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The random 3-satisfiability (3-SAT) problem is in the unsatisfiable (UNSAT) phase when the
clause density α exceeds a critical value αs ≈ 4.267. However, rigorously proving the unsatisfiability
of a given large 3-SAT instance is extremely difficult. In this paper we apply the mean-field theory of
statistical physics to the unsatisfiability problem, and show that a specific type of UNSAT witnesses
(Feige-Kim-Ofek witnesses) can in principle be constructed when the clause density α > 19. We then
construct Feige-Kim-Ofek witnesses for single 3-SAT instances through a simple random sampling
algorithm and a focused local search algorithm. The random sampling algorithm works only when α
scales at least linearly with the variable number N , but the focused local search algorithm works for
clause densty α > cNb with b ≈ 0.59 and prefactor c ≈ 8. The exponent b can be further decreased
by enlarging the single parameter S of the focused local search algorithm.

PACS numbers: 89.70.Eg, 89.20.Ff, 02.10.Ox, 75.10.Nr

I. INTRODUCTION

The satisfiability (SAT) problem is a constraint satis-
faction problem of great practical and theoretical impor-
tance. On the practical side, many constraint satisfac-
tion problems and combinatorial optimization problems
in industry and engineering can be converted into a SAT
problem, therefore many heuristic solution-searching al-
gorithms have been developed over the years for single
problem instances (see review [1]). On the theoretical
side, the SAT problem is the first constraint satisfac-
tion problem shown to be NP-complete [2, 3], all other
NP-complete problems can be transformed into the SAT
problem through a polynomial number of steps. Under-
standing the computational complexity of the SAT prob-
lem has attracted a lot of research efforts.

The ensemble of random K-SAT problem has been the
focus of intensive theoretical studies by computer scien-
tists and statistical physicists in the last twenty years [4–
11]. In a given instance (formula) of the random K-SAT
problem, the states of N binary variables are constrained
by M clauses, with each clause involving a fixed number
K of variables, randomly and independently chosen from
the whole set of N variables. The clause density is de-
fined as

α ≡ M

N
,

which is just the ratio between the clause number M and
the variable number N .

The random K-SAT problem has a critical clause den-
sity αs(K) at which a satisfiability transition occurs. At
the thermodynamic limit of N → ∞, all the M clauses
of an instance of the random K-SAT problem can be si-
multaneously satisfied if the clause density α < αs(K),
but this becomes impossible if α > αs(K). The value
of αs(K) for K ≥ 3 can be estimated by the mean-
field theory of statistical physics [8, 9, 12]. For example
αs(3) = 4.267 for the random 3-SAT problem.

Most previous investigations on the random K-SAT
problem considered the SAT phase, α < αs(K). To
prove a K-SAT formula is satisfiable, it is sufficient to
show that there exists a single spin configuration of the
N variables which makes all the M clauses to be simulta-
neously satisfied. However, to certify a K-SAT formula
to be unsatisfiable is much harder. In principle one has
to show that none of the 2N spin configurations satisfies
the M clauses simultaneously.

Theoretical computer scientists have approached the
K-SAT problem from the UNSAT phase through spec-
tral algorithms [13–15]. These refutation algorithms are
able to certify the unsatisfiability of random 3-SAT for-
mulas when α > cN

1
2 (where the constant c should be

sufficiently large). The refutation lower-bound for ran-

dom 3-SAT was further pushed to α > cN
2
5 by Feige,

Kim and Ofek [16] from another theoretical approach,
namely treating a given 3-SAT instance also as a 3-
exclusive-or (3-XORSAT) instance. Feige and co-authors
[16] observed that, if a 3-SAT formula is satisfiable, the
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ground-state energy of the same formula treated as a 3-
XORSAT can not exceed certain value. Then proving
the unsatisfiability of a 3-SAT instance is converted to
constructing a high-enough lower-bound for the corre-
sponding 3-XORSAT ground-state energy. The method
of Ref. [16] therefore gives an indirect witness that there
is no configuration which can simultaneously satisfy all
the M clauses of the 3-SAT instance. In this paper we
refer to such witnesses as Feige-Kim-Ofek (FKO) wit-
nesses.

We study the unsatisfiability of the random 3-SAT
problem both theoretically and algorithmically in this
paper. The theoretical question we ask is: Do Feige-
Kim-Ofek witnesses exist in random 3-SAT formulas with
large but constant clause density α? We give a positive
answer to this question by using (non-rigorous) mean-
field method of statistical physics. We show that FKO
witnesses are presented in large random 3-SAT formulas
provided their clause density α > 19. But constructing
FKO witnesses for such sparse formulas is expected to be
very difficult. A very simple random sampling algorithm
is tested in this paper. Without any optimization, the
performance of this naive algorithm is not good, it only
works for α scaling at least linearly with N . We then
test the performance of a simple focused local search al-
gorithm. We find this algorithm performs much better,
it can construct UNSAT witnesses for 3-SAT instances
with clause density α > 8N0.59. Further improvements
are observed when some modifications are made on this
focused local search algorithm.

The paper is structured as follows: in Sec. II we review
the main ideas behind FKO witnesses; Sec. III demon-
strates the existence of FKO witnesses for the sparse ran-
dom 3-SAT problem and Sec. IV shows the performances
of the naive random sampling algorithm and the focused
local search algorithm. In Sect. V we conclude and dis-
cuss further directions of this work.

II. THE FEIGE-KIM-OFEK WITNESS

Consider a system with N variables i ∈ {1, 2, . . . , N}.
Each variable i has a (binary) spin state σi ∈ {−1,+1}.
A configuration of the system is denoted as σ ≡
(σ1, σ2, . . . , σN ), there are a total number 2N of such
configurations. The system has also M clauses a ∈
{1, 2, . . . ,M}. Each clause a is a constraint over K = 3
different variables (say i, j, k), it has three binary cou-
pling constants (say J ia, J

j
a , J

k
a ), each of which is either

+1 or −1. We consider two types of energies for clause
a, namely the SAT energy

Esat
a (σi, σj , σk) =

(1− J iaσi)(1− Jjaσj)(1− Jkaσk)

8
,

(1)
and the XORSAT energy

Exor
a (σi, σj , σk) =

1− J iaJjaJkaσiσjσk
2

. (2)

If the total energy of the system is defined as the sum
of all the SAT energies, then the problem is a 3-SAT
formula with energy function

Esat(σ) =

M∑
a=1

Esat
a . (3)

A configuration σ is referred to as a satisfying assign-
ment (or a solution) for the 3-SAT formula if its energy
Esat(σ) = 0. The 3-SAT formula is referred to as sat-
isfiable (SAT) if there exists at least one satisfying as-
signment for this formula, otherwise it is referred to as
unsatisfiable (UNSAT).

For the same set of M clauses, we can also consider all
the XORSAT energies and define a 3-XORSAT formula
with energy function

Exor(σ) =

M∑
a=1

Exor
a . (4)

The ground-state (minimum) energy of the XORSAT en-
ergy is denoted as Exor

0 , namely

Exor
0 ≡ min

σ
Exor(σ) .

Checking whether a 3-XORSAT formula is satisfiable
(namely Exor

0 = 0) is an easy computational tast (it can
be solved by Gaussian elimination). However if Exor

0 > 0,
to determine the precise value of Exor

0 is a NP-hard com-
putational problem.

The constrained system can be conveniently repre-
sented as a bipartite graph with N circular nodes for the
variables and M square nodes for the constraint clauses
and 3M edges between the variable nodes and the clause
nodes, see Fig. 1 [17]. Such a bipartite graph is referred
to as a 3-SAT factor graph in this paper. In the factor
graph, each clause a is connected by 3 edges to the 3 con-
strained variables, and the edge (i, a) between a variable
i and a clause a is shown as a solid line (if J ia = 1) or a
dashed line (if J ia = −1). In the factor graph of the sys-
tem, the number of attached edges of different variables
might be different. For a variable i the number of at-
tached positive and negative edges is denoted as k+

i and
k−i , respectively.

To prove the unsatisfiability of a 3-SAT formula is very
challenging. In principle one has to show that for each
of the 2N configurations, the SAT energy Esat(σ) > 0,
but such an enumeration becomes impossible for systems
with N > 1000. Feige, Kim, and Ofek (FKO) [16] ap-
proached this problem with the proposal of constructing
UNSAT witnesses through the 3-XORSAT energy (4).
Here we review their main ideas [16].

Consider a given 3-SAT formula with energy function
(3). Suppose this formula is satisfiable, then there is at
least one satisfying configuration σ such that Esat(σ) =
0. An edge (i, a) is referred to as being satisfied by σ
if (and only if) the spin of variable i is σi = J ia in this
configuration. With respect to σ, the total number of
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FIG. 1: (color online). factor graph representation for a
3-SAT formula. The variables and clauses are represented
by circles and squares, respectively. Each clause has 3 edges
attached. A solid edge between a variable i and a clause a
means that the coupling constant J i

a = 1, while a dashed edge
means that J i

a = −1.

clauses containing one, two, and three satisfied edges is
denoted as M1, M2 and M3, respectively. These three
integers satisfy the following two relations:

M1 +M2 +M3 = M , (5)

M1 + 2M2 + 3M3 ≤
3M

2
+

1

2

N∑
i=1

|k+
i − k

−
i | . (6)

Equation (5) is a consequence of the assumption that
Esat(σ) = 0, while Eq. (6) is due to the fact that
each variable i in its spin state σi can satisfy at most
max(k+

i , k
−
i ) edges. The above two expressions lead to

M2 ≤ 2M12 −
3

2
M +

1

2

N∑
i=1

|k+
i − k

−
i | , (7)

where M12 ≡M1 +M2.
On the other hand, it is very easy to check that the

3-XORSAT energy (4) of the configuration σ is just
Exor(σ) = M2. Therefore, if Esat(σ) = 0, then the 3-
XORSAT ground-state energy Exor

0 must not exceed M2.
If Exor

0 exceeds M2 then the 3-SAT energy function (3)
must be positive for all the 2N configurations. A high-
enough 3-XORSAT ground-state energy then serves as
a FKO witness that the corresponding 3-SAT formula is
UNSAT.

Consider any spin configuration σ (not necessarily a
configuration with Esat(σ) = 0), the value of M12 in
Eq. (7) is calculated as

M12 =

M∑
a=1

(3 +
∑
i∈∂a σiJ

i
a)(3−

∑
j∈∂a σjJ

j
a)

8
(8)

=

M∑
a=1

9−
∑
i

∑
j σiσjJ

i
aJ

j
a

8
(9)

=
1

4

(
3M +

∑
i,j

σiMijσj

)
, (10)

where the matrix element Mij is defined as

Mij =

{
− 1

2

∑
a∈∂i∩∂j

J iaJ
j
a for i 6= j ,

0 for i = j .
(11)

In the above expressions, ∂a denotes the set of variables
that are connected to clause a by an edge, and ∂i denotes
the set of clauses that are connected to variable i by an
edge, and ∂i ∩ ∂j denotes the intersection of ∂i and ∂j.

The maximal eigenvalue of the symmetric matrix
formed by the elementsMij is denoted as λ. This eigen-
value satisfies

λ ≥
∑
i,j yiMijyj∑

i y
2
i

, (12)

for any non-zero real vector y = (y1, y2, . . . , yn). Take
yi = σi for each variable i, and it is then easy to show
that λ ≥ (4M12 − 3M)/N . Combining this with (7), an
upper-bound Mupp

2 for M2 is obtained as

M2 ≤Mupp
2 ≡ 1

2
Nλ+

1

2

N∑
i=1

|k+
i − k

−
i | . (13)

If Exor
0 > Mupp

2 for the given 3-SAT instance, then the
instance must be unsatisfiable.

III. EXISTENCE OF FEIGE-KIM-OFEK
WITNESS FOR SPARSE RANDOM 3-SAT

Feige and co-authors [16] have studied the existence of
FKO witness for random 3-SAT factor graphs. A ran-
dom 3-SAT factor graph with N variables and M clauses
is a random bipartite graph, with each clause being con-
nected to three randomly chosen different variables and
the edge coupling constant being assigned the value +1
or −1 with equal probability. In the large N limit, it was
proved mathematically in [16] that, if the clause density
α grows with N such that

α > cN0.4 (14)

with a sufficiently large constant c, then FKO witness
exists with probability approaching 1 for a random 3-
SAT factor graph of N variables and αN clauses.

However, it is not yet known whether FKO witness
exists also for random 3-SAT factor graphs with a large
but constant clause density α. Here we demonstrate us-
ing the mean-field statistical physics method that, FKO
witness should exist for a random 3-SAT factor graph
with α > 19 in the thermodynamic limit of N → ∞.
This estimated constant lower-bound of clause density is
much improved as compared to Eq. (14).

According to Eq. (8), the quantity M12 can be ex-
pressed as

M12 = M −
M∑
a=1

δ
(∣∣∑
j∈∂a

Jjaσj
∣∣− 3

)
, (15)

where δ(x) is the Kronecker symbol, with δ(x) = 0 if
x 6= 0 and δ(x) = 1 if x = 0. Combining Eq. (15) with
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FIG. 2: (color online). The down-triangles connected by
the solid line are the minimum energy density Exor

0 /N of the
3-XORSAT formula (4). The upper-triangles are the upper-
bound Mmax

2 /N obtained by Eq.(16) under the assumption
that the 3-SAT energy (3) is satisfiable. The dashed line is a
fitting curve of the form Mmax

2 /N = c1 + c2
√
α. For α > 19

the predicted upper-bound is lower than the global minimum,
indicating that the assumption that Eq. (3) is satisfiable must
be wrong.

Eq. (7), we obtain another upper-bound for M2 as

Mmax
2 =

1

2

(
M +

N∑
i=1

|k+
i − k

−
i |
)

−2 min
σ

[ M∑
a=1

δ
(∣∣∑
j∈∂a

Jjaσj
∣∣− 3

)]
. (16)

The first term on the right of Eq. (16) is easy to
calculate, while the minimum of the second term
over all the configurations σ can be evaluated by the
zero-temperature first-step replica-symmetry-breaking
(1RSB) cavity method [9, 18–20]. The upper-bound
Mmax

2 is tighter (smaller) than the upper-bound Mupp
2

of Eq. (13).
The global minimum Exor

0 of the 3-XORSAT en-
ergy (4) can also be evaluated similarly using the zero-
temperature 1RSB cavity method. Figure 2 is the com-
parison between the value Mmax

2 /N and the ground-state
energy density Exor

0 /N of (4) using clause density α as
the control parameter. When α > 19, the requirement
that ground-state energy density Exor

0 /N being lower
than the upper-bound Mmax

2 /N is violated, which gives
an indication that the 3-SAT energy function (3) has
no zero-energy configurations. However, when α < 19,
Exor

0 /N < Mmax
2 /N is consistent with the assumption

that the 3-SAT formula is satisfiable, indicating that no
FKO witness exists for the most difficult region of α < 19.

The random 3-SAT problem is the hardest when the
clause density α is close to the satisfiability threshold
αs(3) = 4.267 [8, 9, 12]. Figure 2 suggests that in the

hardest UNSAT region of αs(3) ≤ α < 19 it is impossi-
ble to prove 3-SAT satisfiability through the FKO wit-
ness approach (even if one can precisely determine the
3-XORSAT ground-state energy Exor

0 ). When the clause
density α of a random 3-SAT formula is only slightly be-
yond αs(3), exhaustive enumeration may be the only way
to prove its unsatisfiability.

IV. WITNESS CONSTRUCTION

In practice, to find a FKO witness we have to show that
the ground-state energy Exor

0 of the 3-XORSAT formula
(4) is higher than either Mmax

2 or Mupp
2 . While the value

of Mupp
2 is easy to calculate, the exact determination of

Exor
0 is a NP-hard computational problem. Feige and co-

authors tried to circumvent this computational difficulty
by constructing a lower-bound for Exor

0 [16]. If the value
of this lower bound is higher than Mupp

2 , it is guaranteed
that Exor

0 > Mupp
2 .

A. A lower-bound on Exor
0

Given a 3-SAT formula F with N variables and M
clauses, a subformula f is obtained by choosing m clauses
from the M clauses. For such a subformula f its 3-SAT
energy and 3-XORSAT energy can be defined similar to
Eqs. (3) and (4). It is computationally easy to determine
whether a subformula f is 3-XORSAT satisfiable.

It was noticed in Ref. [16] that, for a 3-SAT formula
F , if t subformulas can be constructed such that each of
them is unsatisfiable as 3-XORSAT, and each clause of
F appears in at most d of the t subformulas, such that

t

d
> Mupp

2 , (17)

then the formula F is unsatisfiable as 3-SAT.
To prove this statement, we simply notice that, if F

is satisfiable as 3-SAT, the minimum number of simulta-
neously unsatisfied clauses as 3-XORSAT can not exceed
Mupp

2 . On the other hand, there are t unsatisfiable 3-
XORSAT subformulas, meaning that at least t clauses
(some of them might be identical) are simultaneously
unsatisfied (as 3-XORSAT) by any spin configuration.
Since each clause can be present in at most d different
subformulas, the total number of simultaneously unsat-
isfied different clauses is at least t/d [16].

Let us point out a simple improvement over the crite-
rion Eq. (17). Suppose we have a set of t unsatisfiable
3-XORSAT subformulas constructed from the 3-SAT for-
mula F . Let us denote by da the number of times clause
a appear in these subformulas. Let us rank the M values
of da in descending order and denote the ordered values
as {d(1), d(2), . . . , d(M)}, with d(1) ≥ d(2) ≥ . . . ≥ d(M).
A better refutation inequality can be written as

C > Mupp
2 , (18)
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where C is the minimal integer satisfying

C∑
a=1

d(a) ≥ t . (19)

To prove that (18) ensures the unsatisfiability of the 3-
SAT formula F , we only need to show that the ground-
state energy Exor

0 of the 3-XORSAT energy (4) can not
be lower than C. We reason as follows. To make F sat-
isfiable as 3-XORSAT, some clauses have to be removed
from F in such a way that for each of the t constructed
unsatisfiable subformulas, at least one of the involved
clauses should be removed. Therefore, the sum of num-
bers da of the removed clauses should be at least t. This
then proves the refutation inequality (18). The quantity
C as obtained by Eq. (19) is a lower-bound of Exor

0 . This
lower-bound actually is not tight, it is much lower than
the true ground-state energy.

B. Random sampling

A simple way of constructing unsatisfiable 3-XORSAT
witnesses for a given 3-SAT formula F are the following:

0. Calculate
∑
i |k

+
i −k

−
i | and the maximal eigenvalue λ

of matrixM for formula F . Set subformula number
as t = 0 and set the counting number da = 0 for
each clause a of F .

1. Randomly select Nγ variables from the set of N vari-
ables, where γ ∈ [0, 1] is a fixed parameter.

2. Check if the subformula f of F induced by these
Nγ variables is 3-XORSAT satisfiable, and if yes,
go back to step 1. Otherwise a unsatisfiable 3-
XORSAT formula is obtained.

3. Construct a subformula f̃ by adding clauses of f one
after the other in a random order, until f̃ becomes
unsatisfiable (and has ground-state energy 1) as 3-

XORSAT. Then prune the subformula f̃ by recur-
sively removing those variables that are connected
to only one clause and the associated single clauses.
After this leaf-removal process is finished, we ob-
tain an unsatisfiable core subformula. The counting
number da of each clause of this core subformula is
increased by one (da ← da+1), and the subformula
number is also increased by one (t← t+ 1).

4. Calculate C according to (19) and then check if (18)
is satisfied. If yes, output ‘UNSAT witness found’;
otherwise repeat steps 1-4.

Figure 3 shows the simulation results on two single
3-SAT instances. The upper panel A is a 3-SAT for-
mula with 100 variables and clause density α = 100, and
the lower panel B is another 3-SAT formula with 100
variables and clause density α = 400. If the curve C(t)
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FIG. 3: (color online). The evolution of witness value C
as the number of randomly sampled subformulas t increases.
The investigated random 3-SAT instance has variable number
N = 100 and clause number M = 10, 000 in (A) and M =
40, 000 in (B). The horizontal dashed lines in (A) and (B)
mark the position of Mupp

2 . The control parameter γ of the
random sampling algorithm is set to γ = 0.5.

is able to go beyond Mupp
2 (marked by the horizontal

dashed line) then a FKO witness is found. The random
sampling algorithm succeeded in finding a FKO witness
for the instance with α = 400 but failed to do so for the
one with α = 100.

For N � 1, a random subformula as constructed by
the above-mentioned procedure contains about 0.633Nγ

clauses [21]. When there are a large number t of such sub-
formulas, the total number of clauses is about 0.633tNγ ,
and each clause appears on average in d = 0.633tNγ/M
subformulas. From this we estimate that the solution C
of (19) is roughly

C ∼ t

d
≈ M

Nγ
= αN1−γ . (20)

On the other hand, Mupp
2 scales as α1/2N (see Fig. 2

and [16]). Therefore, we see that for the inequality (18)
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FIG. 4: (color online). The probability of FKO witness
being found in a single run of the random sampling process.
Each data point was obtained by simulating 10 random 3-SAT
instances with N variables and M = cN2 clauses. Different
curves correspond to different variable numbers N .

to hold, it is required that

α > N2γ . (21)

The average number of clauses among a randomly cho-
sen Nγ variables is about N3γ−3M = αN3γ−2. This
value should be proportional to Nγ so that the subfor-
mula induced by these variables has a high probability
to be unsatisfiable as 3-XORSAT. Therefore we require
that αN3γ−2 ≈ Nγ , from which we get

α ≈ N2−2γ . (22)

From Eqs. (21) and (22) we obtain that the parameter γ
should be chosen as

γ =
1

2
. (23)

The above analysis suggests that, for random 3-SAT
instances with clause density α > N , it is relatively easy
to construct UNSAT witnesses. However, for clause den-
sity sublinear in N , it is very hard to construct UNSAT
witnesses through the above random process.

The performance of this random construction process,
with γ = 0.5, is demonstrated in Fig. 4 for random 3-
SAT formulas with clause density α = cN . This figure
shows that for clause density scales linearly with vari-
able number N , the prefactor c needs to be greater than
c ≈ 2.5 for the random sampling algorithm to find FKO
witnesses.

The random sampling algorithm is therefore very in-
efficient in obtaining FKO witnesses. For clause density
α linear in N other local refutation algorithms are more
efficient. For example, a simple 2-SAT refutation algo-
rithm goes as follows. First, a seed set of size s is cho-
sen, which contains the s variables of the highest degrees.
Each of the 2s spin assignments of these s variables will

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prefactor c

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

N = 625
N = 400
N = 225
N = 144
N = 64

s=4 s=3 s=2 s=1

FIG. 5: (color online). The probability of a random 3-
SAT formula with N variables and cN2 clauses (clause density
α = cN) being proven to be UNSAT by the 2-SAT refutation
algorithm. The seed size s is fixed to s = 1, s = 2, s = 3, and
s = 4 in the four sets of simulation curves. Each curve is the
average over 10 random instances.

induce a 2-SAT subformula, and we can check whether
this 2-SAT subformula is satisfiable or not. If all these 2s

induced 2-SAT subformulas are UNSAT, then the origi-
nal 3-SAT formula can not be satisfied. The number of
clauses in the induced 2-SAT subformula is about 3

2sα,
and the number of variables is at most N . Since a ran-
dom 2-SAT formula is very likely to be unsatisfiable if the
number of clauses exceeds the number of variables, then
we see that the simple 2-SAT refutation algorithm has a
high probability of success if α > 2

3sN . The simulation
results shown in Fig. 5 confirm this expectation.

C. Focused local search

The subformulas constructed by the random sampling
algorithm are very sparse. Most of the loops in such
a subformula are long-ranged, with lengths scaling log-
arithmicly with the number of variables. We now con-
sider another construction strategy, namely focused lo-
cal search. The goal of this strategy is to construct
3-XORSAT unsatisfiable subformulae with only short
loops.

The details of the focused local search algorithm are
as follows:

0. The used set U of clauses is initialized as empty.

1. Arbitrarily choose a clause a that does not belong
to the set U . This clause and all its attached three
vertices form the “system”, I. Any clause b that is
connected to the “system” by at least one edge and
is not in U belongs to the “boundary”, B.

2. In the “boundary” B some of the clauses have more
connections to the “system” than the other clauses.
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FIG. 6: (color online). The probability of FKO witness
being found in a single run of the focused local search process
(control parameter S = 1) for random 3-SAT instances with
N = 1000 variables and M = αN clauses. Each data point
was obtained by simulating 100 random 3-SAT instances. The
solid line is a sigmoidal fitting curve with parameters α0 =
468.54± 0.09 and ∆ = 3.44± 0.08.

Randomly choose a clause c in the “boundary”
that has the maximal number of connections with
the “system” (i.e., the number of edges to the
“system” is the maximal among all the clauses in
the “boundary”). Include clause c and all its at-
tached vertices to the “system”, and add clause c
to the set U . The “boundary” B is then updated.
Clause c is removed from B, all the clauses that are
connected to the “system” and that are not belong
to the set U are added to B.

3. Check whether the “system” is 3-XORSAT satis-
fiable, if yes and the “boundary” B is not empty,
go back to step 2. If the “system” is 3-XORSAT
unsatisfiable, then go to step 4. If the “system” is
still satisfiable but the boundary B becomes empty,
then stop and output ‘construction failed’.

4. After an unsatisfiable 3-XORSAT subformula is ob-
tained, the number of unsatisfied clauses in this
subformula is 1. We then prune the subformula
by removing unnecessary clauses so that an unsat-
isfiable core subformula is obtained. In the prun-
ing process, basically we test (in a random order)
whether each clause can be removed from the sub-
formula without making it 3-XORSAT satisfiable.
If a clause is removed from the subformula it is also
removed from the used clause set U .

5. Update the subformula number t to t + 1. If t ≤
Mupp

2 , go back to step 1, otherwise stop and output
‘UNSAT witness found’.

In the above-mentioned focused local search algorithm,
each clause can only appear in S = 1 subformula. There-
fore all the constructed subformulas are disjoint in the
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FIG. 7: (color online). Scaling behavior between variable
number N and the characteristic clause density α = α0 of
the focused local search algorithm. The control parameter of
the focused local search algorithm is S. The dashed lines are
fitting curves of the form α0 = c×Nb. The fitting parameters
are c = 8.0±0.1 and b = 0.589±0.002 (top, S = 1); c = 7.7±
0.1 and b = 0.582± 0.002 (middle, S = 2); and c = 7.5± 0.1
and b = 0.577± 0.002 (bottom, S = 4).

sense that they do not share any clauses. Figure 6 shows
the performance of this focused local search algorithm
on a set of random 3-SAT instances with N = 1000 vari-
ables. As the clause density α increases around certain
threshold value α0, the probability of finding a FKO wit-
ness increases quickly from 0 to 1. The simulation data
can be well fitted by a sigmoidal curve

P (α) =
1

1 + exp
(
−α−α0

∆

) , (24)

where the parameter ∆ controls the slope of the sigmoidal
curve. At α = α0 the focused local search algorithm has
1/2 probability of successfully constructing a FKO wit-
ness for a random 3-SAT instance of N variables. We
therefore take α0 as a quantitative measure of the al-
gorithmic performance. The scaling of α0 with variable
number N is shown in Fig. 7. We find that

α0 ≈ c×N b , (25)

with exponent b ≈ 0.589 and prefactor c ≈ 8.0. The ex-
ponent b is much larger than the value of 0.4, which was
predicted to be achievable at least by a weak exponential-
complexity algorithm [16]. It is also larger than the value
of 0.5 achieved by the spectral methods [13–15]. At the
moment we do not have any analytical argument as re-
gards the value of b of the focused local search algorithm.

We find that, if we allow each clause to be present in
S ≥ 2 subformulas, the performance of the focused local
search algorithm will be improved. The scaling behaviors
of this modified algorithm with S = 2 and S = 4 are
also shown in Fig. 7. The simulation data suggest that
both the scaling exponent b and the prefactor c decrease
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slightly with S. As we have not yet performed systematic
simulations for large values of S, we do not know to what
extent the exponent b can be reduced.

V. CONCLUSION AND DISCUSSIONS

In this paper, we demonstrated through mean-field cal-
culations that a type of unsatisfiability witness, the Feige-
Kim-Ofek witnesses, exists in the random 3-SAT prob-
lem with constant clause density α > 19. However for
α < 19 our theoretical result concludes that it is impossi-
ble to refute a random 3-SAT formula through the FKO
approach. We investigated the empirical performances
of two witness-searching algorithms by computer simu-
lations. The naive random sampling algorithm is able
to construct FKO witnesses only for random 3-SAT in-
stances with clause density α > cN (where N is the vari-
able number). The focused local search algorithm has
much better performances, it works for α > cN b with
b ≈ 0.59. The value of the exponent b can be further
decreased by enlarging the control parameter S of the
focused local search algorithm. It would be interesting
to systematically investigate the relationship between b
and S by computer simulations in a future work.

The essence of the FKO witness is to construct a rigor-
ous lower-bound for the ground-state energy Exor

0 of the
3-XORSAT formula (4). The tighter this lower-bound to
Exor

0 is, the better the refutation power of this witness
approach. A very big theoretical and algorithmic chal-
lenge is to obtain a good lower-bound for the ground-
state energy of the 3-XORSAT problem. For the 3-SAT
problem, H̊astad proved in Ref. [22] that no algorithm is
guaranteed to construct spin assignments that can satisfy
more than (7/8)Mopt clauses in polynomial time (Mopt

being the maximal number clauses that can be simulta-
neously satisfied), unless P = NP . This actually gives
an upper bound on the ground-state energy of the 3-
SAT problem. This upper-bound can be converted to an
upper-bound for Exor

0 of the 3-XORSAT problem. But we
do not know any energy lower-bound for the 3-XORSAT
problem whose value is proportional to the clause density
α. If such an energy lower-bound can be verified algo-
rithmically, then the FKO witness approach will succeed
for the 3-SAT problem with constant α.

The 3-XORSAT energy lower bound C as obtained
from Eq. (19) does not scale linearly with the clause den-
sity α but only sublinearly. One possible way of improv-
ing the value of C goes as follows. For each constructed

3-XORSAT unsatisfiable subformula f , we assign a prop-
erly chosen real-valued weight wf . Correspondingly the
counting number da of each clause a is modifed as

da =
∑
{f |a∈f}

wf , (26)

where the summation is over all the subformulas f that
contain clause a. Then Eq. (19) is changed into

C∑
a=1

d(a) ≥
∑
f

wf . (27)

When all the weights wf = 1, then Eq. (27) reduces to
Eq. (19). By optimizing the choices of the subformula
weights {wf} we expect that a considerly better energy
lower bound C can be obtained from Eq. (27).

The counting number da of each clause a can also be
considered as a real-valued parameter whose value can
be freely adjusted. Then the weight of each constructed
subformula f is defined as wf = min

a∈f
da (i.e., the lowest

value of da over all the clauses of f). We believe another
better energy lower bound C can also be obtained by
optimizing the choices of {da}.

A systematic exploration of these two re-weighting
schemes and other possible extensions will be carried out
in a separate study.
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