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Abstract. The staged Tile Assembly Model has been introduced by
Demaine et al. 2008 as an enhancement of the previous tile self-assembly
model of Winfree. In this framework, the assembly is allowed to be per-
formed in parallel in different test-tubes, and the obtained products are
stored and mixed in subsequent assembly stages. Using elegant combinato-
rial constructions, in has been shown that staged assembly systems possess
remarkable advantage in comparison to their abstract counterparts. Be-
cause of their parallel nature, one can choose from a multitude of staged
assembly strategies for assembling a given target structure. In the current
work we analyze these assembly variations from a kinetic perspective, in
order to determine and possibly maximize, their final assembly yield. As
a pre-requirement for this task, we provide a procedure for associating
an analytically tractable mathematical model to a given staged assembly
experiment, based on which we can predict the yield concentration of the
final assembly product. As a case study, we consider various assembly
strategies as well as optimized and non-optimized assembly protocols for
generating a size-10 tile assembly.

Keywords: Tile Assembly Model, staged assembly, numerical modelling,
yield optimization

1 Introduction

The abstract Tile Assembly Model (aTAM) has been introduced by Winfree [9]
as a custom-made generalization of Wang tile systems, designed for the study of
DNA tile self-assembly. The basic components of the aTAM are non-rotatable
unit square tiles, uniquely defined by the sets of four glues placed on top of their
edges. The glues are part of a finite alphabet and each pair of glues is associated
a strength value, determining the stability of the link between two tiles having
these glues on the abutting edges. The assembly process starts from a single
nucleation point, the seed, and it continues by sequential attachments of tiles
until no more tiles can be added to the assembly. All the individual tiles are
placed inside a unique assembly “pot”, and the assembly process progresses with
no external interactions.

In order to improve the efficiency of these systems, with respect to assembling
more complex structures from a fewer initial number of distinct tile-types1,
Demain et al. introduced the staged Tile Assembly Model (sTAM) [2]. In this
framework, the assembly is performed in stages and in different test-tubes (or

1 A tile-type is a population of identical copies of the same tile.



bins). Each test-tube is initialized with one or several non-interacting tile-types,
and in each stage, one or several test-tubes are mixed together according to a
predefined scheme. Different tile-types are thus mixed into the same compartment
and start interacting. No seed structures are defined in this framework, and thus
the reactions are implemented population-wise. The external observer allows the
reaction to progress for some time, after which the content of the test-tubes is
filtered and only the generated reaction products are used in subsequent stages.

Using elegant combinatorial designs, Demain et al. [2, 3] demonstrated how
various structures can be assembled efficiently, both in terms of the total number
of different tile-types used, and in terms of the tile-interaction complexity, i.e.,
using only temperature-1 systems2. For example, one requires only 3 tile-types
and log(n) stages for constructing an n-size ribbon of contiguous tiles, while a
similar structure assembled in a “one pot” system, i.e. classical aTAM, requires n
distinct tile-types. Similarly, using a constant number of tile-types and only log(n)
stages, one can assemble a full n× n square, whereas in the aTAM framework
O(log n/ log log n) tile-types are required to assemble an analogous structure.

Because of the parallel design feature, one can choose from a multitude of
staged assembly strategies for assembling a given target structure. Moreover, this
freedom of choosing between several assembly variants remains valid even when
one restricts to those strategies employing a minimum number of assembly stages.
In the current work we analyze these assembly variations, as well as possible
different implementations of the same assembly strategy, all in terms of their
predicted final yield. Our objective is to study possible yield optimization protocols
for the target assembly of these system. Considering assembly systems with an
abundance of inter-molecular interaction (as is the case of DNA self-assembly
systems), putting together larger concentrations of reactants and allowing them
more time to react will always generate better yields. Thus, in order to perform a
fair comparison between various assembly strategies, we require the total initial
reactant concentrations, volume, as well as total time allowed for the reactions,
to be constant in all of the compared strategies.

The particular aspects we want to investigate are:

– the yield variations in between different staged assembly schemes (generating
the same final structures); and

– the yield variations within the same assembly scheme, when modifying
parameters, such as: i) the time allocation for each of the assembly stages
(while the total time for the experiment remains constant); or ii) the ratio in
which certain assemblies are mixed inside the test-tubes (with total volumes
of the reactants kept constant).

The first criterion can be seen as a design optimization level, while the second as
a protocol optimization level. Moreover, we ask whether there exists a correlation
between the two levels. Namely, would a design scheme performing particularly
well on some assembly protocol generally generate better yields (than other
assembly schemes) independent of the employed protocols?

In order to be able to address such questions, we first provide a methodology
of assigning to every staged tile assembly system (sTAS) a numerical model
describing the time-evolution of all its components. The employed modelling

2 Temperature-1 systems are highly advantageous as they can be made very resistent
to errors, compared to temperature 2 systems [1]. Such systems can be implemented
using e.g. DNA-origami techniques [8].
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methodology is based on the principle of mass-action kinetics [5, 6] and is imple-
mented using the formulation given by ordinary differential equations (ODE).
The modeling methodology is different from the one considered in the kTAM
models, [12], as in this case we do not follow the assembly of only one particular
structure (starting from a seed tile), but we keep track of all the species available
in solution(s). While such an approach is usually untractable for “one pot” sys-
tems, we show that it becomes applicable in the case of sTAS. We use the above
modelling methodology and, as a case study, we consider the assembly (and
yield optimization process) of a size-10 tile assembly structure. For numerical
modelling and optimization we have used the open source software COPASI [7]

The paper is organized as follows. The next section contain background
information regarding the aTAM and sTAM models. In Section 3 we introduce our
kinetic modelling methodology for sTAS and provide a series of pre-normalization
requirements for our models. In Section 4 we introduce several yield optimization
strategies applicable to staged assembly systems, and as a case study in the
next section we consider the staged assembly and yield optimization protocols
employed in obtaining size-10 horizontal ribbons of tiles. In the last section we
discuss our results and provide some future research directions.

2 Background

In the following, we provide a very brief introduction of the (abstract) Tile
Assembly Model, aTAM, and its staged counterpart, sTAM. For a more detailed
presentation of these models we refer to [9, 2] as well as the recent survey [4].

Let Σ be a finite set of glues, and let s : Σ × Σ → N be a glue strength
function, i.e., s(σ1, σ2) = s(σ2, σ1) for all σ1, σ2 ∈ Σ. A tile (or tile-type) t is a
unit square structure with glues on its four edges; we assume that the tiles can
not be either rotated or reflected. Thus, we can represent a tile as the ordered
4-tuple of glues t = (tN , tE , tS , tW ) ∈ Σ4 where the N,S,E, and W subscripts
point to the corresponding edge positioning. An assembly A is a partial mapping
A : Z2 → Σ4 assigning tiles to locations in the two-dimensional grid, such that
the defined structure is connected. A tile assembly system (TAS) T = (T,S, s, τ)
consists of a finite set T of tile-types, an assembly S called the seed assembly,
a glue strength function s and a temperature τ ∈ Z+. By definition, we assume
that the seed assembly S is stable and cannot be disassembled3.

Given a TAS T = (T,S, s, τ) and an assembly A (such as the seed S), a
new tile can be added to A if it shares a common boundary with tiles that bind
it into place with total strength at least τ ; we call such a process a successful
tile addition. We say that a TAS T produces an assembly A if this assembly is
formed by a sequence of successful tile additions starting from the seed assembly
S. Moreover, if no other tiles can be further attached to A, we say that the
assembly is terminal.

The model of staged assembly differs from the classical aTAM by allowing
partial assemblies to be formed in parallel in different test-tubes before merging
them together. The notion of successful addition is extended from the previous
case by allowing the merging of any two assemblies, as long as the sum of the
strength of glues placed along the common boundary of the two assemblies is

3 On some experimental implementations of the TAM, the seed assembly is implemented
using e.g., DNA origami [10, 11]
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at least the temperature τ of the system. Thus, in this setting, single tiles are
seen just as (elementary) assemblies. The above requirement for an assembly
is known as partial connectivity4, see [2], as it does not enforce tiles in the
assembly to have matching edges with all the neighboring tiles, as long as the
matching which bound them into place exceed or are equal with the temperature
τ . For the remaining of this paper we assume working in this partial connectivity
requirement for assemblies.

Another difference from aTAM comes from the fact that the assembly process
is allowed to be performed in parallel in different test-tubes (or bins) and across
several assembly stages. Each tile-type is placed initially in an isolated test-tube;
we call these initial test-tubes. When the content of two (or several) test-tubes
is mixed in a separate bin, the assemblies start interacting and bind to each-
other according to their glue interactions. The process is allowed to progress
for some time, after which the mixed solution is filtered and only the reaction
products, i.e., the terminal assemblies, are stored for further mixing, while the
remaining reactants are discarded. The test-tubes are further mixed synchronously
during several assembly stages, until the final product is assembled in the unique
test-tube of the last assembly stage.

A staged tile assembly system (sTAS) T s = (T, s, τ,G) is defined by the set
T of starting tile-types ti, each placed in marked initial test-tubes T 0

ti , a glue
strength function s, a temperature parameter τ ,and an assembly graph G (or
mix graph). The assembly graph is a direct acyclic graph (DAG) describing the
different test-tubes and the way these tubes are mixed along a synchronous
succession of assembly stages. The nodes of the graph are the various test-tubes
(including the initial ones), while a directed edge between two nodes T si and
T sj symbolizes that the assembly product of test-tube T si (or the corresponding
tile-type in case of an initial test-tube) is transferred (either completely if T si

has no other out-edges or just a fraction of it otherwise) to test-tube T sj . The
final assembly of the sTAS is the assembly product collected at the end of the
experiment from the unique test-tube of the last assembly stage.

Fig. 1. The annotated assembly graph of an sTAS assembling a size-10 ribbon

As an example, in the following we provide an sTAS assembling a size-10
horizontal ribbon of tiles. Since this is a 1D structure, only the glues of the East
and West sides of a tile-type are relevant for the assembly process. Thus, a tile

4 As opposed to the full connectivity requirement.
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is denoted as the pair (x, y) of its West and East glues, respectively. Moreover,
a 1D assembly containing k > 1 tiles will be denoted as xky, where x (resp. y)
is the West (East) glue of the left-most (right-most) tile in the assembly. The
temperature τ of the system is 1, and the strength function s is given by s(x, y) is 1
if x = y and 0 otherwise. The sTAM contains 3 initial test-tubes T 0

(ab), T
0
(bc), T

0
(ca)

for the tile-types (a, b), (b, c), and (c, a), respectively, and employs 4 assembling
stages. The assembly-graph from Figure 1 fully describes the design of the sTAS;
for ease of understanding we have annotated the graph by providing also the
description of the assembly product in each of the test-tubes.

Various 2D assembly structures can be efficiently5 assembled by appropriate
staged assembly systems, even at temperature τ = 1 and using only two reactants
per test-tube6, see e.g. [2]. Although the results of our current research apply
to both 1D and 2D assembled structures, in order to simplify the considered
mix graph designs and exemplify the applicability of our approach, are going to
concentrate over the assembly of 1D ribbons of tiles. Indeed, if more complex 2D
assemblies are investigated, the only change comes in the design of the mixing
graph. However, the dynamics of the system is preserved, as mixing a size-p
assembly (i.e., containing p tiles) with a size-q assembly, always generates a
size-(p+ q) assembly, assuming the two components are indeed reacting.

Thus, from now on, we represent the tiles as the pairs of glues placed on their
West and East edges, respectively, we assume working always at temperature 1,
and we use the strength function given by s(x, y) = 1 if x = y and 0 otherwise.

3 Modeling of Staged Tile Assembly Systems

In order to be able to address questions regarding yield optimization of sTAS
we need appropriate quantitative tools for estimating and analyzing the corre-
sponding yields. In this section we introduce an adequate mathematical model of
the staged assembly process. Using this methodology, for any particular target
structure, one can numerically determine the best assembly strategy for it, as
well as numerically optimize the parameters of the chosen assembly strategy.

The modelling paradigm that we choose to use is that of ODE, while the
formulation of the models is based on the principle of mass-action kinetics. The
principle of mass-action, introduced in [5, 6], says that the rate of each reaction
is proportional to the concentration of reactants. Moreover, this reaction rate
gives the measure on which the reactants are consumed and the products are
generated. To exemplify, consider the simple reaction A+B → A : B when an
assembly A joins an assembly B and forms an assembly A : B. If we denote by
[A](t), [B](t), and [A : B](t) the concentrations these assemblies at time t, and
by k the kinetic rate constant of the reaction, then the combined measure of
consuming and producing each of the reactants is given by the system:

d[A]

dt
= −k[A] · [B]

d[B]

dt
= −k[A] · [B]

d[A :B]

dt
= k[A] · [B]

We are going to assume (without loss of generality, but with some possible loss
of design efficiency) that in each stage of the assembly, we allow to mix the

5 Here, we measure the efficiency in terms of the number of different tile-types used
6 In most of the staged assembly designs from the literature, only two reactants are

placed inside a test-tube.
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contents of only two test-tubes at a time; most of the sTAS in the literature
are nevertheless designed in this way. Moreover, before the mixing procedure,
the content of each test-tube is filtered and only the product of the assembly is
preserved. Thus, in each test-tube we have only two reactants. As a consequence
of this, the chemical reaction system corresponding to each of the test-tubes
(each test-tube generates an isolated system) obeys two conservation reactions.
Namely, at any time point t we have that

[A](t) + [A :B](t) = C1 and [B](t) + [A :B](t) = C2,

for two constants C1 and C2, such that C1 = [A](0) + [A : B](0) and C2 =
[B](0) + [A : B](0)7. Thus, at any time point t, the concentration of the [A]
and [B] species can be derived from the concentration of the [A :B] species. By
substituting these into the third differential equation we obtain:

d[A :B]

dt
= k(C1 − [A :B])(C2 − [A :B]) (1)

In most cases, such ODE systems derived from corresponding chemical reaction
systems are analytically intractable. However, since in the case of sTAS we have
that in each test-tube there exist only two reactants interacting and forming a
product (a larger complex), the derived ODE systems can be solved analytically.
Namely, equation (1) has the solution:

[A :B](t) =
−C1C2 + [A :B](0)C1 + C1C2e

tk(C1−C2) − [A :B](0)etk(C1−C2)

C1etk(C1−C2) − [A :B](0)etk(C1−C2) − C2 + [A :B](0)
(2)

Another particularity of sTAS is that none of the [A :B] structures exist before
mixing assemblies A and B, that is [A :B](0) = 0. Thus, equation (2) becomes:

[A :B]t =
−C1C2 + C1C2e

tk(C1−C2)

C1etk(C1−C2) − C2
=
C1C2(etk(C1−C2) − 1)

C1etk(C1−C2) − C2
, (3)

where C1 = [A](0) and C2 = [B](0). Moreover, if one also assumes that [A](0) =
[B](0) = C , i.e., the systems is symmetric, then equation (2) becomes

[A :B]t =
ktC2

1 + Ckt
. (4)

Because at each stage of the assembly the initial concentrations for the reactants
depend on the concentrations of the products at prior stages, and since equation
(1) describing the time-evolution of the product assembly in each test-tube admits
an analytic solution, we can provide an analytic formula for the entire system.

An important observation regarding the dynamics of sTAS is that the products
obtained in prior stages of the assembly are not further concentrated before
mixing them in subsequent stages. Thus, in each stage, the volume of the solution
increases, and hence we have to update the concentration of the reactants
accordingly (i.e., to decrease these concentrations).

For example, assume the reactants R1 and R2 of test-tube T from some stage
of the assembly are taken to be fractions of the products P1 and P2 of test-tubes
T1 and T2, respectively (from some previous stages). Namely, let

7 We denoted by [A](0), [B](0), and [A :B](0) the initial concentration of the species
A, B, and A : B, respectively, at time t0 = 0.

6



V olP1
trans = rTT1 · V olT1 and V olP2

trans = rTT2 · V olT2

be the volumes of the fraction of products P1 and P2 transferred from T1 and
T2 respectively, to T , where V olT1 (resp. V olT2) and rTT1 (resp. rTT2) denote
the volume of test-tube T1 (resp. T2) and the ratio from this volume which is
transferred into T . Then, the initial concentration of reactants R1 and R2 in
test-tube T is given by

[R1](0) =
[P1] · V olP1

trans

V olP1
trans + V olP2

trans

; and [R2](0) =
[P2] · V olP2

trans

V olP1
trans + V olP2

trans

, (5)

where [P1] (resp. [P2]) is the concentration of the product P1 (resp. P2) at the
end of the corresponding stage, and V olP1

trans + V olP2
trans = V olT is the volume of

the test-tube T .
Thus, by keeping track of the volumes of each test-tube and knowing the ratio

in which a particular product is split, we can determine the analytic formula of
each intermediary (or final) species in the system.

Once such a computational model is derived, it can be estimated numerically
for various sets of parameters, e.g., equal time-splits for all stages and/or equal (or
proportional) volume-splits of various products. Moreover, the above parameters
can be optimized in order to maximize the yield (i.e., concentration) of the final
product. Also, using such models, we can compare two or several strategies in
determining which provides a better yield, if experiments are performed in similar
conditions, i.e., same total time and initial tile concentration.

In order to compare two (or several) assembly strategies we can further
simplify the models by making a synchronous pre-normalization of the data.
Thus, we are going to assume from now on that the kinetic rate constant of all
assembly reactions is equal to 1, and that the concentration of all tile-types in
their initial test-tubes, [mon], is also normalized to [mon] = 100. Because of
the above pre-normalization of the data, the time parameter presents a highly
altered behaviour; thus, from now on, we use the notion of time unit (t.u.) for
referring to time variables. Consider for example a system of only two reactants
(tile-types) a1b and b1c, each having concentration 100 in their initial test-tubes.
Assuming these reactants are mixed in equal quantities, their initial concentration
in the (mixing) test-tube becomes 50. In these conditions, we observe that the
assembly reaction is completed in proportions of approx. 50%, 75%, and 90%
only after 0.02, 0.06, and 0.2 t.u., respectively. Thus, our in-silico experiments
and numerical analysis will be performed for a total time interval of 0.14–0.25 t.u.
per stage, that is 0.42 t.u. for the 3-staged assembly of size-5 ribbons (in Section
4), and 0.9 t.u. for the 4-staged assembly of size-10 ribbons (in Section 5).

4 Yield Optimization Strategies for sTAM

Optimizations at the Assembly Strategy Level The sTAM framework
allows for several assembly strategies to be employed in achieving the same final
structure. Moreover, in some cases, each of these strategies, although different in
themselves, are all optimal in terms of number of distinct test-tubes or stages they
employ. Consider for example the staged assembly process needed for assembling a
size-5 ribbon. According to the assembly designs introduced in [2] for constructing
size-k 1D ribbons of tiles in optimally possible number of stages, there are four
different (staged) assembly strategies for the construction of size-5 ribbons, each
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employing 3 stages. The assembly graphs of two of these strategies are provided
in Figure 2, while the remaining two strategies are symmetric. However, does
each of these strategies produce the same amount of final yield (assuming that
the initial quantity of resources is proportionally equal in each of the situations)?

Fig. 2. Two distinct assembly strategies for the same size-5 ribbon, each using only 3
assembling stages

In order to compare the previous two strategies, besides the common total time
for the experiment (Ttotal = t1 + t2 + t3 = 0.42 t.u.) and the similar concentration
([mon] = 100) of all tile-types in their initial test-tubes, in both scenarios we are
going to use a similar procedure of setting the time- and volume-split parameters,
as follows:

– All assembly stages are performed in equal time intervals: t1 = t2 = t3 = 0.14;
– Whenever a tile-type (monomer) is a reactant in a test-tube, the introduced

quantity of this reactant in the test-tube is exactly one unit volume.

By numerically estimating the associated mathematical models we obtain the
concentration of the final product, [a5c], in the assembly scenarios from Figure 2
a) and b) as 54.4% and 56.2% respectively, where 100% would represent the
all-maximal value possible for this assembly, e.g. obtained if time would allow
the reactions to be fully completed8.

From the above example, it can be confirmed our initial assumption that
different assembly strategies may generate different final yields, despite using the
same amount of time and substance resources.

Optimizations at the Experimental Setting Level Consider now we have
chosen a particular assembly strategy, say e.g., assembling the previous 5-tile
structure by the scenario in Figure 2 a). A subsequent question concerns the way
of allocating the total pool of resources, i.e., substance volume in each test-tube,
time allocation for each of the assembly stages, etc., such as to maximize the
outcome of the experiment. For example, in the case of the previous example,
what would be the best split of the total time of the experiment into three
time-periods for the corresponding assembly stages, such as to obtain a maximum
amount of 5-tile structures at the end of the final stage? Also, what would be
the best way of splitting the amount of tile (bc) in between T s1

1 and T s3
1 , or

similarly the splitting of the amount of tile (ab)? Also, for the cases when an
intermediary assembly is used in several reactions from some later stages, what

8 In the case of 5-tile ribbons, 100% corresponds to a concentration of 20.
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is the optimal way of splitting this product, i.e., its total volume, in between
these test-tubes? The above time- and volume-splitting ratios can be subjected
to targeted optimization protocols.

Until now, as suggested by the definition of the sTAM, we have assumed that
the entire volume of an intermediate product is transferred to the subsequent
stages.However, as suggested by actual lab procedures, we examine also the
setting in which only a fraction of the reaction products are re-introduced as
reactants. Namely, we force that in every test-tube, the volume of the two
reactants sum up to exactly one. In this setting, it becomes even more clear that
the ratio in which the two reactants are mixed (each coming into the reaction with
possible different initial concentrations) becomes very important in determining
a maximum concentration of the product.

5 Case Study: Assembling Size-10 Ribbons

As an yield optimization case study, we are going to consider the process of
assembling (in a staged assembly fashion) a size-10 1D horizontal ribbon of tiles.
As previously explained, restricting to this 1D structure is not a considerable
limitation, since even in the case of assembling 2D complexes, once the mixing
graph is designed, the modeling and optimization procedures remain the same.

Since the available pool of possible assembly strategies for a size-10 horizontal
line is considerably large, even for the case where we impose using only four
stages, we are going to compare only four particular such strategies9. We present
these strategies (a.k.a. the corresponding mixing graphs) in Figure 3.

Fig. 3. Four distinct assembly strategies for a size-10 ribbon, each using only 4 assem-
bling stages

In order to illustrate the possible differences between different assembly
scenarios as well as between optimized vs. non-optimized assembly protocols, we
do not restrict to computing only the optimum values, but provide for comparison
a larger pool of parameter setups. Thus, we are comparing all these four assembly
strategies, by subjecting each of them to five different setups regarding their
time-split and volume-split parameters. Three of these setups are based on
combinatorial heuristics, while in two of them we numerically optimize the
parameters for maximizing the final yield concentration. In order to compare all
of these strategies and setups, we impose some general constraints as follows:

9 These strategies have been chosen almost at random from the available ones, without
a prior knowledge on their behaviour during the optimization process.
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i) The total time of the experiment is Ttotal = 0.9 t.u.
ii) The concentration of all tile-types in their initial test-tubes is [mon] = 100.
iii) (only for three of the setups) The cumulative volume of all tile-types intro-

duced in the various initial test-tubes is 10 unit volumes, where the volume
of each tile-type is proportional to the number of times it appears in the final
size-10 assembly.

The five setups can be partitioned into two groups:
Group 1: Combinatorially designed setups:

Setup 1: Equal time-splits and proportional volume-splits.

– Equal time intervals for the stages, that is, t1 = t2 = t3 = t4 = 0.225;
– The volume of any species who needs to be partitioned into two or several

test-tubes will be done so proportionally to how much the product of these
latter test-tubes will contribute to the final assembly.

A combinatorial observation regarding staged assembly systems is that on
average the concentration of the reactants is reduced al least by half in each
stage. By inspecting equation (3), we observe that if the concentration of both
reactants is reduced by half, we obtain the same product-reactant ratio only if
we double the time allocated to this stage. Thus, as a possible procedure for
improving the overall yield, the time-split parameters from the next setup are in
geometric progression.

Setup 2: Time-splits in geometric progression and proportional volume-splits.

– The time intervals are (t1; t2; t3; t4) = (0.06; 0.12; 0.24; 0.48);
– The volume of products is partitioned proportionally into subsequent test-

tubes (as in the case of Setup 1).

Setup 3: Equal time-splits and equal half unit-volumes for all reactants

– Equal time intervals: t1 = t2 = t3 = t4 = 0.225;
– The volume of each of the reactants in a test-tube is set to half unit volume.

This represents a rather “lazy” (or automated) instance of the setting in which
the volume of the test-tubes is limited to one unit.

Group 2: Numerically optimized setups:

Setup 4: Optimized time- and volume-splits while using the entire volume of
substance. As in the case of Setup 1 and 2, we assume here that we completely
use the entire volumes of all intermediary assemblies and of all single tiles.

Setup 5: Optimized time- and volume-splits while enforcing unit volumes for all
test-tubes As in the case of Setup 3, we enforce that each test-tube contains
exactly one unit of mixed reactants.

All four assembly scenarios are subjected to the above setups, and the results
are summarized in Table 1. As it can be seen from the selected assembly scenar-
ios, in most cases the differences are relative small. However, there exist both
particularly bad and particularly good cases. Namely, the average value of the
produced yield is 41.3%, the sample standard deviation is 8.2, the worst case
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Table 1. The concentration [a10b] of the size-10 ribbon structure generated in the final
stage of the assembly; the results are expressed in their percentage form, where 100%
represents the absolute maximal value possible for this assembly, namely 10

Assembly Group 1 Group 2
strategy Setup 1 Setup 2 Setup 3 Setup 4 Setup 5

Strategy 1 41.4% 34.7% 25.0% 44.5% 53.5%
Strategy 2 41.4% 34.7% 25.0% 44.5% 53.5%
Strategy 3 42.6% 42.0% 30.5% 46.9% 49.0%
Strategy 4 42.4% 39.8% 37.3% 49.3% 48.6%

scenario gives a yield percentage of 25%, while the best case scenario provides a
yield percentage of 53.5%. It is very interesting to observe that both the best
and the worst case scenarios are due to the same assembly strategy, but from
different, i.e., non-optimized vs. optimized, parameter setups. Also, it can be
observed that for each of the setups, the yield percentage are closed from one
assembly scenario to the other, thus suggesting a possible ranking of how good
each of these individual setups are. Namely, we are able to say that the worst
parameter setting is performed in Setup 3 while if instead of just placing the
previous default values we numerically optimize them to maximize the yield,
i.e., Setup 5, then we obtain the best possible results from all the considered
parameter setups.

6 Conclusions, Discussions, and Further Work

We have investigated yield optimization techniques for staged self-assembly
systems. As a first step, we associated (for the first time) a computational model
to the staged tile assembly formalism, whose implementation through ODE
systems differs considerably from the kinetic counterpart of the regular TAM.
This change of modelling methodology can be explained as follows. While in case
of abstract TAM the assembly is initiated from a seed structure, and one can
thus concentrate over a single assembly product, in case of sTAM the assembly
reactions are implemented population wise.

Another important aspect was to determine the possible optimization strate-
gies for our target, the final assembly yield. We were able to identify two levels
on which to implement adequate optimization protocols: at the assembly scheme
design level, and at the implementation level. Considering the first level, sev-
eral assembly strategies are plausible for the same final structure, and some of
these assembly schemes may have plausible better chances of maximizing the
concentration of the final product. We concentrate here only on those assembly
schemes which ensure a minimal number of assembly stages. We conjecture at
this level that the best assembly protocols are those in which we minimize the
number of mixing of test-tubes from the same stages. The intuition here is that
the more advance a stage is, the less concentrated its product, and thus by mixing
a test-tube with another one from a lower stage, the concentration of the latter
is higher and thus it improves the result of the reaction.

The second optimization level is at the implementation phase, once a particular
assembly strategy has been chosen. At this level, the parameters which can be
optimized are the time intervals allocated to each of the assembly stages (assuming
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the total available time is constant) and the proportions in which certain products
are split and further mixed in subsequent stages. We believe that equal time-splits
are not an optimal choice (unless the experiment involves a low number of stages),
but the considered case-study showed that time-splits in geometric progression
are also not appropriate (i.e., Setup 2 in Table 1). Although the case study seems
to indicates that the optimal time-split parameters are close to an arithmetic
progression (Setup 4 and 5 in Table 1, data on time-splits not shown), we believe
that further studies are required for providing more intuition regarding a possible
combinatorial design approaching the absolute optimum choice.

Regarding volume splits, an undiscriminating equal partitioning seem to be
the worst possible choice (Setup 3 in Table 1). On the opposite direction, those
partitions of assembly products which take into considerations the amount (or
concentration) of substance in each test-tube, and how the product of these
test-tubes are further going to be split, tend to have better yields.

Considering the case-study, one particular assembly strategy has generated
good outcomes, namely that of requiring the volume of each test-tube to be
exactly one. For the future, we plan to concentrate particularly on this strategy,
both because it seem to provide the best results, and because it seem to be
more tractable from an analytic point of view. Our aims are to provide concrete
descriptions of combinatorial parameter-setups and mix-graph designs for which
we could provide numeric arguments as why the results of these strategies
approach the optimum solutions.
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