.3. STATISTICAL SIGNIFICANCE OF THE FINDINGS 129

0.06 T T T T T T T 0.030
0.05f 0.025}
0.04} 0.020
[()]
=} =1
‘T 0.03 T 0.015{
a &
0.02H 0.010
0.01 0.005
000) Il Il L L 0000 L | | L L
150 200 250 300 350 400 450 500 150 200 250 300 350 400 450 500
epoch epoch

(a) Wilcoxon-Mann-Whitney two-sample rank-sum (b) Student’s t-test independent two-sample t-test
test p-values

0.030 — 0.030
0.025} 1 0.025} .
0.020 1 0.020 .
[[
> E
g 0.015 | T o.015()
o &
0.010 0.010
0.005 1 0.005 .
0.000 L L I\ L L 0.000 | | | | |
150 200 250 300 350 400 450 500 150 200 250 300 350 400 450 500
epoch epoch
(¢) Welch’s t-test independent two-sample t-test (d) One-way ANOVA test f-test

Figure 9.29: Different statistical tests comparing YUV32 E and Y32 uv32 M
after the epoch 130

always smaller than 0.04. This indicated that the means of the distributions differ
with a statistical significance of 0.04. Consequently, as the model Y32 UV32 M
had always a larger validation accuracy, it should mean that it performed better.

We extended the analysis adding some assumptions to the distributions. Welch’s
t-test is a hypothesis test that assumes that the samples come from two normal
distributions. It also requires similar number of samples from each distribution (in
our case always ten samples). The results were similar to the Wilcoxon rank-sum for
all the models, and for that reason only the last epochs are shown in Figure 9.29c.
We got similar results when assuming homoscedasticity with the T-test (See Figure
9.29b), and performing a One-way ANOVA test that assumed the distributions to
be reasonably normal and with similar standard deviation (See Figure 9.29d).

130 CHAPTER 9. RESULTS

Chapter 10

Conclusions

“One thorn of experience is worth a whole
wilderness of warning.”

— James Russell

In the final chapter, we present a summary of our initial motivations, the context
of our research, the methodology, the experiments, and the results in Section 10.1.
Then we discuss about the findings and the main contributions of this thesis in
Section 10.2. Finally, we conclude the chapter with an overview of all the possibilities
that our contribution has opened, and give some guidances and directions of possible
future work in Section 10.3.

10.1 Summary

The ideas of this thesis emerge from the extraordinary performance of the state-of-
the-art models for image classification tasks. During the last years, we have been
participating in the research of a new generation of machine learning models that
have pushed the limits of pattern recognition. Deep learning has demonstrated
the ability to learn very complex hidden representations from raw data, while hand-
crafted methods that have been utilized for a long time usually require very complex
solutions. On the other hand, deep convolutional neural networks have been shown
to be able to learn very useful representations from large amounts of labeled data.
Thanks to datasets like ImageNet these fully supervised models have been able to
break the human level performance on classifying images to an extend of one thou-
sand classes.

In this thesis, we took the state-of-the-art models and tried to understand some
underlaying reasons of their good performance (see Section 8.1). We found very
interesting the visual division of the learned filters into the luminance and chromi-
nance filters (see Section 9.1.1). This fact guided our intuition to investigate whether
the learned separation was actually necessary. If this was the case, it should be pos-
sible to add this prior knowledge to the network, thus making the learning easier
and focused on the real problem of finding good feature descriptors. We did some

131

132 CHAPTER 10. CONCLUSIONS

research about similar color spaces and found that the human visual system per-
forms a similar transformation of three original signals (see Chapter 3). If our retina
contains the short, medium and long photoreceptors — bluish, greenish and reddish
wavelengths (see Section 3.2.1) —, in the Lateral Geniculate Nucleus (LGN) these
signals are subtracted and merged in a particular way, creating one luminance signal
and two chrominance signals (see Section 3.2.2). The reason is that this transfor-
mation allows a better separation of the colors and it seems to facilitate the visual
process. In our work, we used a color transformation that is very similar to the
biological one. It was also used during the transition from the black-and-white to
the color television (see Section 2.7). In that case the luminance channel could be
used for both television models, and the chrominance was added to the color ver-
sions. This compatibility was useful to facilitate the transition. Also the digital
version of this transformation has been used more recently for image compression
without an apparent loss of quality. The reason is that the luminance part seems
more important for human vision than the chrominance, and using techniques like
chroma subsampling some video and image coding systems allowed the reduction of
bytes to encode images.

With this background, we found that separating the luminance from the chromi-
nance channels could improve the learning of better hidden representations. There-
fore, we first analyzed various state-of-the-art CNNs to observe if this color division
was performed in other cases, or, on the contrary, if it was only an isolated case (see
Section 9.1). After identifying other architectures that demonstrated the separation
of the luminance and chrominance, we designed a methodology to test our ideas and
to analyze an assortment of different architectures (see Section 8.2). The different
experiments were inspired by the multimodal learning approach of merging different
sets of features at different feature representation levels (see Section 7.4.1). Some
approaches merge all the features and treat them as a mixed set. On the other hand,
each feature can be preprocessed by some feature extraction and after that the hid-
den representation can be merged to perform the final classification. Using these
ideas, our experiments used one or several color spaces and merged their individual
channels at different layers. All the results were compared and the best models were
selected (see Section 9.2). Finally, we run several trainings of the selected models
and performed a statistical test of significance (see Section 9.3). The results showed
that merging the luminance and the chrominance in the second layer and adding
additional feature maps was better with a statistical significance than merging the
channels at the first layer.

10.2 Discussion

We saw in Section 9.2.2 that incrementing the number of feature maps at the first
layer did not improve the results when we used the YUV color space. And this color
space generalizes to the RGB when the rest of the architecture remains equal. Also,
we saw in Section 9.2.3 that merging the RGB channels at the second layer with
varying number of feature maps did not improve the accuracy either. However, we

10.3. FUTURE WORK 133

saw in Section 9.2.2 that when the model used the YUV color space and merged
the luminance and the chrominance at the second layer the performance increase
was statistically significant (with a significance level of 0.04). Although the size of
the model increased by a factor of 1.07 (from 3.89e+5 to 4.15e+5 parameters), this
performance was not achieved using other configurations with diverse numbers of
parameters. This could indicate that it is necessary (or at least recommended) to
learn separate filters for the luminance and chrominance. Additionally, we observed
in Section 9.2.5 that trying to learn chrominance, luminance, and mixed filters in the
same network hardly improved the results and the difference was not statistically
significant.

Nevertheless, all the experiments used the same hyperparameters although the
architectures were different. It would be recommended to adjust the parameters for
each architecture, or at least the best models with respect to the validation accuracy.
However, performing an adjustment of all the possible architectures would require
loads of computational time.

The experiments were performed using the CIFAR10 dataset. We showed in
Section 9.1.2 that previous networks trained with this dataset did not show a strong
separation between the luminance and chrominance channels. However, the results
in Section 9.3 indicated that learning the different filters separately improved the
validation accuracy. We expect these results to generalize to state-of-the-art net-
works trained with ImageNet. As we saw in Section 9.1, these networks have a more
clear separation between the filters, thus making our initial intuition more plausible.
Nevertheless, larger networks would have required a prohibitive amount of training
time for the scope of this thesis.

10.3 Future work

This thesis has been a small step towards the exploitation of distinctive filters for
image classification. The successful results open the door to a deeper investigation
in this direction. Although the tested architectures were not appropriately tuned,
they outperformed the simple use of the RGB channels. However, because of the
software implementation that we used, we could not incorporate several generaliza-
tion techniques that have been shown to improve the results. For example, previous
experiments with CIFAR10 and the original architecture have reported improved
results by cropping the original 32 x 32 images into 28 x 28 crops and training with
this aggregated dataset. Also, the use of mirroring of the input images in a random
manner helped the generalization. Additionally, in larger networks like AlexNet us-
ing dropout at the last fully connected layers has been demonstrated to improve the
generalization error.

First, (1) we recommend to add the cropping and mirroring, as it can be used
in any dataset and architecture with shown generalization improvement. Next, (2)
one should test a subset of the analyzed architectures to compare the performance
when these features are incorporated. Then, (3) the best ideas can be used to train
some of the state-of-the-art models with ImageNet dataset. Despite the models in

134 CHAPTER 10. CONCLUSIONS

CIFAR10 demonstrating an increase of performance when merging the luminance
and chrominance at the second layer, in larger networks a good merging could appear
at upper layers.

Additionally, we chose the YUV color space because it was an easy linear trans-
formation that completely separated the luminance from the chrominance. Never-
theless, when we analyzed the different CNNs we observed that better components
can be used instead of the pure luminance. In our visualizations, there is no absolute
white, as it has a bluish or greenish tone, nor absolute dark but a slightly reddish
one. It is possible to find this axis performing principal component analysis, or use
other methods to find better representations. The use of a linear transformation
is recommended as it would be more portable to other implementations. However,
non-linear transformations can be also used. The cost of using a non-linear trans-
formation is in computing the mean of the images externally.

Appendix A

Architectures

In this thesis there are several representations of CNNs. Therefore, to facilitate the
understanding of the different architectures, we designed a specific set of shapes to
denote each layer of a typical CNN (see Figure A.1). Additionally, each layer in the
posterior figures has a representative name.

Figure A.1: CINNs Keys This representation of different class of layers can be used
as a reference to better understand the different architectures shown in this thesis.
These are from top down and left to right: data, label, loss function, convolutional
layer, pooling layer, normalization layer, drop-out layer, rectifier as the activation
function (or rectified linear unit (ReLU), and a fully connected layer

135

136

; conv4_1 ;

relud_1

; conv2_1 ;

APPENDIX A. ARCHITECTURES

Alexnet

out = 96, kernel = 11, stride = 4

; convl ;

local_size = 5, alpha = 0.0001, beta = 0.75

relul

pool = MAX, kernel = 3, stride = 2

pooll

\

out = 256, kernel = 5, pad = 2

; conv2_2 ;

local_size = 5, alpha = 0.0001, beta = 0.75

relu2_1

relu2_2

(0

pool = MAX, kernel = 3, stride = 2

pool2

¢

out = 384, kernel = 3, pad = 1

=/

out = 384, kernel = 3, pad = 1

conv4_2 relu3

out = 256, kernel = 3, pad = 1

; conv5_1 ;

relud_2 ; conv5_2 ;

pool = MAX, kernel = 3, stride = 2

relu5_1

relué

relu5_2

out = 4096

=

out = 4096 - dropout_ratio = 0.5

(=)
_

out = 1000 - dropout_ratio = 0.5

Figure A.2: Alexnet

137

Berkeley

out = 96, kernel = 11, stride = 4

pool = MAX, kernel = 3, stride = 2

relul

local_size = 5, alpha = 0.0001, beta = 0.75

out = 256, kernel = 5, pad = 2

pool = MAX, kernel = 3, stride = 2

relu2

local_size = 5, alpha = 0.0001, beta = 0.75

out = 384, kernel = 3, pad = 1

out = 384, kernel = 3, pad = 1

convé4_2 relu3

out = 256, kernel = 3, pad = 1

relud_1 relud_2

pool = MAX, kernel = 3, stride = 2

relus_1 relus_2

out = 4096 - dropout_ratio = 0.5

relué

out = 1000 . dropout_ratio = 0.5

Figure A.3: Berkeley version of Alexnet

138 APPENDIX A. ARCHITECTURES

SoftmaxActivation

DepthC:

DepthConcat

Con Conv’
1x1+1(5) [l 3x3+1(5)

SoftmaxActivation

MaxPool
3x3+2(5)

DepthConcat

Conv
1X141(5)

eragePoo

5x5+3(V)

Conv SoftmaxActivation

1x1+1(5)

DepthConcat

Conv Conv

1x1+1(5)

Conv Conv
+1(5) [l 3x3+1(

Conv
a+1(5) [ll 1a+1(5)

hConcat

5x5+1(5)

MaxPool
3x3+1(5)

hConcat

7x742(5)

Come)
Figure A.4: GoogleNet Figure from [Szegedy et al., 2014|

139

Cifar10

out: 32, pad: 2, kernel: 5, stride: 1

; convl ;

pool: MAX, kernel: 3, stride: 2

pooll

local_size: 3, alpha: 5e-05, beta: 0.75

relul

out: 32, pad: 2, kernel: 5, stride: 1

=/

pool: AVE, kernel: 3, stride: 2

relu2 pool2

local_size: 3, alpha: 5e-05, beta: 0.75

out: 64, kernel: 5, pad: 2, stride: 1

=/

pool: AVE, kernel: 3, stride: 2

relu3 pool3

out: 10

Figure A.5: Early fusion: rgh32 E or rgh32-32-64

140 APPENDIX A. ARCHITECTURES

Cifar10_YUV

]

Y=KR+KG+KBU=B-Y V=R-Y

&[] [
o]

out: 32, kernel: 5, stride: 1

; convl ;

pool: MAX, kernel: 3, stride: 1

<p0011 >

local_size: 3, alpha: 5e-05, beta: 0.75

relul

out: 32, kernel: 5, pad: 2, stride: 1

=/

pool: AVE, kernel: 3, stride: 1

relu2 < pool2 ;

local_size: 3, alpha: 5e-05, beta: 0.75

out: 64, kernel: 5, pad: 2, stride: 1

e/

pool: AVE, kernel: 3, stride: 1

relu3 < pool3 ;

out: 10

Figure A.6: Early fusion: yuv32 E or yuv32-32-64

Cifar10_Y_UV_01

Y=KR+KG+KBU=B-Y V=R-Y

]] &

out: 32, kernel: 5, stride: 1

N]

pool: MAX, kernel: 3, stride: 1 out: 32, kernel: 5, stride: 1
< pooll_y ; : convl_uv ;
local_size: 3, alpha: Se-05, beta: 0.75 pool: MAX, kernel: 3, stride: 1

relul _y < pooll_uv ;

local_size: 3, alpha: 5e-05, beta: 0.75

concat | relul_uv

out: 32, kernel: 5, pad: 2, stride: 1

=/

pool: AVE, kernel: 3, stride: 1

G

local_size: 3, alpha: 5e-05, beta: 0.75

out: 64, kernel: 5, pad: 2, stride: 1

N

pool: AVE, kernel: 3, stride: 1

Figure A.7: Medium fusion: y32 uv32 M or y32_uv32_32-64

141

142 APPENDIX A. ARCHITECTURES

Cifar10_Y_UV_02
]
Y=KR+KG+KBU=B-Y V=R-Y
] [[@

out: 32, kernel: 5, stride: 1

e/]

pool: MAX, kernel: 3, stride: 1 out: 32, kernel: 5, stride: 1
pooll_y = : convl_uv ;
~
local_size: 3, alpha: Se-05, beta: 0.75 pool: MAX, kernel: 3, stride: 1
relul _y Q < pooll_uv =
out: 32, kernel: 5, pad: 2, stride: 1 local_size: 3, alpha: Se-05, beta: 0.75
: conv2_y ; relul_uv
pool: AVE, kernel: 3, stride: 1 out: 32, kernel: 5, pad: 2, stride: 1
relu2_y pool2_y : conv2_uv ;
local_size: 3, alpha: 5e-05, beta: 0.75 pool: AVE, kernel: 3, stride: 1

relu2_uv

local_size: 3, alpha: 5e-05, beta: 0.75

concat

'concat

out: 64, kernel: 5, pad: 2, stride: 1

e/

pool: AVE, kernel: 3, stride: 1

ful: 10

Figure A.8: Late fusion: y32 uv32 L or y32-32_uv32-32_64

Bibliography

Aas, K. and Eikvil, L. (1999). Text categorisation: A survey. Raport NR.

Abdel-Hamid, O. and Mohamed, A. (2012). Applying convolutional neural networks
concepts to hybrid NN-HMM model for speech recognition. Acoustics, Speech and

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A Learning Algorithm
for Boltzmann Machines™. Cognitive Science, 9(1):147-169.

Agarwal, S., Awan, A., and Roth, D. (2004). Learning to detect objects in im-
ages via a sparse, part-based representation. Pattern Analysis and Machine . . .,
26(11):1475-1490.

Agarwal, S. and Roth, D. (2002). Learning a Sparse Representation for Object
Detection. In Heyden, A., Sparr, G., Nielsen, M., and Johansen, P., editors,
Computer Vision-ECCV 2002, Lecture Notes in Computer Science, pages 113—
127. Springer Berlin Heidelberg.

Agrawal, P., Girshick, R., and Malik, J. (2014). Analyzing the performance of
multilayer neural networks for object recognition. Computer Vision-ECCV 2014,
pages 329-344.

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between
sets of items in large databases. ACM SIGMOD Record, pages 207-216.

Amari, S. (1967). A Theory of Adaptive Pattern Classifiers. IEEE Transactions on
FElectronic Computers, EC-16(3):299-307.

Amari, S.-I. (1972). Characteristics of Random Nets of Analog Neuron-Like Ele-
ments. [EEE Transactions on Systems, Man and Cybernetics, SMC-2(5):643-657.

Anderson, J. (1972). A simple neural network generating an interactive memory.
Mathematical Biosciences, 14(3-4):197-220.

Anderson, J. and Rosenfeld, E. (2000). Talking nets: An oral history of neural
networks. MIT Press.

Anderson, J. A., Pellionisz, A., and Rosenfeld, E. (1990). Neurocomputing (Vol. 2):
Directions for Research. MIT Press, Cambridge, MA, USA.

143

144 BIBLIOGRAPHY

Anderson, J. A. and Rosenfeld, E. (1988). Neurocomputing: foundations of research.
MIT Press, Cambridge, MA, USA.

Arbelaez, P. and Maire, M. (2011). Contour detection and hierarchical image seg-
mentation. Pattern Analysis and ..., 33(5):898-916.

Ashby, W. (1960). Design for a Brain: The Origin of Adaptive Behavior.
Ashby, W. R. (1949). The Electronic Brain. Radio FElectronics, pages 77-80.

Athitsos, V., Neidle, C., Sclaroff, S., Nash, J., Stefan, A., Yuan, Q., and Thangali,
A. (2008). The American Sign Language Lexicon Video Dataset. In Computer
Vision and . .., pages 1-8.

Bain, A. (1873). Mind and body. The theories of their relation. New York : D.
Appleton and company.

Barto, A., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements
that can solve difficult learning control problems. Systems, Man and ..., SMC-
13(5):834-846.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,
Bouchard, N., Warde-Farley, D., and Bengio, Y. (2012). Theano: new features
and speed improvements. arXiv:1211.5590 [cs/.

Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008). Speeded-up robust features
(SURF). Computer vision and image . .., 110(3):346-359.

Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Surf: Speeded up robust features.
Computer Vision-ECCV 2006.

Bell, A. and Sejnowski, T. (1995). An information-maximization approach to blind
separation and blind deconvolution. Neural computation, 7(6):1129-1159.

Bengio, Y. (2009). Learning Deep Architectures for AI, volume 2.
Bengio, Y., Goodfellow, I. J., and Courville, A. (2015). Deep Learning. MIT Press.

Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms towards Al. Large-
Scale Kernel Machines, (1):1-41.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-
cies with gradient descent is difficult. IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council, 5(2):157-166.

Bernstein, J. (1981). A. 1. The New Yorker, page 50.

Bezdek, K., Deza, A., and Ye, Y. (2013). Discrete geometry and optimization.
Springer Science & Business Media.

BIBLIOGRAPHY 145

Bishop, C. M. (2006). Pattern recognition and machine learning., volume 1. New
York: springer, 2006.

Block, H. (1962). The perceptron: A model for brain functioning. I. Reviews of
Modern Physics, 34(1):123-135.

Boden, M. (2006). Mind as machine: A history of cognitive science, volume 1.

Boser, B., Guyon, I., and Vapnik, V. (1992). A training algorithm for optimal
margin classifiers. ... of the fifth annual workshop on ..., pages 144-152.

Broomhead, D. and Lowe, D. (1988). Radial basis functions, multi-variable func-
tional interpolation and adaptive networks.

Bruce, J., Balch, T., and Veloso, M. (2000). Fast and inexpensive color image
segmentation for interactive robots. volume 3, pages 2061-2066 vol.3.

Bryson, A., Denham, W., and Dreyfus, S. (1963). Optimal programming problems
with inequality constraints. AIAA journal, 1(11):2544-2550.

Bryson, A. E. (1975). Applied Optimal Control: Optimization, Estimation and
Control. CRC Press.

Burt, P. and Adelson, E. (1983). The Laplacian pyramid as a compact image code.
Communications, IEEE Transactions on, 31(4):532-540.

Cajal, S. R. y. (1909). Histologie du systeme nerveux de '’homme & des vertebres.
page 1014.

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8(6):679-698.

Carreira-Perpinan, M. and Hinton, G. (2005). On contrastive divergence learning.
... on artificial intelligence and . .., 0.

Castel, L. B. (1740). L’optique des Couleurs. Chez Briasson (A Paris).

Chai, D. and Bouzerdoum, A. (2000). A Bayesian approach to skin color classifica-
tion in YCbCr color space. volume 2, pages 421-424 vol.2.

Chai, D. and Ngan, K. (1998). Locating facial region of a head-and-shoulders color
image. pages 124-129.

Chai, D. and Ngan, K. (1999). Face segmentation using skin-color map in videophone
applications. IEEE Transactions on Circuits and Systems for Video Technology,
9(4):551-564.

Churchland, P. and Sejnowski, T. (1988). Perspectives on cognitive neuroscience.
Science, 242(4879):741-745.

146 BIBLIOGRAPHY

Cohen, M. and Grossberg, S. (1983). Absolute stability of global pattern formation
and parallel memory storage by competitive neural networks. Systems, Man and
Cybernetics, ..., SMC-13(5):815-826.

Cooper, L. (2012). A possible organization of animal memory and learning. Collec-
tive Properties of Physical Systems, eds. B.

Copeland, B. (2012). Alan Turing’s Electronic Brain: The Struggle to Build the
ACE, the World’s Fastest Computer. Oxford University Press.

Copeland, B. and Proudfoot, D. (1996). On Alan Turing’s anticipation of connec-
tionism. Synthese, 108(3):361-377.

Copeland, B. J. and Proudfoot, D. (1999). Alan Turing\’s forgotten ideas in Com-
puter Science. Scientific American, pages 99-103.

Cragg, B. G. and Temperley, H. N. V. (1955). Memory: The Analogy with Ferro-
magnetic Hysteresis. Brain, 78(2):304-316.

Crevier, D. (1993). AL: The tumultuous history of the search for artificial intelligence.

Csurka, G. and Dance, C. (2004). Visual categorization with bags of keypoints.
Workshop on statistical

Cull, P. (2007). The mathematical biophysics of Nicolas Rashevsky. Biosystems,
88(3):178-184.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detec-
tion. ...and Pattern Recognition, 2005. CVPR 2005 ..., 1:886-893 vol. 1.

Dayan, P. (2000). Helmholtz machines and wake-sleep learning. Handbook of Brain
Theory and Neural Network. MIT ..., 44(0).

Dayan, P. and Hinton, G. (1996). Varieties of Helmholtz machine. Neural Networks,
0(8):1385-1403.

Dayan, P., Hinton, G., Neal, R., and Zemel, R. (1995). The helmholtz machine.
Neural computation, 904:889-904.

Deng, J., Dong, W., Socher, R., and Li, L. (2009). Imagenet: A large-scale hierar-
chical image database. Computer Vision and ..., pages 248-255.

Dong, G. and Li, J. (1999). Efficient mining of emerging patterns: Discovering
trends and differences. Proceedings of the fifth ACM SIGKDD international . . .,
pages 43-52.

Elman, J. L. (1991). Distributed representations, simple recurrent networks, and
grammatical structure. Machine Learning, 7(2-3):195-225.

Everingham, M. and Eslami, S. (2014). The pascal visual object classes challenge:
A retrospective. International Journal of ..., 111(1):98-136.

BIBLIOGRAPHY 147

Everingham, M. and Gool, L. V. (2010). The pascal visual object classes (voc)
challenge. International journal of ..., 88(2):303-338.

Fang, H., Gupta, S., and Iandola, F. (2014). From Captions to Visual Concepts and
Back. arXiv preprint arXiw:

Farley, B. and Clark, W. (1954). Simulation of self-organizing systems by digital
computer. ... of the IRE Professional Group on, 4(4):76-84.

Fei-Fei, L., Fergus, R., and Perona, P. (2007). Learning generative visual models
from few training examples: An incremental bayesian approach tested on 101
object categories. Computer Vision and Image Understanding, 106(1):59-70.

Feldman, J. and Ballard, D. (1982). Connectionist models and their properties.
Cognitive science, 6(3):205-254.

Fellbaum, C. (1998). WordNet: an electronic lexical database. Cambridge, MA:
MIT Press.

Fischler, M. A. (1987). Intelligence: The Eye, the Brain, and the Computer.
Addison-Wesley.

Fu, L. (2003). Neural networks in computer intelligence. page 484.

Fukushima, K. (1980). Neocognitron: A Self-organizing Neural Network Model for
a Mechanism of Pattern Recognition Unaffected by Shift in Position. 202.

Fukushima, K., Miyake, S., and Ito, T. (1983). Neocognitron: A neural network
model for a mechanism of visual pattern recognition. Systems, Man and Cyber-
netics, ..., SMC-13(5):826-834.

Funahashi, K.-i. and Nakamura, Y. (1993). Approximation of dynamical systems
by continuous time recurrent neural networks. Neural Networks, 6(6):801-806.

Gabbay, D., Woods, J., and Thagard, P. (2006). Philosophy of Psychology and
Cognitive Science: A Volume of the Handbook of the Philosophy of Science Series.
Elsevier.

Gabor, D. (1954). Communication theory and cybernetics. Circuit Theory, Trans-
actions of the IRE Professional ..., CT-1(4):19-31.

Garson, G. D. (1998). Neural Networks: An Introductory Guide for Social Scientists.
SAGE.

Glassner, A. (1995). Principles of digital image synthesis: Vol. 1. Elsevier.

Glimm, J., Impagliazzo, J., and Singer, 1. (2006). The legacy of John von Neumann.
American Mathematical Soc.

Goldstein, E. (2013). Sensation and Perception. Cengage Learning,.

148 BIBLIOGRAPHY

Goodfellow, I. J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M., Pascanu,
R., Bergstra, J., Bastien, F., and Bengio, Y. (2013). Pylearn2: a machine learning
research library. arXiv:1308.4214 [cs, stat].

Gool, L. V., Moons, T., and Ungureanu, D. (1996). Affine / photometric invariants
for planar intensity patterns. Lecture Notes in Computer Science, pages 642-651.
Springer Berlin Heidelberg.

Griffin, G., Holub, A., and Perona, P. (2007). Caltech-256 Object Category Dataset.

Gross, C. (2002). Genealogy of the "grandmother cell". The Neuroscientist,
8(5):512-518.

Grossberg, S. (1967). Nonlinear difference-differential equations in prediction and
learning theory. Proceedings of the National Academy of Sciences of the United
States of America, 58(4):1329-1334.

Grossberg, S. (1980). How does a brain build a cognitive code? Studies of Mind
and Brain, 87(1).

Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and ar-
chitectures. Neural networks, 1(1):17-61.

Gupta, M. M. and Knopf, G. K. (1994). Neuro-vision systems: A tutorial. In
Neuro-Vision Systems: Principles and Applications, pages 1-34.

Harris, C. and Stephens, M. (1988). A Combined Corner and Edge Detector. Pro-
cedings of the Alvey Vision Conference 1988, pages 23.1-23.6.

Hartley, D. (1749). Observations on man, his frame, his duty, and his expectations.
00 L : Scholars’ Facsimiles and Reprints.

Haykin, S. (1994). Neural networks: a comprehensive foundation.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving Deep into Rectifiers: Sur-
passing Human-Level Performance on ImageNet Classification. arXiw:1502.01852

[cs].

Hebb, D. O. (1949). The Orgamization of Behavior a Neuropsychological Theory.
John Wiley & Sons Inc., New York.

Hecht-Nielsen, R. (1989). Neurocomputing. Addison-Wesley Publishing Company.

Hinton, G., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep
belief nets. Neural computation, 1554:1527-1554.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The "wake-
sleep" algorithm for unsupervised neural networks. Science (New York, N.Y.),
268(5214):1158-61.

BIBLIOGRAPHY 149

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Master’s
thesis, Institut fur Informatik, Technische

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8):1735-1780.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the
United States of America, 79(8):2554-2558.

Hopfield, J. J. (1984). Neurons with graded response have collective computational
properties like those of two-state neurons. Proceedings of the National Academy
of Sciences, 81(10):3088-3092.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward net-
works are universal approximators. Neural networks, 2(5):359-366.

Howard C. Warren (1921). A history of the association psychology. page 355.

Huang, G., Zhu, Q., and Siew, C. (2004). Extreme learning machine: a new learning
scheme of feedforward neural networks. Neural Networks, 2004. ..., 2:985-990
vol.2.

Huang, G.-B., Huang, G., Song, S., and You, K. (2015). Trends in extreme learning
machines: A review. Neural Networks, 61:32-48.

Hubel, D. and Wiesel, T. (1962). Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. The Journal of physiology, pages
106-154.

Hubel, D. and Wiesel, T. (1968). Receptive fields and functional architecture of
monkey striate cortex. The Journal of physiology, pages 215-243.

loffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.

Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science, 304(5667):78-80.

Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., and LeCun, Y. (2009). What is the
best multi-stage architecture for object recognition? 2009 IEEE 12th Interna-
tional Conference on Computer Vision, pages 2146-2153.

Jia, Y., Shelhamer, E., and Donahue, J. (2014). Caffe: Convolutional architecture
for fast feature embedding. Proceedings of the

Kadir, T. and Brady, M. (2001). Saliency, Scale and Image Description. International
Journal of Computer Vision, 45(2):83-105.

150 BIBLIOGRAPHY

Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: a more distinctive representation for
local image descriptors. volume 2, pages II-506-11-513 Vol.2.

Kirby, K. (2006). A tutorial on Helmholtz Machines. (June).

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated
Annealing. Science, 220(4598):671-680.

Kohonen, T. (1972). Correlation matrix memories. Computers, IEEE Transactions
on, 21(4):353-359.

Kohonen, T. (1977). Associative Memory: A System-Theoretical Approach.
Springer, Berlin, Heidelberg, softcover edition.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological cybernetics, 43(1):59-69.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images. ... Science Department, University of Toronto, Tech.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). ImageNet Classification
with Deep Convolutional Neural Networks. NIPS, pages 1-9.

Lazebnik, S., Schmid, C., and Ponce, J. (2005). A sparse texture representation
using local affine regions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8):1265-1278.

Le, Q., Ranzato, M., Monga, R., and Devin, M. (2012). Building high-level features

using large scale unsupervised learning. arXiv preprint arXiv:

Le Cun, Y. (1986). Learning Process in an Asymmetric Threshold Network. NATO
ASI Series, pages 233-240. Springer Berlin Heidelberg.

LeCun, Y. (1985). Une procédure d’apprentissage pour réseau a seuil asymmetrique
(a Learning Scheme for Asymmetric Threshold Networks). In Proceedings of Cog-
nitiva, pages 599-604, Paris, France.

LeCun, Y. (1989). Generalization and network design strategies. Connections in
Perspective. North-Holland,

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and
Jackel, L. (1989). Backpropagation applied to handwritten zip code recognition.
Neural

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and
Jackel, L. (1990). Handwritten digit recognition with a back-propagation network.
Advances in neural . .., pages 396—404.

BIBLIOGRAPHY 151

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). Convolutional deep
belief networks for scalable unsupervised learning of hierarchical representations.
Proceedings of the 26th Annual International Conference on Machine Learning -
ICML 09, pages 1-8.

Lindeberg, T. (1998). Feature detection with automatic scale selection. International
journal of computer vision, 30(2):79-116.

Linsker, R. (1988). Self-organisation in a perceptual network. Computer, 21(3):105—
117.

Little, W. A. and Shaw, G. L. (1975). A statistical theory of short and long term
memory. Behavioral Biology, 14(2):115-133.

Liu, W., Principe, J. C., and Haykin, S. (2011). Kernel Adaptive Filtering: A
Comprehensive Introduction. John Wiley & Sons.

Locke, J. (1700). An essay concerning human understanding. Read Books.

Lowe, D. (1999). Object recognition from local scale-invariant features. volume 2,
pages 1150-1157 vol.2.

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60(2):91-110.

Lyvers, E. and Mitchell, O. (1988). Precision edge contrast and orientation es-
timation. [EEFE Transactions on Pattern Analysis and Machine Intelligence,

10(6):927-937.

Mann, H. and Whitney, D. (1947). On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics,
18(1):50-60.

Martens, J. (2010). Deep learning via Hessian-free optimization. Proceedings of the
27th International Conference on Machine Learning.

Martens, J. and Sutskever, I. (2011). Learning recurrent neural networks with
hessian-free optimization. ...on Machine Learning (ICML-11

Martin, D. and Fowlkes, C. (2001). A database of human segmented natural im-
ages and its application to evaluating segmentation algorithms and measuring
ecological statistics. Computer Vision, 2001. ..., 2:416-423 vol.2.

Matas, J., Chum, O., Urban, M., and Pajdla, T. (2004). Robust wide-baseline
stereo from maximally stable extremal regions. Image and Vision Computing,

22(10):761-767.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115-133.

152 BIBLIOGRAPHY

Mehrotra, K., Mohan, C., and Ranka, S. (1997). Elements of artificial neural net-
works.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,
E. (1953). Equation of State Calculations by Fast Computing Machines. The
Journal of Chemical Physics, 21(6):1087-1092.

Mikolajczyk, K., Leibe, B., and Schiele, B. (2005a). Local features for object class
recognition. Computer Vision, 2005. ..., 2:1792-1799 Vol. 2.

Mikolajczyk, K. and Schmid, C. (2004). Scale & affine invariant interest point
detectors. International journal of computer vision, 60(1):63-86.

Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descrip-
tors. Pattern Analysis and Machine ..., 27(10):1615-1630.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky,
F., Kadir, T., and Gool, L. V. (2005b). A comparison of affine region detectors.
International journal of ..., 65(1-2):43-72.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Commun. ACM,
38(11):39 41.

Minsky, M. (1954). Theory of neural-analog reinforcement systems and its applica-
tion to the brain model problem. PhD thesis.

Minsky, M. (1967). Computation: finite and infinite machines. Prentice Hall, En-
glewood Cliffs, NJ.

Minsky, M. and Papert, S. (1969). Perceptrons.

Miihlenbein, H. (2009). Computational Intelligence: The Legacy of Alan Turing and
John von Neumann. Computational Intelligence, pages 23-43.

Nachar, N. (2008). The Mann-Whitney U: a test for assessing whether two indepen-
dent samples come from the same distribution. Tutorials in Quantitative Methods
for Psychology, 4(1):13—-20.

Nakano, K. (1972). Associatron-a model of associative memory. Systems, Man and
Cybernetics, IEEE Transactions . .., SMC-2(3):380-388.

Nathans, J., Piantanida, T., and Eddy, R. (1986). Molecular genetics of inherited
variation in human color vision. Science, 232(4747):203-210.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence,
56(1):71-113.

Neelakanta, P. S. and DeGroff, D. (1994). Neural Network Modeling: Statistical
Mechanics and Cybernetic Perspectives. CRC Press.

BIBLIOGRAPHY 153

Nene, S., Nayar, S., and Murase, H. (1996). Columbia object image library (COIL-
20).

Neumann, J. and Burks, A. (1966). Theory of self-reproducing automata.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. (2011). Multimodal
deep learning. International Conference on Machine Learning, 28.

Nilsson, N. J. (1965). Learning machines: foundations of trainable pattern-
classifying systems. McGraw-Hill.

Norberg, A. L. (2005). Computers and Commerce: A Study of Technology and
Management at Eckert-Mauchly Computer Company, Engineering Research As-
soctates, and Remington Rand, 1946 — 1957. MIT Press.

Novikoff, A. (1962). On convergence proofs on perceptrons. Proceedings of the
Symposium on the Mathematical Theory of Automata, New York, XII1:615-622.

Parker, D. (1985). Learning-logic. Technical report, Invention Report S81-64, File
1, Cambridge, MA: Center for Computational Research in Economics and Man-
agement Science, MIT.

Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential
reasoning. Technical report.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann.

Phillips, P. and Moon, H. (2000). The FERET evaluation methodology for face-
recognition algorithms. Pattern Analysis and . .., 22(10):1090-1104.

Phung, S., Bouzerdoum, A., and Chai, S. D. (2005). Skin segmentation using color
pixel classification: analysis and comparison. IEEFE Transactions on Pattern Anal-
ysis and Machine Intelligence, 27(1):148-154.

Pinto, N., Cox, D. D., and DiCarlo, J. J. (2008). Why is real-world visual object
recognition hard? PLoS computational biology, 4(1):€27.

Prewitt, J. (1970). Object enhancement and extraction. Picture processing and
Psychopictorics, 10:15-19.

Rashevsky, N. (1938). Mathematical biophysics. Physicomathematical foundations
of biology.

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition
in cortex. Nature neuroscience, pages 1019-1025.

Rochester, N. and Holland, J. (1956). Tests on a cell assembly theory of the action of
the brain, using a large digital computer. Information Theory, IRE ..., 2(3):80—
93.

154 BIBLIOGRAPHY

Rosenblatt, F. (1957). The Perceptron, a Perceiving and Recognizing Automaton.
Technical report, Cornell Aeronautical Laboratory, Buffalo, NY.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386-408.

Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory
of brain mechanisms. Technical report, Cornell Aeronautical Laboratory, INC.,
Buffalo 21, N.Y.

Rumelhart, D., Hinton, G., and Williams, R. (1985). Learning internal representa-
tions by error propagation.

Rumelhart, D., McClelland, J., and Group, P. R. (1988). Parallel distributed pro-
cessing.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representa-
tions by back-propagating errors. Nature, 323:533-536.

Russakovsky, O., Deng, J., and Su, H. (2014). Imagenet large scale visual recognition
challenge. arXiv preprint arXiv:

Saul, L. K., Jaakkola, T., and Jordan, M. I. (1996). Mean Field Theory for Sigmoid
Belief Networks. arXiv:cs/9603102.

Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. International journal of computer vision,
47(1-3):7-42.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673-2681.

Sejnowski, T. and Rosenberg, C. (1987). Parallel networks that learn to pronounce
English text. Complex systems, 1:145-168.

Selfridge, O. G. (1958). Pandemonium: A paradigm for learning. Proceedings of the
symposium, 1:513-529.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2014).
OverFeat: Integrated Recognition, Localization and Detection using Convolu-
tional Networks. arXiv preprint arXiv: ..., pages 1-16.

Simard, P., Steinkraus, D., and Platt, J. (2003). Best Practices for Convolutional
Neural Networks Applied to Visual Document Analysis. ICDAR.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

Snoek, C., Worring, M., and Smeulders, A. (2005). Early versus late fusion in
semantic video analysis. Proceedings of the 15th ..., pages 399-402.

BIBLIOGRAPHY 155

Srivastava, N. and Hinton, G. (2014). Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine ..., 15:1929-1958.

Steinbuch, K. and Piske, U. (1963). Learning Matrices and Their Applications.
IEEE Transactions on Electronic Computers, EC-12(6):846-862.

Sutherland, G. B. B. M. (1959). Mechanisation of Thought Processes. In Proceedings
of a Symposium, page 531, National Physical Laboratory, Great Britain. Her
Majesty’s Stationery Office.

Sutskever, 1., Martens, J., and Hinton, G. (2011). Generating text with recurrent
neural networks. Proceedings of the

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press.

Szegedy, C., Liu, W., Jia, Y., and Sermanet, P. (2014). Going deeper with convolu-
tions. arXiv preprint arXiv:

Szeliski, R. (2010). Computer vision: algorithms and applications.

Taylor, W. K. (1956). Electrical simulation of some nervous system functional ac-
tivities. Information theory 3, pages 314-328.

Uhr, L. (1987). Highly parallel, hierarchical, recognition cone perceptual structures.
Parallel computer vision.

Uttley, A. (1979). Information transmission in the nervous system. page 125.

Uttley, A. M. (1956a). Conditional probability machines and conditional reflexes.
Automata studies, pages 253-276.

Uttley, A. M. (1956b). Temporal and spatial patterns in a conditional probability
machine. Automata Studies, pages 277— 285.

Vemuri, V. R. (1992). Artificial Neural Networks: Concepts and Control Applica-
tions. ieeexplore.ieee.org, page 509.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the
striate cortex. Kybernetik, 14(2):85-100.

von der Malsburg, C. and Willshaw, D. J. (1976). A mechanism for producing con-
tinuous neural mappings: ocularity dominance stripes and ordered retino-tectal
projections. Exp. Brain Res, 1:463-469.

von Neumann, J. (1945). First Draft of a Report on the EDVAC. Technical Report 1.

von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organisms
from unreliable components. Automata studies, pages 43-98.

156 BIBLIOGRAPHY

Voravuthikunchai, W. (2014). Histograms of pattern sets for image classification
and object recognition. IEEE Conference on ..., pages 224-231.

Werbos, P. (1974). Beyond regression: new tools for prediction and analysis in the
behavioral sciences.

Werbos, P. (1994). The roots of backpropagation: from ordered derivatives to neural
networks and political forecasting. John Wiley & Sons.

Widrow, B. (1960). An Adaptive "ADALINE" Neuron Using Chemical "Memis-
tors". Technical report, Solid-State Electronics Laboratory, Stanford Electronics
Laboratories, Stanford University, Stanford, California.

Wiener, N. (1948). Cybernetics or Control and Communication in the Animal and
the Machine. The Massachusetts Institute of Technology.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics bul-
letin, 1(6):80-83.

Wilkes, A. L. and Wade, N. J. (1997). Bain on neural networks. Brain and Cognition,
33(3):295-305.

William James (1890). The principles of psychology. New York : Henry Holt and
company.

Willshaw, D. J., Buneman, O. P., and Longuet-Higgins, H. C. (1969). Non-
holographic associative memory. Nature, 222(5197):960-962.

Winograd, S. and Cowan, J. (1963). Reliable computation in the presence of noise.
M.L.T. Press research monographs.22. M.I.T. Press, Cambridge, Mass.

Young, T. (1802). The Bakerian lecture: On the theory of light and colours. Philo-
sophical transactions of the Royal Society of ..., 92:12-48.

Zhang, J. and Marszalek, M. (2007). Local features and kernels for classification of

texture and object categories: A comprehensive study. International journal of
..., 73(2):213-238.

Ziou, D. and Tabbone, S. (1998). Edge detection techniques-an overview. Pattern
Recognition and Image Analysis C/C of ..., pages 1-41.

Glossary

Adaline The Adaline (Adaptive Linear Neuron or Adaptive Linear Element) was
one of the first implementations of an Artificial Neural Network (ANN) in-
spired by the work of McCulloch and Pitts. The same name was given to
the physical device that simulated the network. It was designed to perform a
summation of various inputs and bias, all of them scaled by a set of weights.
In the physical device these weights were implemented using memistors. xiii,
77, 157, 162

AT Artificial Intelligence (Al) is a field of study that tries to create machines that
are able to automatically solve particular problems. In most of the cases,
finding the optimal solution is intractable and these algorithms try to find
local optimums or good approximations. xiii, 4, 65, 157

ANN An Artificial Neural Network (ANN) is a mathematical representation of a bi-
ological neural network that simplifies its architecture and physical behaviour.
It is used in Machine Learning to solve regression and decision problems. xiii,
3,9, 21, 25, 35-37, 40, 43-46, 52, 54, 55, 59, 63, 65, 71, 74, 76, 78-83, 8587,
94, 96, 104, 127, 157-161, 163-165

aperture problem In visual feature matching tasks, if the patch that is being
analyzed contains only a straight line, it could be matched to multiple regions
of a larger line. This problem makes impossible to choose wich is the real
position. 10

Associationism [t is the idea that mental processes are triggered by previous
states. The connections between these states are called associations. Some
of the first ideas have been seen in the work of Plato and Aristotle. In the
17th century the British “Associationist School” was funded, where John Locke,
David Hume, David Hartley, James Mill, or Ivan Pavlov participated and used
these ideas. 6567

backpropagation It is a method of propagating the error backwards in an Artificial
Neural Network (ANN) to perform credit assignment in the lower levels of the
network. This is the common method to train a ANN toghether with an
optimization method using gradient descent. xvii, 44, 46, 47, 49, 53, 55-57,
78, 82, 85, 86, 158

157

158 Glossary

BM A Boltzmann Machine (BM) is a generative stochastic model with undirected
connections. It is the stochastic version of the Hopfield network. xiii, 73, 82,
85, 87, 158

BN A Belief Network (BN) (also known as Bayesian network or Bayes network) is a
probabilistic graphical model with acyclic and directed dependencies between
a set of random variables. xiii, 57, 85, 88, 158, 159

BoV Bag of Visual words (BoV) is a technique used in computer to represent and
image in a simplified manner. Based on the BoW, it describes the image
with the number of occurences of certain visual features, without storing their
position. xiii, 15, 59, 158

BoW Bag of Words (BoW) is a technique used in natural language processing and
information retrieval to represent a text in a simplified manner. It consists on
representing the text as a set of words with the number of occurences, without
order. xiii, 15, 158

BPTT backpropagation through time (BPTT) is a technique to train Recurrent
Neural Network (RNN)s by unfolding the network in time and applying the
normal backpropagation. xiii, 56, 158

chrominance It is the color part of an image. In our vision sistem there are three
type of Cone cells that are specialized in the chrominance. Glossary: Cone
cells. 124

CIE Is the International Commission on Illumination (from French Commission
Internationale de 1'Clairage) and the international authority on light, illumi-
nation colour, and colour spaces. xiii, 16

CNN A Convolutional Neural Network (CNN) is a particular case of an ANN with
some strong priors about the input signals. They exploits the assumption that
there exist an important spatial or temporal connection between neighbor in-
puts. With this assumption it is possible to restrict the number of connections
simulating a large amount of zero weights that are not actually represented in
the network. For a larger explanation and a better understanding refer to the
Chapter. 5. xiii, xviii, 2-4, 9, 37, 54, 56, 57, 59, 61-63, 86-89, 91-93, 95, 97,
99, 100, 103, 107, 112, 115, 132, 134, 135, 162, 163

Cone cell In our vision sistem there are three type of Cone cells, each one special-
ized in one of the light frequency domains. These are the short, medium and
long frequencies. Altough they do not match one specific color, they are often
classified as being specialized in blue, green and red colors respectively. 158

Connectionism “Connectionism is a movement in cognitive science which hopes
to explain human intellectual abilities using artificial neural networks (also
known as ‘neural networks’ or ‘neural nets’). Neural networks are simplified

Glossary 159

models of the brain composed of large numbers of units (the analogs of neu-
rons) together with weights that measure the strength of connections between
the units. These weights model the effects of the synapses that link one neu-
ron to another. Experiments on models of this kind have demonstrated an
ability to learn such skills as face recognition, reading, and the detection of
simple grammatical structure” (definition by James Garson from the Standford
Encyclopedia of Philosophy). 3, 65-67, 69, 73, 79, 80, 84, 86

credit-assignment problem This is a common problem on machine learning when
assigning the responsability of the error to different parts of a model. For ex-
ample, in Artificial Neural Network (ANN) it is difficult to assign the error of
the neurons that are not directly connected to the output. 49

cross-validation Is a technique to compare models or their hyperparameters given
a finite training set. The training is subdivided into smaller parts and the
models are validated with one part and trained with the rest. The performance
of the models in each validation section is averaged and compared with the
rest of the models. 9

DBN A Deep Belief Network (DBN) is a Belief Network (BN) with multiple layers
of lattent variables. See definition of Belief Network (BN). xiii, 57, 88, 159

deep learning It is a term being used lately to define Artificial Neural Networks
(ANNs) that are not shallow. The hidden representation of these models is
supposed to find hierarchical representations of the data. Also the hierarchical
structure is more effective to reuse the features in lower layers. 36, 56

delta rule In machine learning, the delta rule is the update of the weights of a
model that follow the gradient on the error surface. It is a technique to mini-
mize the training error by performing several steps of gradient descent. 49

DoG The difference of Gaussians (DoG) detector is an edge detector that uses as
a kernel the shape of a Gaussian substracting another one with a different
variance. xiii, xvii, 12, 13, 29

dropout It is a regularization technique applied to Artificial Neural Networks
(ANNs). It consists on the random inhibition of the output of certain neurons
during the training, while keeping all the averaged outputs during the test
phase. This technique has demonstrated empirically its efficacy for general-
ization. 54, 89

EDVAC The EDVAC (Electronic Discrete Variable Automatic Computer) was one
of the first computers constructed in 1949. It was a predecesor of the ENIAC
binary rather than decimal and larger computational capabilities. xiii, 70, 159

ELM An Extreme Learning Machine (ELM) is a particular case of an ANN with
at least one layer of hidden units. xiii, 36, 54, 55

160 Glossary

ENIAC The ENIAC (Electronic Numerical Integrator And Computer) was one of
the first computers, constructed in 1946. xiii, 70, 159, 160

epoch In machine learning, when a model is being trained with a set of data, one
epoch corresponds to one iteration over the complete set. 44

ESN An Echo State Network (ESN) is an Recurrent Neural Network (RNN) in
which its connections are randomly choosen. The internal connections of the
network are keept fixed during the training while the output connections are
updated with a learning algorithm. This networks are eassy to train as the
output weights are linear after the nonlinear parameter space, this makes the
error surface quadratic and makes it solvable numerically. xiii, 88, 160

FNN A Feed-forward neural network (FNN) is a type of Artificial Neural Network
(ANN) with directed and acyclic connections. xiii, 41, 160, 162, 165

GLOH The Gradient location-orientation histogram (GLOH) is an image descrip-
tor used in computer vison. This technique is similar to SIFT but the created
histogram contains more spatial bins and it is finally reduced with PCA. xiii,
14, 160

GPU A Graphics Processing Unit (GPU) is a dedicated electronic circuit focused
on the visualization of images on a screen. It is designed for fast computations
and modern GPUs are able operate with matrices in a very efficient manner.
For that reason, they are being used for long scientific computations. xiv, 61,

92, 95-97, 115, 116, 160

Heaviside function Also known as a Threshold Function in the engineering liter-
ature, it is a discontinuous function with value zero in the negative side and
one in the positive side. 37

HM The Helmholtz Machine (HM) is a type of Artificial Neural Network (ANN)
with a recognition and a generative model that share the hidden variables but
not the weight connections. It can be trained with the “wake-sleep” algorithm,
an unsupervised method to train the recognition and the generative model
simultaniously.. xiv, 88, 160

HOG The Histogram of Oriented Gradients (HOG) is an image descriptor inspired
by SIFT, however, it extensively computes orientation gradients through all
the image. xiv, 14, 59, 160

Hopfield network Is a type of Recurrent Neural Network (RNN) with symetric
connections that is guaranteed to converge to a local minimum energy state.
It can be used as a content-addressable memory. 79, 84, 85, 158

HoPS The Histogram of Pattern Sets (HoPS) is an image descriptor that randomly
selects a set of other descriptors and reducing the total size. The random sets

Glossary 161

are called transactions and are designed to maximize the separability of the
descriptors on different classes while reduces the intra-class distances. xiv, 15,
160

HSL The HSL color space is a typical representation of colors in a cylindrical coor-
dinate system. In this representation the lightness is codified in the height of
the cylinder, the hue in the rotation of the rotation, and the saturation with
the distance from the center axis. xiv, 93, 161

HSV The HSV color space similar to HSL, however, the lighting is represented with
the variable value and is distributed in a different manner. While in the HSL
the white is equaly distributed on the top surface of the cylinder, in the HSV
the white is in the exact center of the top surface. xiv, 93, 161

hyperbolic tangent function It is a sigmoid function with negative and positive
values on the negative and positive side respectively. It has asymptotic be-
haviour towards —1 and 1, and it can behave locally as linear or as a step

function. For that reason, it has been extensively used as activation functions
in Artificial Neural Networks (ANNs). 43

ICA The Independent Component Analysis (ICA) is a technique used in signal
processing to find additive subsignals that are non-Gaussian and statistically
independent. xiv, 86, 161

Infomax The maximum mutual information (Infomax) is an optimization principle
that tries to minimize the amount of information needed to codify a match
between a set of inputs and outputs. This principle has been studied in some
biological systems and has been applied on information retrieval and machine
learning algorithms. xiv, 83, 86, 87, 161

inverse problem It is a class of problems where the objective is to model a physical
system given a set of measurements. 6, 9

K-cells The Koniocellular cells (K-cells) are a type of ganglion cells with their
body in the retina of the eyes and with axons that extends to the LGN and
the primary visual cortex. In the LGN they are situated in the strates between
P-cells and M-cells. xiv, 30, 161

LGN The Lateral Geniculate Nucleus (LGN) is a section of the thalamus focused
on the visual system. It receives the axons of ganglion cells from the retina

through the optic nerve and optic chiasma and propagates their signals to the
primary visual cortex. xiv, 27, 30, 31, 33, 132, 161-163

LoG The Laplacian of Gaussian (LoG) is a blob detector based on the Laplacian
of a Gaussian. xiv, 11-13, 29, 161

logistic function Is a type of sigmoid function with values [0, 0.5] on the negative
side and values [0.5, 1] on the positive side. 43, 162

162 Glossary

logistic regression It is a probabilistic technique for pattern classification models
for binary predictions. It uses the logistic function of a set of variables to
generate the probability response. 43

LRN The Local Response Normalization (LRN) is a technique used in CNNs to
normalize the local activity of neighbour neurons. xiv, 62, 89, 162

luminance It is the level of brightness (or light) of an image. By using only the
luminance information of an image, only a grayscale from black to white can
be represented. 122, 124

M-cells The Magnocellular cells (M-cells) are a type of ganglion cells with their
body in the retina of the eyes and with axons that extends to the LGN and
the primary visual cortex. In the LGN they are distributed in the first and
second layers. xiv, 30, 161, 162

mean field theory It is a technique used in physics and probability theory to
simplify the behaviour of large and complex systems with multiple individuals.
It simplifies the complex interactions by an average value that is easier to
compute. 88

memistor It is a electric component designed by Bernard Wirdrow in 1960 to store
information in form of electrical impedance. It was the principal component
for the posterior creation of the Adaline . 77, 157

MFNN A Multilayer Feedforward Neural Network (MFNN) is a particular type of
a FNN with at least one layer of hidden units. xiv, xvii, 36, 41, 44, 49, 50, 54,
55, 86, 162

MLP A Multilayer Perceptron (MLP) is the most common name of a Multilayer
Feedforward Neural Network (MFNN). See MFNN for the description. xiv,
xvil, 44, 45, 162

momentum In the gradient descent algorithm, momentum is a technique used to
update the parameters at a given step with the actual gradient and part of
the previous update. 54

multimodal learning In machine learning, it is a set of techniques to agregate
features from different sources in a variety of forms, in order to solve a pattern
classification problem. 91, 93, 94, 132

multiple linear regression It is a technique to fit linearly a set of samples of a
dependent variable given multiple explanatory variables. 39, 40

multivariate linear regression It is a technique to fit linearly a set of samples of

multiple correlated dependent variables given multiple explanatory variables.
40

Glossary 163

Neocognitron The Neocognitron is a type of Artificial Neural Network (ANN)
with hierarchical connections and multiple layers designed to solve pattern
recognition problems. It was designed by Fukushima, and inspired by the
work of Hubel and Wiesel on the primary visual cortex in the 50s. 56, 83, 85

P-cells The Parvocellular cells (P-cells) are a type of ganglion cells with their body
in the retina of the eyes and with axons that extends to the LGN and the
primary visual cortex. In the LGN they are distributed in the last four layers
(from the 3th to the 6th). xiv, 29-31, 161, 163

PCA The Principal Component Analysis (PCA) is a statistical technique to trans-
form a set of sample points in an N-dimensional space into a new space where
the new dimensions are orthogonal and sorted by variability. xiv, 14, 160, 163

PCA-SIFT The PCA-Scale-Invariant Feature Transform (PCA-SIFT) is an image
representation based on SIF'T that initially finds a larger feature representation
and then applies PCA to reduce its dimensionality. xiv, 14, 163

Perceptron The Perceptron was one of the first Artificial Neural Networks (ANNs)
developed in the 50s by Frank Rosenblatt. It was able to learn from examples
and classify patterns into different classes. Altough it performs binary classifi-

cations, it can classify between multiple classes by using various output units.
41-43, 46, 75-78, 163

PReLU The Parametric Rectified Linear Unit (PReLU) is a function used in Arti-
ficial Neural Network (ANN) as an activation function. It is based on ReLU.
However, it is negative or equal to zero in the negative side of the function,
with a slope determined by a parameter; and grows linearly in the positive
side with a different slope (commonly more pronounced). xiv, 38, 61, 163

RBF A Radial Basis Function (RBF) is a type of function that computes the dis-
tance to a specific center. One common type is the Gaussian function. xiv,
37, 86, 163

RBM A Restricted Boltzmann Machine (RBM) is a generative stochastic model
with undirected connections between two layers, and without connections be-
tween units of the same layer. xiv, 57, 88, 163

ReLU The rectified linear unit (ReLU) is a function used in Artificial Neural Net-
work (ANN) as an activation function. It is equal to zero in the negative side
of the function and grows linearly in the positive side. The use of this acti-

vation function was an important part to classify images using Convolutional
Neural Networks (CNNs). xiv, 37, 38, 59, 61, 63, 88, 89, 100, 163

RNN A Recurrent Neural Network (RNN) is a type of Artificial Neural Network
(ANN) with loop connections between some of the units (usually between the
hidden units). The activations between the loops are propagated in discrete

164 Glossary

steps on time. These networks have been used succesfully for time series
predictions. xiv, 36, 55, 56, 85, 158, 160, 163

SGD The Stochastic Gradient Descent (SGD) is an optimization method for min-
imizing the error of an objective function. It is based on minimizing the error
in individual samples and estimates that the total error also decreases. One
requisite to apply this technique is that the objective function has be differen-
tiable. xv, 52, 53, 164

SIFT Scale-Invariant Feature Transform (SIFT) is an algorithm to extract a set of
important points from an image invariant to scale and translation. See the
Section 2.4.1 for an extended description. xv, 12-14, 59, 160, 163, 164

sigmoid belief network A sigmoid belief network is a directed and acyclic graph,
where the output of each node computes a logistic function given the binary
states of its parents. 87, 88

sigmoid function Mathematical functions with “S” shape, commonly monotoni-
cally increasing and with assymptotic behaviour at both ends. 43, 161

simple linear regression It is a technique to fit linearly a set of samples of a
dependent variable given a single explanatory variable. 39

SNARC The SNARC (Stochastic Neural Analog Reinforcement Calculator) was
one of the first hardware implementations of an Artificial Neural Network
(ANN), developed by Marvin Lee Minsky in the 50s. It was a set of bacum

tubes with random connections, and able to learn automatically. xv, xviii, 73,
164

softmax function The softmax function is a function that reduces a finite vector
of real values to a vector of the same size with values in the interval [0, 1]. It
uses the exponential function and a normalization factor to each element of
the vector. 43

SOM Self-Organizing Maps (SOMs) are a type of ANNs trained using unsupervised
learning to embed a complex feature representation in a reduced dimensional-
lity space (commonly two dimensions). The embedding is achieved by using a
competitive learning algorithm that computes a neighbourhood function be-
tween the samples and the different neurons, increasing the connectivity to the
winning neuron and its neighours and decreasing it to the rest. They are also
known as Kohonen maps as the Finnish professor Teuvo Kohonen designed
them in the 1980s. xv, 37, 79, 82-84

SURF The Speeded-Up Robust Features (SURF) is an image descriptor similar to
Scale-Invariant Feature Transform (SIFT) but modified for a faster computa-
tion. xv, 14, 59, 164

Glossary 165

SVM A Support Vector Machine (SVM) is a type of supervised binary classification
model. It is designed to find a hyperplane (or a set of hyperplanes) that
separates with the largest margin all the binary training samples. If there is
no such hyperplane it accepts a cost to find a soft margin solution. The most
basic model is the linear SVM while the kernelized method is non-parametric
and finds support vectors on the training samples. The support vectors are
training samples that are used to support the hyperplane. xv, 9, 59, 81, 87,
88, 164

Threshold Function Step function that takes the value of zero for inputs smaller
or equal to zero and one otherwise. 37, 160

TPE The Temporal Propositional Expression (TPE) was a type of logic created in
the 40s by McCulloch and Pitts to define the set of problems that were able
to solve with artificial neurons activated on time steps. xv, 70, 165

unit In the context of Artificial Neural Network (ANN), one unit corresponds to
one node of the network, it is also refered as an artificial neuron. 159, 162

universal approximator In the context of ANNs, it has been demonstrated that
a Feed-forward neural network (FNN) with at least one hidden layer and a
sufficient number of hidden units and some specific activation functions can
approximate any continuous function. The set of activation functions that
assures this fact are continuous sigmoidal functions; or nonconstant, bounded,
and monotonically increasing continuous functions. 37

VC dimension The Vapnik-Chervonenkis dimension (VC dimension) is a measure
of the capacity of a classification model to separate correctly a set of points
in an N-dimensional space. For example, in a two dimensional space a linear
classifier can classify up to three points in any spatial configuration, but not
four. xv, 81, 165

weight decay The weight decay is a regularization technique designed for Artificial
Neural Network (ANN) that adds a penalty to the size of the weights of the
network into the cost function. 53

XYZ The XYZ is color space derived from the RGB color space but adapted to
compensate the negative values perceived by the human visual system. xv,
16, 20

YCbCr The YCbCr is a color space used in digital images and video that encodes
the luminance in the “Y” channel and the chrominance in the Cb (blue differ-
ence) and Cr (red difference). The YUV color space is the same space but for
analog encoding. xv, 18

166 Glossary

YIQ The YIQ is a color space that encodes the luminance in the Y channel while
the chrominance is encoded in the orthogonal channels I and Q. It is used
in the analog encoding NTSC (North America, Japan, some parts of Africa,
South Korea, Taiwan, and others). xv, 18, 20, 93

YUYV The YUV is a color space that encodes the luminance in the Y channel while
the chrominance is encoded in the orthogonal channels U and V. It is used
in the analog encoding PAL (used in Australia, Europe, except France, some
parts of Africa, India, Brazil, Argentina, and others). xv, 18, 21, 93, 101,
132-134, 165

	Abstract
	Preface
	A note from the author
	Contents
	Mathematical Notation
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective and scope

	Image classification
	What is image classification?
	Computer vision approach
	Connectionism approach

	Image transformations
	Region detectors
	Feature descriptors
	SIFT
	Other descriptors

	Feature Cluster Representation
	Color
	Color spaces
	The importance of luma
	Datasets

	Neuro vision
	The biological neuron
	Visual system
	The retina
	The lateral geniculate nucleus
	The primary visual cortex

	LMS color space and color perception

	Artificial Neural Networks
	The artificial neuron
	Activation function
	Single layer feed-forward neural network
	Linear regression
	Perceptron
	Logistic regression

	Multilayer feed-forward neural network
	Training
	Backpropagation
	Stochastic gradient descent
	Batch gradient descent
	Mini-batch gradient descent
	Regularization and other advices

	Extreme Learning Machines
	Recurrent Neural Network
	Deep learning

	Convolutional Neural Network
	Convolution layer
	Grouping
	Rectification
	Pooling
	Local Normalization
	Fully connected layers
	Soft-max
	Complete example
	Best practices

	A brief history of Connectionism
	First insights into the human perception
	Human behaviour
	The central nervous system
	Mathematical Biophysics
	Machine intelligence
	The renaissance of Connectionism
	The winter of the Connectionism
	Connectionism as a doctrine
	The birth of Deep learning

	Method and Material
	Initial analysis, experiments, and test
	Datasets
	Color spaces
	CNN architectures
	Multimodal learning

	Software
	OverFeat
	Caffe
	Theano
	Pylearn2
	Blocks
	In this thesis

	Computer hardware

	Experiments
	Initial analysis
	Description of the experiments
	Experiment 1: Color channels
	Experiment 2: YUV early/medium/late fusion
	Experiment 3: RGB early and medium fusion
	Experiment 4: RGB + Y early and medium fusion
	Experiment 5: RGB + Y + UV medium fusion

	Tests of Significance

	Results
	Initial analysis
	Alexnet filters for ImageNet dataset
	Berkeley filters for CIFAR10 dataset
	ILSVRC2014 state-of-the-art CNNs
	Conclusions

	Experiments
	Experiment 1: Color channels
	Experiment 2: YUV early/medium/late fusion
	Experiment 3: RGB early and medium fusion
	Experiment 4: RGB + Y early and medium fusion
	Experiment 5: RGB + Y + UV medium fusion

	Statistical significance of the findings

	Conclusions
	Summary
	Discussion
	Future work

	Architectures
	Bibliography
	Glossary

