
fastGEAR – Manual

fastGEAR was developed in a collaborative project by Rafal Mostowy, Nicholas J. Croucher, Cheryl P.

Andam, Jukka Corander, William P. Hanage, and Pekka Marttinen*

Contents
Introduction ... 2

Copyright notice .. 2

Installation ... 2

Running the program... 3

Running the executables In Linux/Unix ... 3

Running the source code in Matlab... 4

Changing input specifications (including defining lineages manually) .. 4

Interpreting the outputs of the program .. 5

lineage_information.txt ... 5

recombinations_ancestral.txt.. 5

recombinations_recent.txt .. 6

Visualizing the results .. 7

Plotting the detected recent recombinations ... 7

Plotting the detected ancestral recombinations with a user-specified ordering for the strains 8

For reference, show colors used in the recombination plots ... 8

Plotting probabilities of the different lineages along the sequence for a strain 9

Additional functions for postprocessing fastGEAR outputs .. 9

Introduction
fastGEAR is a software for analysing sequence alignments, and it has been described in a paper:

Mostowy, R., Croucher, N.J., Andam, C.P., Corander, J., Hanage, W.P. and Marttinen, P.

(2017). Efficient inference of recent and ancestral recombination within bacterial

populations. Molecular Biology and Evolution, 34(5), 1167-1182.

https://doi.org/10.1093/molbev/msx066

Copyright notice
© 2016 Authors

fastGEAR can be downloaded from https://users.ics.aalto.fi/~pemartti/fastGEAR/ (link to be updated upon

acceptance) and used freely for academic purposes. If you use fastGEAR, please cite the paper specified

above. Furthermore, you can modify and redistribute the source code on the condition that the original

citation and this notice accompany the modified version.

fastGEAR comes with no warranties whatsoever. The user alone is responsible for results

obtained with fastGEAR.

Questions and feedback can be sent to:

Installation
To run the precompiled version of fastGEAR you first need to install the Matlab Runtime component (MCR).

As the MCR versions change periodically, we provide the version which is compatible with the version of

fastGEAR, and which you can obtain from https://users.ics.aalto.fi/~pemartti/fastGEAR/. Having

downloaded it, you should follow instructions for installation from

http://uk.mathworks.com/help/compiler/install-the-matlab-runtime.html

For Windows, the installation is relatively straightforward. For Linux, the easiest way to install it is to unzip

the downloaded file, enter into the uncompressed directory and enter

DIR=/m/fs/software/matlab/r2016a

./install -mode silent -agreeToLicense yes –destinationFolder $DIR

where $DIR is an example of prespecified path to a directory where this version of MCR should be installed.

This path should be later used to run the script.

https://doi.org/10.1093/molbev/msx066
https://users.ics.aalto.fi/~pemartti/fastGEAR/
http://uk.mathworks.com/help/compiler/install-the-matlab-runtime.html

Running the program

Running the executables In Linux/Unix

Go to the directory where the executables are located, and start the executable by using run_fastGEAR.sh

script. The following example runs the analysis for an alignment in a file alignment-rec.fa located in sub-

directory ./data3_many. This directory needs to be created prior to running the script. The outputFile

must have a ‘.mat’ extension.

USAGE:

./run_fastGEAR.sh <full path to matlab/mcr> <inputFile> <outputFile>

<inputSpecsFile>

EXAMPLE:

./run_fastGEAR.sh /m/fs/software/matlab/r2016a ./data3_many/alignment-

rec.fa ./data3_many/data3_many_res.mat ./fG_input_specs.txt

After the analysis finishes, the window looks as follows:

Results as text can now be found in files "lineage_information.txt", "recombinations_recent.txt", and

"recombinations_ancestral.txt" in the output directory which is located in the same directory as the output

file specified. In the example above, the output directory would be ./data3_many/output.

Running the source code in Matlab

Alternatively, you can run the Matlab source code directly from Matlab. For an example on how to do this,

see testFastGear.m in the source code package.

Changing input specifications (including defining lineages manually)

NOTE: by default you don’t need to change the input specifications, but you can just use the input

specification file included in the package. Detailed input specifications for the program are given in a file

that is provided as the fourth argument of the program call (./fG_input_specs.txt in the example). This is

what the input specifications file looked like in the example (the same file was used in the analyses in the

manuscript):

The first line specifies the number of iterations for iteratively learning recombinations and updating model

parameters. Convergence can be monitored from screen output, which shows the estimated parameter

values at each iteration. The values don’t coverge to a single point because of the stochastic nature of the

search algorithm (when the parameter values start oscillating, rather than increasing or decreasing

monotonically, the algorithm can be considered converged). In our experiments the algorithm usually

converges in less than 10 iterations, and the default value 15 is expected to be appropriate for analyses

similar to those presented in the article.

The second line specifies the initial number of clusters for the BAPS3 clustering algorithm that is used by

fastGEAR (this specifies at the same time an upper bound for the number of clusters). The clustering

algorithm is run with each of the specified initializations and returns the most probable clustering.

The third line specifies whether the clustering algorithm should stop as soon as it identifies a clustering

where the number of clusters is less than the given initial number/upper bound. The rationale here is that if

you start with a too small number of clusters, say 10, and you identify 10 clusters, then you should try with

a larger upper bound. On the other hand, if you run the clustering algorithm with very many different initial

values, that takes time. With this parameter you can set multiple initial numbers of clusters on the second

line, but not waste time running all of them, if a suitable clustering is found, having fewer clusters than the

specified upper bound.

The fourth line contains a file with a pre-specified partition that will be used instead of the clustering

algorithm to define lineages that will be used in the analysis. If a file name is given here, then

specifications related to the clustering algorithm on lines 2 and 3 will have no effect. The partition file

should have as many rows as there are strains in the data set, and on each row there should be a single

positive integer that specifies the cluster for the corresponding strain. An example partition file is

./data3_many/data3_partition.txt, which contains lineages that are exactly the same as what would be

obtained by running the algorithm. When defining lineages manually, the largest lineage should have the

largest cluster label. For example, if there are three lineages of sizes 15,100,30, then the cluster labels

should be 1,3,2, respectively. This is because when detecting ancestral recombinations, fastGEAR assumes

the smaller lineage to be recombinant. We note that we have validated the method only using the default

approach with lineages defined by the clustering algorithm, and therefore it is not clear to us whether

sensible results may be obtained by defining the lineages in some alternative way.

The fifth line specifies whether the program should produce “reduced” or “complete” output. If the

“complete” output is selected, then in the output folder there will be one file for each strain containing the

marginal probabilities of the different lineages for the strain at each sequence position. These are required

if you want to look in detail the marginal probabilities using “plotMarginalsForStrain” (see Visualizing the

results section). By default, the reduced output is used, because if the analysis is run for many separate

gene alignments, and if each run produced one output file per strain, that would total to very many files

being produced by the analysis, which might hamper the performance (this depends on the details of the

computing cluster you’re using).

Interpreting the outputs of the program
The main outputs of the program are the three text files: lineage_information.txt,

recombinations_recent.txt, and recombinations_ancestral.txt, all of which can be found in the output

directory.

lineage_information.txt

The beginning of the file lineage_information.txt for the example analysis is shown below. The file has as

many rows as there were sequences in the input alignment. The columns of the file are intepreted as

follows: StrainIndex: This is the index of the sequence/strain in the input alignment. Lineage/cluster show

the inferred lineage/cluster for the strain. In the example there were 4 clusters detected, so the numbers in

the Cluster column range from 1 to 4. In addition, these clusters were merged to produce 3 lineages.

Therefore, the possible values in the Lineage columns are from 1 to 3. Name specifies the name of the

strain in the input alignment.

recombinations_ancestral.txt

The file recombinations_ancestral.txt for our example is shown below. It displays information about all

ancestral recombinations detected between the lineages. Start and End are the estimated starting and

ending positions of the recombinant segment. Lineage1 and Lineage2 are the lineages between which an

ancestral recombination was detected. Lineage1 is the larger one and Lineage2 the smaller one of the two

lineages, and therefore, based on the principle of maximum parsimony, Lineage1 may be considered the

donor and Lineage2 the recipient of the recombination, although we emphasize that the direction is not

formally identifiable using fastGEAR (see related Discussion in the article). log(BF) shows the (natural)

logarithm of the Bayes factor, a measure of statistical significance, computed for the recombination, and

it’s based on changes in SNP density between the two lineages. Interpretation of BF=10, for example,

would be that it is 10 times more probable that there is a change in SNP density supporting a

recombination than that there is no such change. Ancestral recombinations with BF<10, that is, log(BF)<2.3

are removed in the significance checking step of the program.

recombinations_recent.txt

The beginning of the file recombinations_recent.txt for our example is shown below. The columns Start

and End again denote the boundaries of the recombinant segment. DonorLineage is the lineage that

donated the recombination and RecipientStrain is the sequence that received the recombination. Note that

unlike with ancestral recombinations, the direction of recent recombinations can be identified by fastGEAR.

The column log(BF) shows the logarithm of the Bayes factor, that represents the statistical significance of

the recombination, and is based on changes in SNP density between the recombinant strain and its ‘home’

lineage, i.e, the lineage to which the strain was assigned in the clustering phase. Threshold BF=1, i.e.,

log(BF)=0 is used for pruning recent recombinations in the significance checking step of the algorithm. This

means that recent recombinations where it’s more probable that there is a change in SNP density

supporting the recombination, than that there is no such change in SNP density, are retained, while other

putative recombinations are removed. Note that the same recombination may be seen in multiple strains

as a result of a single recombination event that has affected the common ancestor of many strains that all

share the recombination. The number on the first line of recombinations_recent.txt shows the estimated

number of recent recombination events, where overlapping recombinations from the same donor are

counted as one.

Visualizing the results

Plotting the detected recent recombinations

USAGE:

./run_plotRecombinations.sh <path to matlab/mcr> <outputFile> <type

(1=recent, 2=ancestral)> <strainOrder (1=original, 2=by cluster, or

fileWithOrdering)>

EXAMPLE:

./run_plotRecombinations.sh /m/fs/software/matlab/r2016a

./data3_many/data3_many_res.mat 1 1

The following figure shows recent recombinations for the example data. On the y-axis are the 90 sequences

present in the alignment and on the x-axis the sequence positions. The annotation on the right side of the

panel shows division of the strains into three lineages (green, blue, red). The sequences are colored based

on the ancestry of the sequences (black color denotes recombination estimated to come from outside of

any lineage in the data set). The code that draws this figure produces another output file

./data3_many/output/order_in_plot_original_ordering.txt, which shows the order in which the strains

appear in the figure. Note that the window must be closed before the execution of the script continues.

Plotting the detected ancestral recombinations with a user-specified ordering for the strains
Plot ancestral recombinations

EXAMPLE:

./run_plotRecombinations.sh /m/fs/software/matlab/r2016a

./data3_many/data3_many_res.mat 2 ./data3_many/data3_given_ordering.txt

The following figure shows ancestral recombinations in the example data. The recent recombinations are

removed before the analysis of ancestral recombinations, and therefore the recent recombinations are

shown as white gaps. The order of strains is here specified in file ./data3_many/data3_given_ordering.txt,

and can also be seen in an output file./data3_many/output/order_in_plot_given_ordering.txt. Note that

you can specify the ordering in a similar way when plotting recent recombinations, even if this is not done

in the example above. You can compare the results (both recent and ancestral) to the true population

structure shown in ./data3_many/plot_original.png.

For reference, show colors used in the recombination plots

USAGE:

./run_plotColors.sh <path to matlab/mcr> <number of lineages, use - for

the number detected)> <outputFile>

EXAMPLE:

./run_plotColors.sh /m/fs/software/matlab/r2016a -

./data3_many/data3_many_res.mat

To aid interpretation of the two previous figures, the plotted recent and ancestral recombinations, the
plotColors function shows which color is related to which lineage label. For example, below the 1st lineage
has green color, 2nd lineage red color, 3rd lineage blue, and finally, the outside origin, not corresponding to
any of the lineages, has black color.

Plotting probabilities of the different lineages along the sequence for a strain
USAGE:

./run_plotMarginalsForStrain.sh <path to matlab/mcr> <outputFile>

<strainIndex> <donorLineage (if =0, then shows all lineages)>

EXAMPLE

./run_plotMarginalsForStrain.sh /m/fs/software/matlab/r2016a

./data3_many/data3_many_res.mat 1 0

This operation draws a figure where the probabilities of the different lineages are shown at all sequence

positions for the specified strain. Note that in order to draw the figure, in the input specification file the

“complete output” option must have been selected (not default). In this figure we see that the green

lineage has probability approximately equal to unity everywhere except in a short region, which

corresponds to a recombination from the red lineage. In that region the red lineage has probability

approximately equal to unity.

Additional functions for postprocessing fastGEAR outputs

Additional scripts for processing fastGEAR outputs can be found in

https://users.ics.aalto.fi/~pemartti/fastGEAR/postprocessing_scripts/

Here you can find, e.g., functions for collecting recombination counts for multiple genes, plotting multiple

genes side-by-side, computing the proportion of shared ancestry, and reconstructing changes in the

population structure on the branches of a given phylogenetic tree. The documentation for these additional

postprocessing functions can find in fastGEAR_post_processing_example.pdf, also available behind the link.

Python versions of the postprocessing scripts are available

https://github.com/shimbalama/post_fastGEAR. These scripts have been written by Liam Mcintyre,

University of Melbourne.

https://users.ics.aalto.fi/~pemartti/fastGEAR/postprocessing_scripts/
https://github.com/shimbalama/post_fastGEAR

