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Abstract7

We present a general design technique for rendering any 3D wireframe model, that is any connected8

graph linearly embedded in 3D space, as an RNA origami nanostructure with a minimum number9

of kissing loops. The design algorithm, which applies some ideas and methods from topological10

graph theory, produces renderings that contain at most one kissing loop for many interesting model11

families, including for instance all fully triangulated wireframes. The design method is already12

implemented and available for use in the design tool DNAforge (https://dnaforge.org).13
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1 Background18

Concurrently to the advances in DNA nanotechnology, there has been increasing interest in19

using RNA as the fabrication material for self-assembling bionanostructures. In comparison20

to DNA, the appeal of RNA is that the strands can be produced by the natural process21

of polymerase transcription, and the structures can thus be created in room temperature22

in vitro, and possibly eventually in vivo, from genetically engineered DNA templates. The23

challenge, on the other hand, is that the folding process of RNA is kinetically more complex24

and hence less predictable than DNA helix formation, at least at the present stage of RNA25

engineering.26

Starting from the mid 1990’s, the leading design technique in this area of RNA nano-27

technology has been “RNA tectonics”, whereby naturally occurring RNA structures are28

connected together with connector motifs such as kissing-loop and sticky-end pairings,29

to create complex target structures [11, 12]. A complementary top-down de novo design30

approach of “RNA origami” was however presented in a landmark 2014 article by Geary31

et al. [9]. In this method, broadly speaking, a given mesh model is rendered in RNA32

by designing a strand that will, firstly, fold upon itself to realise a spanning tree of the33

mesh by edges constituted as RNA helices, and secondly, induce the remaining edges by34

kissing-loop motifs that connect matching half-edge hairpin loops at 180° angles to create35

almost perfect “pseudo-helices”. (This abstract view in terms of mesh models and spanning36

trees is from [16] and ignores many important details of the original work.) Following37

article [9], which demonstrated the feasibility of the RNA origami design method by the38

experimental synthesis and characterisation of several types of 2D RNA tiles, this line of39

work has been further developed with new connector motifs, design techniques, and tools in40

e.g. publications [15, 8].41
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Wireframe 3D RNA origami42

The RNA origami idea has also been extended to cover 3D wireframe models [2]. (While43

article [2] addresses primarily polyhedral meshes, the method therein applies in fact to any44

connected straight-line wireframe model; that is, the meshes do not need to contain faces.)45

The basic spanning-tree based 3D design scheme is presented in Figure 1.46

(a) (b) (c) (d)

Figure 1 A spanning-tree based design scheme for 3D RNA wireframe origami. (a) Targeted
wireframe model. (b) A spanning tree and strand routing of the wireframe graph. (c) Routing-based
stem and kissing-loop pairings. (d) Helix-level model. (Adapted with permission from [2].)

In this scheme, one starts from the targeted wireframe, which in the case of Figure 1(a)47

is a simple tetrahedron. (Or more precisely the wireframe skeleton of a tetrahedral mesh.)48

In the first design step (Figure 1(b)) one chooses some spanning tree T of the wireframe49

graph G, and designs the primary structure of the RNA strand so that it folds to create a50

twice-around-the-tree walk on T , covering each edge of T twice in antiparallel directions. In51

the second design step (Figure 1(c)) one then extends the walk halfway along each of the52

co-tree (= non-spanning tree) edges of G into a hairpin loop, and designs the base sequences53

at the termini of the hairpins so that pairwise matching half-edges connect to form the54

180° kissing-loop motifs mentioned earlier, thus constituting the co-tree edges. Figure 1(d)55

presents a helix-level model of the eventual nanostructure. (A similar design idea, although56

with different connector motifs and in the context of RNA-DNA hybrid nanostructures, has57

been recently applied also in the article [17].)58

Challenges with kissing loops, goals of present work59

Since the spanning tree of a connected graph with n vertices and m edges contains n − 160

edges, its co-tree contains m − n + 1 edges, and this is the number of kissing-loop connections61

employed by the previous method. While the method thus in principle applies to all connected62

3D wireframe models, in practice using a large number of kissing-loop pairs in the designs63

raises some concerns. Firstly, kissing-loop pairings, which in the case of the 180° connector64

motif contain only six nucleotide pairs, may not be stable over long time scales. Secondly,65

the presence of a large number of slowly-forming tertiary structures such as kissing loops66

increases the risk of nonspecific pairings across structures, and hence aggregation of particles,67

in the synthesis stage. (There is some evidence of this in the experimental data presented68

in article [2].) And thirdly, there is at present no experimental data on large families of69

“orthogonal” kissing-loop pairs (high specific/low nonspecific pairing affinity) that would be70

needed for the design of complex structures using this method, and it is not even clear how71

large such families could reasonably be (cf. supplementary section S1.3.2. of article [2]).72

Thus, in the present work we address the task of minimising the number of kissing loops73

in 3D RNA origami wireframe designs. As an application of an intimate connection between74

oriented strand routings on wireframes and topological graph embeddings, and building on75



A. Elonen and P. Orponen 3

earlier work from different contexts [21, 6, 4], we derive a polynomial time strand-routing76

algorithm that goes beyond the simple twice-around-the-tree idea, and minimises the number77

of kissing-loop connections needed to complete the design. As it turns out, the minimum78

number of kissing loops needed is at most one for many interesting classes of models, including79

for instance all fully triangulated wireframes. The method is already implemented and easily80

accessible in the online design tool DNAforge [3].81

In the following, Section 2 presents the tight connection between viable strand routings82

and graph embeddings, and Section 3 the ensuing kissing-loop minimising strand routing83

algorithm. Section 4 introduces some graph classes where the maximum number of kissing84

loops is at most one, Section 5 discusses the DNAforge tool, and Section 6 provides a summary85

and some notes on further research directions.86

2 Strong antiparallel traces and topological graph embeddings87

(a) (b) (c)

Figure 2 Strand routing criteria for RNA nanostructure design. (a) Edges covered twice in
antiparallel directions. (b) Unstable vertex crossover pattern. (c) Stable vertex crossover pattern.

Let us first consider the possibility of rendering a given (connected) wireframe model88

using a single RNA strand with no kissing loops. This entails two conditions for the routing89

of the strand: firstly, every edge of the wireframe model must be covered twice, in antiparallel90

directions (Figure 2(a)); and secondly, the strand crossover pattern at each vertex must be91

stable (Figure 2(b)). The second condition signifies that if at a given vertex v with incident92

edges e1, . . . , ed, one considers edges ei and ej to be locally coupled when there is a strand93

segment that crosses from ei to ej or vice versa, then this local edge coupling (multi-)graph94

must be connected; and since by the first condition it is regular of degree 2, it must be95

a cycle. (In the literature, the local routing pattern of the strands at a vertex is called a96

“transition” in [5, 1] and the local edge-connectivity graph the “vertex figure” in [4].)97

Thus, every viable RNA strand routing of a wireframe model corresponds to an antiparallel98

double trace of its edges, in such a way that the edge-to-edge crossings at each vertex follow99

some local cyclic order, viz. a cyclic permutation of the incident edges. As it turns out,100

these conditions are exactly equivalent to the respective abstract graph (that is, the model101

with geometry ignored) having a 1-face cellular embedding in some orientable surface, a102

result established by Fijavž et al. in 2014, albeit in the context of polypeptide nanostructure103

designs [4]. Fijavž et al. call graph walks that satisfy the two indicated conditions strong104

antiparallel traces. (Earlier studies along the same lines, but not quite establishing the same105

connection, include e.g. [20, 19, 1, 13].)106

Unfortunately, graphs that contain strong antiparallel traces are not that common, as107

observed already with an incomplete characterisation in [13]. Notably e.g. all of the Platonic108

solids are counterexamples, and thus cannot be properly rendered with a single RNA strand.109
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As we shall see, however, admitting even a single kissing loop in the designs changes the110

situation dramatically.111

Surfaces, graph embeddings, and Euler’s formula112

To get a proper understanding of the methodology, let us review some key topology concepts113

and results about surfaces and graph embeddings [14].114

A surface S is a topological space of dimension two (a 2-manifold), meaning that every115

point in the space has a neighbourhood homeomorphic to an open unit disk. (A homeo-116

morphism is a topological isomorphism, precisely speaking a continuous bijection between117

two topological spaces with a continuous inverse.)118

A surface S is orientable if there is a consistent sense of clockwise/counterclockwise at119

each point of S; technically speaking if there is no embedding of the Möbius strip in S.120

We shall only be considering surfaces that are connected, orientable, topologically121

compact and without boundary. This class of surfaces includes e.g. the sphere and122

the torus, but not e.g. either the open disk (not compact) or the closed disk (has123

boundary), and of course not nonorientable surfaces such as the Möbius strip or the124

Klein bottle.125

From now on, the word “surface” in this paper means a connected, orientable, compact126

surface without boundary, unless otherwise explicitly stated.127

The genus of a surface S is the number of nonintersecting cycles that can be drawn on S128

without separating it.129

The classification theorem of surfaces states that every (connected, orientable, compact,130

boundaryless) surface is homeomorphic to either the sphere or k torii sewn together (intuitively131

the surface of a “k-hole donut”), for some k ≥ 1. Furthermore, since the sphere has genus 0132

and a k-torus has genus k, for this family of surfaces the genus is a topological invariant:133

any two surfaces with the same genus are homeomorphic, and vice versa.134

An embedding of a graph G = (V, E) in a surface S is a continuous 1-1 mapping of G135

into S as a system of points and arcs. (That is, the vertices V get mapped into points in136

S, and the edges E into corresponding point-connecting arcs, in such a way that the arcs137

don’t cross in S.)138

An embedding ϵ : G → S divides S (or, technically, S \ ϵ(G)) in disjoint regions or139

faces. If every face is homeomorphic to an open disk, the regions are called cells and the140

embedding is a cellular embedding.141

Any cellular embedding of a graph G = (V, E) in a surface of genus g satisfies Euler’s142

generalised polyhedral formula, or briefly just Euler’s formula:143

|V | − |E| + |F | = 2 − 2g,144

where |F | is the number of cellular faces in the embedding.145

To illustrate these concepts, let us consider the simple example of embedding the cube146

graph. Figure 3(a) presents a “natural” cellular embedding of this graph in a sphere147

surface. The embedding comprises six cells that correspond to the six faces of the 3D148

cubical polyhedron. Figure 3(b) illustrates how the corresponding cubical wireframe could be149

assembled using six RNA or DNA strands, each routing one of the faces of the cube cyclically150

in a counterclockwise direction. (The strand that routes the front face is indicated separately151

by a dotted line.) Figure 3(c) presents the same strand routing projected on the planar152
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(a) (b) (c)

Figure 3 Cube graph embedded in a sphere surface. (a) Visualisation of the embedding. (b)
Counterclockwise strand cycles routing the faces of the cube polyhedron model; each edge covered
twice in antiparallel directions. (c) Faces and cycle routings presented in the Schlegel diagram of the
model.

(a) (b)

Figure 4 Cube graph embedded in a torus surface. (a) Visualisation of the embedding. (b)
Corresponding strand routings presented in the Schlegel diagram, with each edge covered twice in
antiparallel directions.

Schlegel diagram of the polyhedron. Since the sphere has genus g = 0, one can validate that153

Euler’s formula holds: |V | − |E| + |F | = 8 − 12 + 6 = 2 = 2 − 2g.154

However, the cube graph can also be cellularly embedded in a torus surface as presented155

in Figure 4(a). Now there are only four cells, and a corresponding system of four strands156

cyclically routing the cells, again in counterclockwise orientation and covering each of the157

graph edges twice in antiparallel directions, is outlined in the Schlegel diagram in Figure 4(b).158

For added clarity, Figure 5(a) indicates the four cells labelled as A, B, C, D, and Figure 5(b)159

shows the cell partioning and the strand routings on a 2D torus diagram, which “folds around”160

at the top/bottom and left/right boundaries. Again Euler’s formula can be validated, now161

with the toroidal genus g = 1: |V | − |E| + |F | = 8 − 12 + 4 = 0 = 2 − 2g.162

Note that in both of these cube graph embeddings, the strand crossovers at the vertices163

follow some cyclic order; in both cases actually the clockwise order around each vertex in the164

(a) (b)

Figure 5 Cube graph embedded in a torus surface. (a) Labelled visualisation of the embedding.
(b) Cell partitions and strand routings displayed on a torus diagram.
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respective embedding surface. Conveniently, this arrangement (i) ensures that the vertices165

are stable in the sense defined earlier, and (ii) results in counterclockwise routes around the166

cells, which also guarantees that the cell boundaries, viz. the graph edges, are all covered167

twice in antiparallel directions.168

In fact, any cellular embedding of a graph G in an orientable surface S induces such169

a system of (relative clockwise) permutations of incident edges at each vertex of G, that170

uniquely determines the embedding. And vice versa: any system of local edge permutations171

at the vertices of a graph G that also guarantees antiparallel coverage of the edges corresponds172

to some embedding in an orientable surface.173

Note also that the number N of cyclic strands required to fabricate a graph G = (V, E),174

or the corresponding metric wireframe, according to the recipe provided by a given cellular175

embedding equals the number of faces |F | in that embedding. Thus, by Euler’s formula, this176

number and the genus of the embedding surface are in an inverse relationship:177

N = |F | = |E| − |V | + 2 − 2g.178

Thus, to minimise the number of strands needed, one should find an embedding into a surface179

of maximum possible genus. Ideally, one would hope to achieve N = 1, that is a cellular180

embedding in a surface of genus gideal = 1
2 (|E| − |V | + 1) that comprises a single face. The181

cyclic strand route around this face would then constitute a strong antiparallel trace of the182

graph G.183

3 The Xuong tree design method184

As discussed earlier, many interesting graphs do not admit strong antiparallel traces, or185

equivalently single-face cellular embeddings of the absolutely maximum genus gmax. However,186

in the context of RNA origami design one can compromise on this target by judiciously187

removing some edges from the target graph G so as to reach the maximum achievable188

single-face embedding genus, and then reintroducing the removed edges as kissing loops. This189

is the idea underlying our Xuong tree design method for RNA origami, to be presented next.190

Let G = (V, E) be a connected graph, T a spanning tree of G, and co(G, T ) = G \ T the191

co-tree of G corresponding to T . All the spanning trees of G are of size (= number of edges)192

|V | − 1 and all the co-trees correspondingly of size |E| − |V | + 1. The latter value is called193

the Betti number, or cycle rank, of G.194

The Betti deficiency ξ(G, T ) of a spanning tree T in G is defined to be the number195

of odd-sized components of co(G, T ). The deficiency of a graph G is the minimum Betti196

deficiency over all its spanning trees, ξ(G) = minT ξ(G, T ) [6, 21].197

▶ Theorem 1 (Xuong 1979 [21]). The maximum achievable embedding genus of a graph G is198

γ(G) = 1
2 (β(G) − ξ(G)).199

[Note that, in reference to the previous section, γ(G) = gideal − 1
2 ξ(G), hence the term200

“deficiency” ξ(G).]201

A spanning tree T ∗ that realises Theorem 1, that is for which ξ(G, T ∗) = ξ(G), is called202

a Xuong tree, and the maximum genus embedding of G can be found by constructing it203

around T ∗ in a process described in [21]. A fundamental operation in this process is inserting204

graph edges into faces, as represented by their boundary walks (= cycles in which edges205

may be repeated) in adjacent pairs. Consider two vertices, v1 and v2. If v1 and v2 are along206

the boundary walk of a single face, adding a new edge between them results in the face,207

as represented by the walk, splitting in two (Figure 6b). Conversely, if v2 and v3 are not208
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(a) (b) (c)

Figure 6 Splitting and joining faces by inserting edges. (a) A single face and its boundary walk.
(b) The face/boundary walk is split in two by the insertion of an edge in the walk between vertices
v1 and v2. (c) The two faces/walks are merged into one with the insertion of another edge between
v2 and v3.

(a) (b) (c)

(d) (e) (f)

Figure 7 The Xuong-tree RNA wireframe design method applied on a tetrahedron. (a) A
Schlegel diagram of a tetrahedron. (b) The tetrahedron with one edge removed and marked as
a kissing loop. The solid line represents a Xuong tree. (c) The initial route along the Xuong
tree: a → x → b → x → c → x → a (d) The partial route augmented with a new edge {c, a}
from the co-tree. Note that the cycle count is now increased to two: a → x → b → x → c → a

and a → c → x → a. (e) After inserting the adjacent edge {a, b}, cycle count drops back to one:
a → x → b → a → c → x → a → b → x → c → a (f) The final tetrahedron with the deleted edge
reintroduced as a kissing loop.

along the boundary walk of the same face, inserting an edge connecting them merges the209

two walks, i.e. faces into one (Figure 6c).210

Since the boundary walk around a tree constitutes a single face, one can start with211

a 1-face embedding of T ∗ and then add two mutually adjacent edges from co(T ∗) to T ∗
212

and preserve the 1-face embedding. This process can be continued until all the even-size213

components in co(T ∗) are exhausted, and since T ∗ is specifically chosen to be a spanning214

tree of G such that co(T ∗) has the minimum number of odd components, a maximum genus215

embedding is found.216

A Xuong tree T ∗ serving as a starting point for this process can be found in polynomial217

time by a reduction to the matroid parity problem for which polynomial time algorithms218

exist [18, 7]. This approach for finding Xuong trees was presented by Furst et al. [6], who also219
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provide a time complexity bound of O(mnd log6 n) for the method, where m is the number220

of edges in the graph G, n is the number of vertices, and d the maximum vertex degree.221

In case the graph G does not have a single-face embedding, it can be modified to have222

one by removing k edges, one edge for each odd component of co(T ∗). It is not possible223

to transform it into a single-face embeddable graph by removing any fewer edges than k.224

Suppose that removing k − 1 edges from G resulted in a single-face embeddable graph Gt. In225

that case, γ(Gt) = 2−|V |+|Et|−|Ft|
2 = 2−|V |+|E|−k

2 > γ(G) = 2−|V |+|E|−|F |
2 = 2−|V |+|E|−k−1

2 ,226

which is a contradiction, since Gt, a subgraph of G, cannot have a higher genus embedding227

than the highest genus embedding of G itself.228

The Xuong tree design method routes the RNA strand around the single face embedding229

of the modified graph and replaces the removed edges with kissing loops. The number of230

kissing loops required is also minimised by the same argument as before. The Xuong tree231

design method is illustrated in figure 7 for a tetrahedron. Since a tetrahedron has 4 vertices232

and 6 edges, both all its spanning trees and co-trees have 3 edges, which means that any233

co-tree has at least one odd-sized component and a tetrahedron is not single face embeddable.234

(In fact all the co-trees of a tetrahedron are connected and of size 3.) By removing one edge,235

however, the tetrahedron can be 1-face embedded. The Xuong tree design method will then236

find a Xuong tree of the modified tetrahedron and use it to construct 1-face embedding. The237

removed edge is reintroduced as a kissing loop in the final step.238

4 Upper embeddable graphs239

Graphs that readily admit a 1-face or a 2-face embedding are called upper embeddable. Such240

graphs require at most only one kissing loop using the Xuong tree design method. Many241

interesting graph classes are upper embeddable, including the following ones listed by Gross242

et al. [10, p. 752]243

Locally connected graphs,244

Cyclically edge-4-connected graphs,245

k-regular vertex-transitive graphs of girth g with k ≥ 4 or g ≥ 4,246

Loopless graphs of diameter 2,247

(4k + 2)-regular graphs and (2k)-regular bipartite graphs.248

A graph G is locally connected, if for every vertex v in G, the open neighbourhood of v249

(vertices adjacent to v, excluding v) induces a connected graph in G. This graph class being250

upper embeddable is of particular interest, since it covers all fully triangulated polyhedra,251

e.g., tetrahedron, octahedron, icosahedron, and countless more. A graph G is said to be252

vertex transitive, if for every pair of vertices in G, there exists an automorphism mapping253

one vertex to the other. Intuitively, this means that the graph looks the same from the point254

of view of any individual vertex. All Platonic solids have this property, and, since cube and255

dodecahedron both have a girth (shortest cycle length) ≥ 4, they too are upper embeddable.256

5 The DNAforge design tool257

DNAforge [3] is an online platform for designing DNA and RNA wireframe nanostructures258

from 3D models. The Xuong tree design method is integrated in DNAforge as XT-RNA. It259

allows users to transform any connected wireframe 3D model into a nucleic acid nanostructure260

with a single click. The workflow for the XT-RNA method is depicted in figure 8 for a261

tetrahedron, a 3×3×3 cubical lattice, and a sphere. Note that the tetrahedron and the262
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(a) Tetrahedron mesh model (b) Tetrahedron routing
model

(c) Tetrahedron nucleotide
model

(d) 3×3×3 lattice mesh model (e) 3 × 3 × 3 lattice routing
model

(f) 3×3×3 lattice nucleotide
model

(g) Sphere mesh model (h) Sphere routing model (i) Sphere nucleotide model

Figure 8 The XT-RNA design workflow in DNAforge for a tetrahedron ((a), (b), and (c)), a
3×3×3 lattice ((d), (e), and (f)), and a sphere ((g), (h), and (i)).

sphere require only one kissing loop, presented in the foreground, whereas the lattice does263

not require any.264

The DNAforge interface gives users options to minimise strain in the designed nanostruc-265

ture via duplex-level physical simulation, or to simulate it directly from the interface with266

a nucleotide level simulation, provided the DNAforge backend is installed. The primary267

sequence is currently generated randomly, subject to Watson-Crick pairing conditions, and268

the routing is also currently found using randomised spanning trees instead of the matroid-269

reduction algorithm. In our experience, the randomised search works well, suggesting that270

typical graphs have many Xuong trees.271

The final design can be exported as a PDB file, UNF file, or as OxDNA files, and the272

primary sequence can be exported as a CSV file.273

6 Conclusion274

Discussion and further work275

We have introduced a general single-stranded RNA routing method, which minimises the use276

of kissing loops, and is based on high genus graph embeddings. The XT-RNA implementation277

is available at https://dnaforge.org/.278

Note that even though the Xuong tree designs typically have at most only one kissing279

loop, the base pairing structure along the helices constituting the wireframe edges is highly280

https://dnaforge.org/
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pseudoknotted. Development opportunities for the Xuong tree design method include281

addressing the challenges posed by this pseudoknotted nature of its designs. These challenges282

are related to the primary sequence generation and the knottedness of the actual nucleic283

acid strands. While a strong antiparallel double trace of a wireframe model embedded on a284

sphere-equivalent surface can be guaranteed to be an unknot, there are no such guarantees285

for higher-genus wireframe models, and taking the helicity of RNA duplexes into account286

will introduce knots even for the lower-genus models. These problems could potentially be287

addressed by optimising the number and placement of kissing loops. Since RNA strands288

are not closed cycles, however, the problem of knottedness might not be detrimental, and289

practical experimentation is warranted.290
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