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Abstract

We report on some exceptionally good results in the solution of randomly gener-
ated 3-satisfiability instances using the “record-to-record travel (RRT)” local search
method. When this simple, but less-studied algorithm is applied to random one-
million variable instances from the problem’s satisfiable phase, it seems to find
satisfying truth assignments almost always in linear time, with the coefficient of
linearity depending on the ratio « of clauses to variables in the generated instances.
RRT has a parameter for tuning “greediness”. By lessening greediness, the linear
time phase can be extended up to very close to the satisfiability threshold a.. Such
linear time complexity is typical for random-walk based local search methods for
small values of . Previously, however, it has been suspected that these methods
necessarily lose their time linearity far below the satisfiability threshold. The only
previously introduced algorithm reported to have nearly linear time complexity also
close to the satisfiability threshold is the survey propagation (SP) algorithm. How-
ever, SP is not a local search method and is more complicated to implement than
RRT. Comparative experiments with the WalkSAT local search algorithm show be-
havior somewhat similar to RRT, but with the linear time phase not extending quite
as close to the satisfiability threshold.

1 Introduction

The K-satisfiability problem (K-SAT) is a fundamental problem in the theory
of computation [10]. An instance of the problem is a Boolean formula consist-
ing of M clauses, each of which is a set of K literals, i.e. Boolean variables
or their negations. The goal is to determine whether the formula has a sat-
isfying truth assignment, i.e. an assignment of truth values ’true’ and ’false’
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to its variables so that each clause contains at least one literal that evaluates
to true’. For K > 3, the K-SAT problem is a representative member of the
class of NP-complete problems [10]. It is strongly conjectured, although not
yet proved, that the solution of any NP-complete problem requires a compu-
tation time that grows superpolynomially with respect to input size, at least
in the worst case. On the other hand, solving randomly generated instances
of NP-complete problems is often possible in polynomial time with high prob-
ability, in particular if the instances have some special structure (see e.g. [32]
and references therein).

The K-SAT problem is also closely related to the spin glass models [17] stud-
ied in statistical physics of disordered systems, and its behavior on random
instances has recently been extensively analyzed from this point of view. Ran-
dom instances of K-SAT are easily generated: each of the M clauses is a set
(of size K) selected at random from the set of NV variables and their negations.
The ratio of clauses to variables « = M/N is an important parameter, because
it reflects the constrainedness of the problem. It has been (nearly) proved [9]
that for each value of K > 2 there exists a critical value «, that separates
the satisfiable (Sat) “phase” of the problem from the unsatisfiable (Unsat)
“phase” [20,15,21]. More precisely, this means that if the ratio « is held con-
stant as N — oo, then almost all instances are satisfiable if o < «,, and almost
all instances are unsatisfiable if o > «.. The exact value of the satisfiability
threshold «, has not yet been rigorously determined for any K > 3, but many
estimates for K = 3 have been derived. Currently the best guesses are around
a. ~ 4.26 [20,6,4], whereas the known rigorous bounds are at a, > 3.42 [12]
and a, < 4.506 [7]. Interestingly, it also seems that instances requiring longest
solution times using almost any algorithm are clustered near the Sat/Unsat
transition [20,15,21].

2 The RRT Algorithm

Because of some background considerations from combinatorial landscape the-
ory [25], we decided to investigate the behavior of the record-to-record travel
(RRT) algorithm [8,1] on the random 3-SAT problem. There are only a few
papers addressing the properties and effectiveness of RRT, although it was
proposed a decade ago and some excellent results have been obtained with
it [8,23]. We are not aware of any previous studies applying RRT to the K-
SAT problem.

Given an objective function to be optimized (say, maximized) over a large
configuration space, RRT starts from a random configuration. Then randomly
chosen small changes are repeatedly made to the current configuration, accept-
ing however only such changes that lead to a configuration whose objective



value is not much worse than the best value found so far (the “record”). In
its simplest form RRT has only one tunable parameter, the maximum allowed
deviation d that determines how much worse values than the current record
are accepted.

When RRT is applied to search for satisfying truth assignments of a K-SAT
formula, a configuration corresponds to a truth assignment for all the variables
in the formula, and the objective function to be maximized is the number of
clauses satisfied by the given configuration. A solution is a truth assignment
that makes all clauses true. A small change is a flip of the truth value of
one variable from true to false or vice versa. A flip is accepted, if it leads to
a configuration that has at most d fewer satisfied clauses than the current
best configuration. It is essential to use a version of RRT where the variable
to be flipped is always chosen among those occurring in the clauses that are
currently unsatisfied (specifically, one of the unsatisfied clauses is chosen ran-
domly, and from that clause one of the K variables is chosen at random). We
call this method focused RRT (FRRT). Similar focusing is used in random
walk algorithms [24,27] and in the WalkSAT algorithms [28,16].

As a time measure we use the number of flips (rejected flips included) per-
formed in an RRT run. In the case of random K-SAT instances the time needed
to make a single flip does not in principle depend much on the number of vari-
ables in a formula, although in practice the use of cached memory and other
systems software issues cause a number of unpredictable scale effects. Also it
should be noted that accepted and rejected flips can require different average
CPU times, the difference depending on the implementation of the algorithm,
and the time requirement per flip of course increases with increasing a. In
the WalkSAT algorithms, to make a flip often requires checking the influence
of every variable in one clause, but this is still counted traditionally as one
flip [28,16].

Stochastic local search methods [1] such as RRT cannot discover that a K-
SAT instance is in fact unsatisfiable. Complete (systematic) methods, i.e. algo-
rithms that can determine for any instance whether it is satisfiable or not, are
usually less efficient than stochastic local search methods at finding a solution
for satisfiable instances, when instances are randomly generated [11].

3 Experiments

The results of our experiments on using FRRT to solve random 3-SAT in-
stances for NV up to one million are summarized in Figure 1. We believe that
results for K > 3 would be qualitatively similar; at least for 4-SAT this seems
to be the case, based on a few experiments. The experiments with 3-SAT lead
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Fig. 1. Each point represents the number of flips required by an FRRT run to find
a satisfying solution to one randomly generated 3-SAT instance. For each value
of d, instances were generated and solved in increasing order of o until the first
run which did not reach a solution in a reasonable time. For each d, the logarithm
of the average number of flips per variable for different « is fitted to a power law
wgq(ag— ) %. From fhe fitted curve one can obtain an estimate for ag. N = 10% was
used here to approximate the limit case N — oo. (Estimates: a5 =~ 4.11, ag = 4.14,
a7 =~ 4.18, ag = 4.19, ag =~ 4.21.) The crossing points of these fitted curves were then
fitted to a similar power law, which gives an estimate as, = 4.26. For comparison we
have included a few experiments using WalkSAT-35 [26] with “best” as the chosen
heuristics and noise parameter set to 55%. (Note that a flip with WalkSAT is more
costly than a flip with FRRT.)

us to exciting conclusions. (Similar observations have recently been made con-
cerning the WalkSAT algorithm [3,29]). It seems that when the deviation d
and constrainedness « are held constant, the time needed for FRRT to almost
always (a.a.) find a solution grows only linearly with respect to N if a < aq,
where a4 is a threshold value for the given deviation d. Instances with o < a4
can be solved a.a. in linear time using FRRT with the given d, and instances
with o > aq get solved almost never in linear time.? More precisely, this

2 When considering relatively small problem instances, the expression “almost al-
ways” should of course be used with care. Data in Fig. 1 indicate that the most
effective value of the deviation d at @ = 4.2 is probably 9. We set a limit of 5000V
flips and tried how large a proportion of 3-SAT instances are solved, when o = 4.2
and N = 1000. With d = 9 the proportion was about 0.02 (15 out of 1000 instances).
Using d = 5 the proportion was much larger, about 0.5 (507 out of 1000). Generally,
the optimal value of d for small instances can be considerably lower than for large
instances. When o« = 4.2 and N = 10°, the proportion solved within 5000N flips



means that when a < a4, the probability P of finding a satisfying assignment
using c(a)N flips converges towards one as N — oo if ¢(«) is big enough,
but when « > a4, P converges towards zero no matter how big c¢(«) is. There
seems to happen a phase transition in the time complexity of the algorithm
at the points ag, from a.a. linear to more than linear (maybe exponential, cf.
[3,29]). When the deviation parameter d increases, the a.a. linear time phase
seems to extend further, so that ag,1 > a4 for all d.

Specifically, there likely exists for every d a limit function by(«) defined in the
range 0 < a < ag, so that the average number of flips per variable needed to
find a solution converges in probability towards by(«) as N — oo (cf. Fig. 1).
When d — oo, thresholds a4 cluster at the threshold a.,, which may or may
not be the same as the satisfiability threshold .. Extrapolating the results in
Fig. 1 gives some support to the possibility that these two threshold values
coincide, although we have not been able to find a solution with FRRT for
any N > 10° instance with o > 4.23. If indeed a, = a., one can find for every
a below «, a value for the deviation parameter d making almost all random
3-SAT instances with M = aN clauses solvable in linear time by FRRT,
although the corresponding coefficient by(cr) of the linear term likely tends to
infinity, as o gets closer to a.. So if a, = a., there is a transition from linear
time complexity to unsatisfiability in the random 3-SAT problem, without
any intervening phase. (As regards the unsatisfiable phase, it is known that
proving an instance unsatisfiable by resolution methods almost always takes
exponential time [2,5].)

According to two recent papers [3,29], such time linearity is typical for random-
walk based local search methods such as WalkSAT or FRRT, when applied
to random 3-SAT instances at small o, and there is a transition from a linear
to exponential time phase at some algorithm-dependent “dynamical” thresh-
old agyn. We tried to estimate agyn for WalkSAT-35 [26] with “best” as the
chosen heuristic and noise parameter set to 55% (these settings seemed to
be near optimal, in accordance with [33]). Based on experiments with million
variable instances and the same estimation formula used in Fig. 1, we got an
estimate ogyn, ~ 4.19, which is quite near the satisfiability threshold o, but
still distinctly apart from it. WalkSAT’s noise parameter can be used to tune
greediness similarly as FRRT’s deviation parameter. There is, however, a ma-
jor difference: agyn does not grow monotonically with increasing noise. There
is some optimal value for the noise level, beyond which ag4yn starts to decrease
again.

The recently introduced survey propagation (SP) algorithm [4,18,19] for ran-

was about 0.75 (75 out of 100) using d = 9. When d = 5, none of the 100 instances
were solved (there remained 96 to 165 unsatisfied clauses). When N = 10°, all the
ten test instances were solved using d = 9, with a number of flips ranging from
2919N to 3751N.



dom K-SAT, based on methods from statistical physics and the theory of
Bayesian belief networks [34], also has a time requirement that seems to grow
nearly linearly with N, when « is fixed. Experiments in [4] seem to confirm
this up to at least a = 4.22. Also SP has a tunable greediness parameter:
the proportion of variables that are fixed after each iteration. By decreasing
this value towards zero, the efficiently solvable phase can be extended, per-
haps even up to a.. SP is not, however, a local search method and is more
complicated to implement than FRRT. It requires more memory, but seems
to run somewhat faster than FRRT, especially very near the Sat/Unsat tran-
sition (based on our few comparative experiments with N = 10° [30]). It is
possible though that also FRRT can be made more efficient by adding more
“intelligence” to the simplistic algorithm.

4 Discussion

Unlike many other local search methods, FRRT does not work by finding
repeatedly some local optimum and then escaping to a better one. Instead
there exist (nearly) all the time improving flip possibilities, i.e. ones that
increase the number of satisfied clauses, right until a complete solution is
found. The algorithm rather avoids getting trapped in local optima by letting
the current configuration slowly “relax” into a favourable state. The same idea
is behind the well-known simulated annealing (SA) method [14,1]. SA with a
suitable cooling schedule can therefore probably achieve comparable efficiency
on random 3-SAT instances, if the flips are focused on the unsatisfied clauses.
(The basic SA, where the variable to be flipped is picked randomly from among
all the variables, is not good at finding solutions for random 3-SAT instances
near the Sat/Unsat transition [28].)

This kind of behaviour also suggests that it is more important to have enough
time (i.e. enough flips) for the relaxation process rather than a specific value for
the deviation parameter. We have made a few experiments (data not shown)
with a kind of restrained version of FRRT that accepts a flip leading to a
configuration with more satisfied clauses than the current “record” only with
a small probability p, and behaves otherwise just like the normal FRRT. This
way the range of a where a solution can be found in a.a. linear time with a
fixed deviation d can be extended considerably beyond the values a4 discussed
above. This also indicates that the thresholds a, are not directly related to
how high barriers [13,25] there are between local optima when a1 < o < aq
— although the effectiveness of FRRT suggests that typical barrier heights
are at most d when o < ay4. By restraining the acceptance of new records the
search process can be slowed down (i.e. the speed of improving the number of
satisfied clauses decreased) also in the beginning of the run, when it is quite
fast with standard FRRT no matter how large the deviation parameter is.



This may in fact turn out to be necessary for extending the linear time phase
up to the satisfiability threshold «..

FRRT may work well also on other constraint satisfaction problems that are
generated randomly with a uniform distribution, like random K-coloring [22,31].
One needs to keep in mind, however, that “real world” problem instances do
not necessarily have the same simple structure as randomly generated ones,
and therefore such results are not by themselves sufficient evidence for the
power of FRRT in “real” applications.
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