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1 Detailed Methods

1.1 Model

As the basis of our simulation, we use the Wright-Fisher model, in which the next generation of strains
is sampled with replacement from the current generation. The model may be modified to incorporate
fitness by sampling strains with unequal probabilities. Motivated by the biological observation that
genome sizes are not constantly increasing, we include a multiplicative fitness penalty (using a factor
0.99) to an otherwise neutral model for each gene exceeding a pre-specified number of genes to prevent
unrestricted growth.

In our model, we use two separate data structures to represent the genome of each strain: 1) gene
content component, represented by a binary indicator vector showing the presence and absence of genes,
and 2) gene sequence component, represented by a fixed number of gene sequences for which detailed
evolution is simulated (Supplementary Figures 1A and 1B). The two components are present in the
same strains, but otherwise their evolution is independent. In the gene content component we assume
no fitness differences between genes, and, in particular, make no distinction between core and accessory
genes. Results concerning gene content, for example the proportion of core and the gene frequency
histogram, are derived from this component. Because one of our goals is to investigate the relationship
between gene content and core sequence divergences (Figure 1), we include the gene sequence component
into our model and use it to compute the core genome distances. For simplicity, we assume the same
genes to be present in all strains in the gene sequence component.

The evolution of the gene content is driven by the following events, taking place between the sampling
of strain generations with frequencies specified by the parameters of the model:

1. Introduction of a novel gene into the population

2. Deletion of a randomly selected gene from a randomly selected strain

3. Horizontal gene transfer between two strains in the population, resulting in the gene pres-
ence/absence status of the donor to be copied to the recipient (Supplementary Figure 1C).

For modeling the detailed evolution in the gene sequence component, we use the following events:

1. Mutation

2. Homologous recombination, in which an allele of the recipient is replaced by an allele from the
donor (Supplementary Figure 1C).

A detailed parameterization of the model is shown in Tables S1 and S2. Our motivation for separating
gene content and core sequence evolution stems from computational savings resulting from the fact that
it is not necessary to simulate the detailed sequence evolution for all genes. As a preliminary experiment,
we implemented also a model with the two components combined and similar results were obtained;
however, fitting the model took considerably longer (results not shown).

Our model assumes that a gene can enter the population only once, after which its evolution is
driven by drift and recombination. Furthermore, as observed with several real data sets, the potential of
bacteria to recombine decreases with decreasing sequence similarity. Motivated by this, we make the same
assumption as Fraser et al. (2007), and accept recombination proposals with probability that decreases
exponentially with increasing sequence divergence using parameter values observed in real data sets (see
Table S2 for details).

To further reduce computational complexity, gene sequences, whose detailed evolution is simulated,
are represented using a low-dimensional feature space analogous to Fraser et al. (2007). In detail, each
gene is represented by a vector of 10 integers, serving as abstract sequence features. Every time a
mutation occurs in the gene, a randomly selected feature is incremented by one. The distance between
two strains computed using the feature representation underestimates the real sequence distance due to
an increased probability of two mutations occuring at the same location and we correct for the bias by
mapping the estimated distances to the expected true distances, using a mapping obtained with Monte
Carlo simulation (Supplementary Figure 2), which has an improved accuracy compared to an analytical
correction used by Fraser et al. (2007) in the range of distances relevant for this study.
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1.2 Model fitting

Our model has in total five free parameters: three governing the evolution of gene content (deletion rate,
novel gene introduction rate, horizontal gene transfer rate) and two governing the detailed sequence evolu-
tion (mutation rate, homologous recombination rate). Given the complexity of the model, maximizing its
likelihood is computationally infeasible. We employ a simulation-based inference method instead, which
resembles the simulated method of moments (McFadden, 1989; Pakes and Pollard, 1989; Gourieroux and
Monfort, 1997; Wood, 2010). The basic idea is to fit the model by matching summary statistics of the
real data. A two-step algorithm is used for fitting the model:

• Fit the parameters for the gene content evolution using 1) the gene frequency distribution, and 2)
the median clonality score (see below) over genes present in approximately half (40-60%) of the
strains.

• Fit the parameters for the detailed sequence evolution using 1) the slope of the gene content vs.
core genome distance relationship, and 2) the median linkage score (see below) over all core gene
pairs.

Each optimization step consists of simulating multiple artificial data replicates over a set of values for
parameters to be optimized, and measuring the similarity between the simulated and real data statistics
using a similarity measure (see below). Due to simulation variability, the similarity score between the
simulated and real data sets fluctuates even if exactly the same parameter values are used in different
simulation runs. For this reason, we do not have a closed form formula for the relation between similarity
score and parameters. We learn the relation for the range of plausible parameter values by non-parametric
regression (Rasmussen, 2006). Our estimate is obtained as the parameter value that maximizes the
learned regression function, which represents the expected similarity between the simulated and real
data. Supplementary Figure 3 illustrates this procedure when learning the parameters for the detailed
sequence evolution.

The model fitting procedure incorporates a subjective decision of selecting data summaries to use
when matching the real and simulated data sets. Ideally, the summaries would identify the parameters
unambiguously. When fitting the gene content component, for example, the gene frequency distribution
statistic was found to be highly informative about deletion and novel gene introduction rates; however,
it did not contain sufficient information for identifying the horizontal gene transfer rate. For learning the
horizontal gene transfer and homologous recombination rates, we defined two additional data summaries,
the clonality score and the linkage score, respectively. Each of these two scores was found to vary
monotonically with the recombination rates, such that high rates indicated low clonality or linkage scores
(Supplementary Figures 4 and 5). Details of the two scores are provided below.

The clonality score for a gene is defined on the basis of the fact that the gene divides the strains
into two groups, those with the gene, and those without. In the absence of horizontal gene transfer,
the two groups would correspond to different branches of a phylogenetic tree, and, consequently, the
within-group strain distances would be expected to be smaller than the between-group distances. We
define the clonality score as the quantile of within-group distances that corresponds to the 0.01st quantile
of the between group distances. Thus, it measures the excess of closely related strains sharing the gene
(or its absence) relative to the proportion of closely related strains with differing gene presence/absence
status. The median score over all genes present in approximately half of the strains was used as the final
summary as these are the most informative about recombination events (if a gene is very rare or common,
the chance of seeing it donated is low). The linkage score for a pair of genes is defined as follows: the
distances between the strains are calculated using sequences for each gene independently. The Spearman
correlation of the distances between the genes is taken as the linkage score for the gene pair. In the
absence of homologous recombination, the distances are expected to be highly similar, resulting in a high
linkage score.

When fitting the gene content component, the similarity between real and simulated data was mea-
sured using

d1 = − logKL− 1

2s2real
(csimu − creal)

2
,

where creal is the median clonality score over genes having frequency 0.4-0.6 in the real data, s2real is
the variance of the median clonality score obtained by bootstrapping, csimu is the corresponding median
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clonality score in the simulated data, and KL is the Kullback-Leibler divergence between the real and
simulated frequency histograms. To account for sampling, the simulated histogram was computed by
averaging over histograms for 30 bootstrap samples of 616 strains (the number of strains in the real
data), sampled from the 2000 strains simulated. Before computing the KL-divergence, the gene frequency
distributions were discretized into 7 bins using boundaries: (0, 0.02, 0.05, 0.2, 0.95, 0.98,1) and a single
bin for genes with frequency exactly 1. Thus, the bins simultaneously captured all main characteristics
of the frequency distribution: the proportion of the core genome, the slopes at each end of the histogram,
and a bin to combine intermediate frequencies. When fitting the gene sequence component, the similarity
between real and simulated data was measured using

d2 = − log((ssimu − sreal)
2) − log((lsimu − lreal)

2),

where ssimu and sreal are the slopes of the distance distribution in the simulated and real data sets and
lsimu and lreal are the median linkage scores between all core gene pairs in the simulated and real data
sets.

2 Detailed Results

2.1 Gene frequency histogram

Results from a model fitted by matching the gene frequency histograms and the clonality scores between
the real and simulated data sets are shown in Supplementary Figure 6. The histograms were obtained
by running the model for 40,000 generations, and combining the results at a 1,000 generation interval
after discarding the first 10,000 generations, which yielded approximately the same number of genes as
observed in the real data. The figure shows a simulated histogram with the optimized parameter values
and illustrates the impact of each parameter on the results.

The results show that the overall gene content distribution can be fitted accurately by modifying only
three parameters: novel gene introduction rate, deletion rate and horizontal gene transfer (recombination)
rate. Intuitively, increasing the rate at which novel genes are introduced in the population has a major
impact on the proportion of genes present in a small proportion of strains. Furthermore, the deletion
rate influences the ratio of the number of genes present in all strains (the core) and the number of genes
present in almost all strains, as the former become the latter through deletions. Recombination rate has
a minor impact on the gene frequency histogram. On the other hand, the clonality score increases from
0.046 with a high recombination rate to 0.52 with a low recombination rate, with the fitted rate yielding
a clonality score equal to 0.11 (the value in the real data is 0.12).

The main visually detectable quantitative difference between the real data and the optimized model
is that the proportion of genes with frequency between 98 and 100%, i.e., genes that are almost core,
corresponding to the rightmost grey column, is slightly higher in the real data (6%) than in the optimized
model (4%). The fit of this aspect could be improved by increasing the deletion rate; however, this would
lead to an excess of other high-frequency genes (see the panel with high deletion rate in Supplementary
Figure 6). One possible reason for the larger proportion of the ’almost core’ genes in the real data is that
some of them are actually core, but have not been annotated as such due to inconsistencies in the gene
prediction algorithm’s output.

As an example of a real data feature related to the gene content, not compatible with the model
assumpations, rare genes (present in 2-4 strains) were typically found in closely related strains in the
simulation, as a result of inheritance from a common ancestor, but not in the real data (Supplementary
Figure 7). A detailed inspection revealed that many rare genes had originated through frameshift muta-
tions (not included in the model) and the proportion of frameshifts among genes found in distant strains
was significantly higher (58%) than among genes found in closely related strains (34%, p=3.7e-6). Note
that our data were treated to remove likely false positive gene predictions (see Methods in the main text).

An important difference between our model and previous models is the inclusion of within-population
HGT events, which we have shown to play a central role in generating the observed distribution of
accessory loci. Another recent model has assumed genes can be donated from one strain to another
(Baumdicker and Pfaffelhuber, 2013). The key difference in our new model is that HGT may lead not
only to an acquisition, but also to a deletion of a gene, which is biologically motivated. This avoids
the problem related to an excess of genes at intermediate to high frequencies not seen in real data
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(Baumdicker and Pfaffelhuber, 2013), which follows when each HGT event increases the number of genes
in the population. With our formulation, within-population HGT is not expected to change the gene
frequency histogram, because the number of donor-recipient pairs resulting in a gene deletion is equal
to the number of pairs leading to a gene acquisition. This explains the success of the previous models
to explain the gene frequency distribution without HGT (Baumdicker et al., 2012; Collins and Higgs,
2012; Haegeman and Weitz, 2012; Lobkovsky et al., 2013). One consequence of our formulation is that
rare genes are deleted with a higher frequency than commons genes, because the number of strains that
can ’donate the absence’ of the gene is higher. This is connected with recent results indicating that low
frequency genes have different acquisition and deletion rates than other genes (Collins and Higgs, 2012);
however, as discussed above, many rare genes seemingly transfer faster than expected even by our model.

2.2 Population structure

The fitted recombination rate resulted in a population structure with multiple strain clusters approxi-
mately equally distant from each other (Supplementary Figure 8), yielding the best match with the key
features of the overall population structure observed in the real data, in which 16 sequence clusters were
detected (Croucher et al., 2013). However, some aspects of the population structure were not accurately
captured by the simple model. For example, the separate small mode in the top-right corner and the
peak close to the origin in the heat map (Figure 1) seem not well accommodated by the fitted model,
although the model assigned some probability mass to these regions also. The separate mode suggests
that the corresponding sequence cluster 12 may have a lowered ability to recombine with the rest of the
population. The peak close to the origin, on the other hand, means that strains in some sequence clusters
are more closely related to each other than expected by neutral variation. A more detailed inspection
of the real data revealed different sequence clusters to have different distance distributions, highlighting
the fact that the fitted model was obtained by averaging over many independent evolutionary processes
(Supplementary Figure 9).

In an attempt to gain a better understanding of mechanisms that could underlie the peak near the
origin in the distance distribution, we experimented with two simple extensions of our model, compatible
with the available background information (Croucher et al., 2013). In the first extension, a geographically
structured sample was taken from the whole population, to account for the observed relatedness of strains
from the same location and sequence cluster. We included each sampled strain multiple times following
the joint distribution of sampling sites and sequence clusters in the real data, thus representing an upper
bound on the effect achievable by the geographic structuring. In the second extension, a bottleneck was
simulated on the population, acting as a simple proxy for other processes by which some strains produce
more offspring than others, such as periodic selection and selective sweeps (Fraser et al., 2009). Example
outputs from the extensions demonstrate the capability of both of them to explain some of the peak while
leaving the main mode intact (Figure 2 and Supplementary Figure 10). However, we emphasize that the
real data likely represent an outcome of many of the processes acting continuously and in conjunction, and
with varying relative importances and timescales within different sequence clusters. Actually fitting the
models, and selecting between them and more complicated alternatives would require explicit quantitative
characterization of the differences between the sequence clusters, which is beyond the scope of this work.

The effect of recombination can be understood as follows: on one hand, it acts as a diversifying
force for closely related strains, as the strains acquire recombinations from other distant strains. On
the other hand, recombination prevents a strain from diverging further than the average strain distance
by mixing genes between the strains. As a result of the two forces acting in opposite directions, the
distance distribution ends up consisting of a single mode, clearly separate from the origin. Moreover,
once recombination rate is sufficiently high for the mode to emerge, further increase does not change its
location. This can be understood by noticing that recombination does not remove variation at any single
locus, it only shuffles it across the strains. Because the strain distances are obtained as an average over
distances at individual loci, it follows that after shuffling the different loci, the pairwise strain distances
become concentrated around the mean locus-wise distance. The essentially same principles apply in the
directions of both the axes, although details differ: in the direction of the x-axis (core genome distance),
homologous recombinations are shuffling the variation in gene sequences caused by mutations. In the
direction of the y-axis (gene content distance), the variation in gene content caused by deletions and
introductions of novel genes is mixed between the strains by horizontal gene transfers.

By comparing the distance distributions between the three years in which the strains were sampled
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(2001, 2004, 2007), one can test the conclusion that the mode in the distance distribution represents a
stationary property of the population. Indeed, the distributions seems highly similar (Supplementary
Figure 11), as expected on the basis of the results from the model; however, we note that mapping the
time-scales between simulation and real data is not straightforward.

2.3 Sensitivity analyses

Our model does not assume separate core and accessory genomes, but the core emerges stochastically
when genes become fixed. For comparison, we investigated assuming part of the core ’stable’, i.e., deletion
of these loci recuded fitness to zero, leaving no descendants. The results show that models with less than
30% of the core stable (of the whole core) could be fitted approximately equally well to the real data
(Supplementary Figure 12). The fit decreased when the proportion of stable core was increased beyond
30%, when no parameter combination was able reproduce the frequency distribution adequately. In detail,
the core ended up too large, and the proportion of common accessory genes with frequency between 50%
to 100% too small when many stable core genes were assumed (Supplementary Figure 13). This result
is in contrast with a recent estimate that genes in the stable category would account for approximately
80% of the core genome, which was obtained by fitting a model assuming one stable (essential) and two
accessory gene categories to the frequency histogram (Collins and Higgs, 2012); however, the histogram
was based on 14 S. pneumoniae genomes only.

We included in our model a multiplicative fitness penalty, equal to 0.99, for each gene beyond a pre-
specified limit for the number of genes. Changing this parameter in the range from 0.95 to 0.999 does not
affect the gene frequency histogram (Supplementary Figure 14), and, consequently, also the location of
the mode in the gene content Jaccard distance is unaffected. The only measurable difference was that the
average genome size increased from 0.95 to 1.02 relative to the limit for the genome size, and development
of further summaries is required to formally fit the parameter. In the analyses the number of strains
in the population was equal to 2000. Neither decreasing this to 1000 nor increasing to 4000 affects the
main conclusions (Supplementary Figures 15 and 16). The only notable difference is a minor decrease in
the overall variation in the population over time with respect to increasing population size, as expected,
resulting in smaller variance in the summaries.
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3 Supplementary Figures

Figure 1: Schematic illustration of the model. A/B) Gene sequence/gene content components of the
model. The related data structures are colored blue, the evolutionary forces acting on the components
red, and the outputs derived from the components green. C) Recombination events implemented in the
model. In a horizontal gene transfer, a sequence encompassing a gene (blue rectangle) may replace a
sequence in another strain without the gene, or vice versa. In a homologous recombination an allele (blue
rectangle) is replaced by another allele (red rectangle) of the same gene, or vice versa.
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Figure 2: Mapping of sequence distances from low-dimensional sequence representation to Hamming
distances resulting from the same number of mutations following the Jukes-Cantor model. The mapping
was derived from results obtained by simulating the low-dimensional and the full model in parallel multiple
times. The red line shows the mean of the distribution, blue lines the 5th and 95th percentiles.

Figure 3: A distribution for the similarity scores between the simulated and real data. The similarity
is computed using formula − log((ssimu − sreal)

2) − log((lsimu − lreal)
2), where sx refers to the slope of

the gene content vs. core genome distance distribution, lx to the median linkage score over all core gene
pairs, and the subscript x specifies whether real or simulated data is in question. The blue dots show
the parameter combinations at which the simulations were run and the cross denotes the location of the
optimal parameter value.
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Figure 4: Illustration of the clonality scores. A gene selected randomly from the real data divides
the strains into two groups, those with and without the gene. The first and second panels show the
between-group and within-group gene content (Jaccard) strain distances. The quantile of the within-
group distances corresponding to the 0.01st quantile of the between-group distances is defined as the
clonality score of the gene (here 0.117). The last panel shows how the median clonality score (computed
over genes with frequency 40-60%) varies in a simulation as a function of horizontal gene transfer rate.
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Figure 5: Illustration of the linkage scores. A linkage score for a pair of core genes is defined as the Spear-
man correlation of strain Hamming distances computed separately at the two genes. The panels show the
distribution of linkage scores in the real data, and in simulated data sets with fitted/decreased/increased
homologous recombination rates. The panel on the right shows how the median linkage score over all core
gene pairs varies in the simulations as a function of the homologous recombination and mutation rates.
To investigate the sensitivity of the median score to different levels of variation observed in different genes
in the real data, we re-computed the median score after removing all genes with less than 16 or 27 SNPs
(10th and 20th percentiles of the SNP count distribution). The median score changed from 0.108 to 0.112
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Figure 6: Gene frequency distributions. The x-axis shows the proportion of strains in which a gene is
present, such that rare genes appear on the left, and common genes on the right. The black column
represents genes present in all strains, i.e., the core genome. Individual panels, in columnwise order,
show results for the S. pneumoniae data, simulated data with fitted parameter values, simulated data
with increased/decreased novel gene introduction rates, simulated data with increased/decreased deletion
rates, and simulated data with increased/decreased homologous recombination rates. Kullback-Leibler
(K-L) divergence between the real and simulated histograms, and the clonality score (C-S) are shown for
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Figure 8: Simulated phylogenetic trees. The trees are based on core Hamming distances, and estimated
using the simple complete linkage hierarchical clustering. Results for the fitted (1X), decreased (0.1X),
and increased (10X) recombination rates are shown, along with the S. pneumoniae data for reference.
The long branch in the tree for the real data separates strains in the divergent sequence cluster 12
from other strains. The characteristics of the tree with the decreased rate include dense clusters in the
ends of long branches. On the other hand, the increased rate corresponds to a tree with star-tree like
characteristics, with none of the strains very close or distant from the other strains. The fitted rate
results in a compromise between the two extremes.
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Figure 9: Gene content Jaccard distances vs. core genome Hamming distances for strains within different
sequence clusters in the S. pneumoniae data set. The r/m values in the panels show estimates for the
numbers of substitutions introduced by recombinations vs. mutations in the sequence clusters, and are
taken from Croucher et al. (2013). No apparent relation between r/m and the shape of the distribution
seems to exist.
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Figure 10: Effect of a population bottleneck on the core genome Hamming distance distribution. Strains
from a simulated generation, representative of the average shape, were selected as the initial population.
A bottleneck was simulated by selecting a specified number of strains (out of 2,000 strains in total) as
possible ancestors from which the next generation was sampled with replacement. The bottleneck with
size 100 seems to produce the most similar peak near the origin to the one observed in the real data.

Figure 11: Gene content Jaccard distances vs. core genome Hamming distances for strains sampled in
different years in the S. pneumoniae data set. The numbers of isolates in the different years were: 133
(2001), 203 (2004), and 280 (2007).
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Figure 12: Maximized similarity scores between simulated and real data for different proportions of stable
core genome out of the whole core genome. Different numbers of stable core genes were assumed, and
the model was optimized 10 times independently. The boxplots show the similarity scores between the
real data and the optimized models in the 10 optimization rounds.
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Figure 13: Effect of assuming a stable core on the gene frequency histogram. The left-most histogram
shows for reference the frequencies in the real data. The other two histograms show fitted histograms,
averaged over 10 optimization rounds, from two different models, one assuming no stable core, the other
assuming that on average 81 per cent of core (out of the whole core) is stable. Additional annotation in
each panel specifies: the proportion of genes that are present in all strains, i.e. the core (blue), proportion
of non-core genes that are present in 50-100 per cent of the strains (red).
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Figure 14: Gene frequency histograms when the fitness penalty for increasing the number of genes is
changed in the range from 0.95 to 0.999.

Figure 15: Impact of the number of simulated strains on the distance distributions.
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Figure 16: Impact of the number of simulated strains on the gene frequency histograms.
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4 Supplementary Tables

Parameter Description Fitted value

deletion.rate
Mean number of gene deletions per generation (relative
to the size of the core genome).

0.066

novel.gene.introduction.rate
Mean number of introductions of novel genes per gener-
ation (relative to the size of the core genome).

0.18

horizontal.gene.transfer.rate
Mean number of horizontal gene transfer attempts per
generation per gene.

7.4

mutation.rate
Mean number of mutations per generation per gene (gene
sequence component).

1.8

homologous.recombination.rate

Mean number of homologous recombination event at-
tempts per generation per gene (gene sequence compo-
nent).

7.0

Table 1: Evolutionary parameters in the model.

Parameter Description Value

num.strains Number of sequences simulated. 2000

sequence.component.size
Number of genes for which detailed evolution is simulated
in the gene sequence component.

40

genome.size
Number of genes that can be present in the gene content
component in a strain without fitness cost.

60

fitness.cost.per.gene
Fitness cost per excess gene applied to strains which have
the number of genes larger than genome.size

0.99

rec.acceptance.par

A recombination attempt is accepted with probability
10−Ax, where A is rec.acceptance.par, and x is the local
sequence divergence calculated over the gene affected by
the recombination (homologous recombination) or, when
the local divergence is not available in the horizontal
gene transfers (full sequences not simulated), the over-
all Jaccard distance between the donor and the recipient
(mapped to the corresponding Hamming distance).

18

gene.length
The length in base pairs of a gene for which detailed
evolution is simulated

500

Table 2: Simulation meta-parameters
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5 Supplementary Animation Captions

Animation 1: Evolution of the strain distance distribution with fitted parameter values. The simulation
was run for 25,000 generations and the animation was created by plotting the distance distribution at
100 generation interval. Fig. 1e of the main text was created by averaging over the generations, after
discarding the first 10,000 generations. (animation fitted recombination.avi)

Animation 2: Evolution of the strain distance distribution with between strain recombination rate
multiplied by a factor of 1/10. (animation 0.1X recombination.avi)

Animation 3: Evolution of the strain distance distribution with between strain recombination rate
multiplied by a factor of 10. (animation 10X recombination.avi)
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