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ABSTRACT
We consider the problem of maximizing the lifetime of a
given multicast connection in a wireless network of energy-
constrained (e.g. battery-operated) nodes, by choosing ideal
transmission power levels for the nodes relaying the connec-
tion. We distinguish between two basic operating modes:
In a static assignment, the power levels of the nodes are set
at the beginning and remain unchanged until the nodes are
depleted of energy. In a dynamic assignment, the powers
can be adjusted during operation.

We show that lifetime-maximizing static power assign-
ments can be found in polynomial time, whereas for dy-
namic assignments, a quantized-time version of the problem
is NP-hard. We then study the approximability of the quan-
tized dynamic case and conclude that no polynomial time
approximation scheme (PTAS) exists for the problem unless
P = NP. Finally, by considering two approximation heuris-
tics for the dynamic case, we show experimentally that the
lifetime of a dynamically maintained multicast connection
can be made several times longer than what can be achieved
by the best possible static assignment.
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1. MOTIVATION AND STATEMENT OF
THE PROBLEM

Wireless “ad hoc” communication networks, consisting of
a collection of radio transceivers with no prearranged infras-
tructure, have been studied intensively during the past few
years [21]. The general area of topology control in ad hoc
networks [23] is concerned with assigning appropriate trans-
mission power levels to the nodes so that some desired topo-
logical property holds in the induced transmission graph. A
central problem in this area is the maintenance of a multi-
cast connection from a given source node to a group of sink
nodes.

Battery power is a serious limiting constraint in many ap-
plications of ad hoc networks, and accordingly much atten-
tion has been paid to energy-efficient designs in this area [12].
In a wireless node, power is used for transmitting and re-
ceiving data, internal data processing, and simply for being
“on” in an idle mode. The power required for transmission
and reception, however, dominates [15, 27]. For simplicity,
we consider only the power required for transmission. A
similar model is considered in e.g. the papers [15, 17, 18].

We model an ad hoc network as a directed graph with
the transceivers as nodes. Node i can communicate directly



to node j, if the transmission power from i exceeds some
threshold value dij [17, 24]. As a consequence, when the
power is high enough to reach a certain node, some other
nodes may be reached simultaneously with the same trans-
mission. In other words, the minimum “cost” of transmis-
sion from node i to nodes j1, j2, . . . , jm is maxk dijk

rather
than

�
k

dijk
. With a particular setting of transmission

powers for the nodes, node j may transmit with power differ-
ent from i, so a direct connection from i to j does not imply
that direct communication from j to i is possible. Note
that this is different from the symmetric model employed in
e.g. [1].

In reality, the actual transmission powers and threshold
values dij depend on several environmental and technologi-
cal factors [24], as well as situations of use (e.g. QoS require-
ments), but these go for the most part into the computation
of proper dij values in the given setting, and therefore our
model is independent of such technical details. A common
approximation is to choose dij ∝ rij

α, where rij is the phys-
ical distance between nodes i and j, and the exponent α,
2 ≤ α � 4, models the decay of the radio signal in the in-
tervening medium. (A thorough description of mobile radio
propagation and transmission/reception technology can be
found in [25].)

In multicasting, one of the nodes, usually indexed as 1,
is a designated source node, and some k other nodes are
the designated sinks. The requirement is to keep the source
connected to all the sinks.

A number of recent papers (e.g. [5, 6, 8, 9, 16, 18, 19,
20, 28, 29, 30]) have considered the topic of energy-aware
broadcasting in wireless networks, i.e. the problem of main-
taining a transmission path from a given source node to all
the other nodes. However, with rare exceptions such as [18,
20], all of these works (as well as many older ones, e.g. [14,
26]), take it as their goal to minimize the total power con-
sumption of the entire network, i.e. they address the wireless
analogue of the classical problem of finding a minimal span-
ning tree for a network. (Interestingly, in wireless networks
this “minimum power broadcast tree” problem turns out to
be NP-complete, as proved in e.g. [5, 8, 16].) Some of the
papers, e.g. [16, 19, 29, 30] address also the problem of con-
structing minimum multicast trees under the same metric.

However, minimal total power consumption does not guar-
antee maximum lifetime for a network (either for broadcast
or multicast), as has been noted for instance in [7]. Our
objective is also different from minimizing the maximum
power applied at any individual node, as considered in [17,
24], because we take into account that different nodes have
different energy supplies from the outset. A number of differ-
ent power-aware metrics, including the ones above, is given
in [27].

Previous work closest to the present paper consists of arti-
cles [17] and [18]. Our network model and some fundamental
lemmas are adapted from [17], where the authors consider
e.g. the task of minimizing the maximum power required at
any individual node in order to achieve some desired topo-
logical property. In [18], the problem of maximizing broad-
cast lifetimes is considered in both the static and dynamic
power assignment settings; however the paper contains nei-
ther theoretical analysis of the complexity of the problem,
nor experimental results validating the chosen heuristics.

We are now ready for some definitions.

Definition 1. A power threshold graph G = (V, A, d)

is a complete directed graph with nodes V = {1, . . . , n} and
threshold power values dij ∈ � ∪ {∞} on each arc (i, j) ∈
A = V × V .

Note that we include ∞ among the possible values to in-
dicate that direct communication is impossible (due to, e.g.,
an impenetrable medium between the nodes). We can triv-
ially take dii to be 0 for all i.

Each node i carries a battery with limited energy supply
ei. Disregarding the details of battery technology, transmis-
sion at power p for a time t consumes energy w = pt. More
precisely, the energy consumed by node i from the starting
point up to time t is wi(t) = � t

0
pi(τ ) dτ , where pi(τ ) ≥ 0 is

the transmission power of node i at time τ . The transmis-
sion powers we consider are piecewise constant with a finite
number of discontinuities.

Definition 2. A power assignment p = (p1, p2, . . . , pn)
in a power threshold graph G of n nodes associates to each
node in G its transmission power value. Since the power
applied at a node may in general change over time, each pi

(and hence p) is actually a function of time t. A power as-
signment that stays constant over time is static. (More pre-
cisely, a static assignment provides for each node i a power
value ci and time ti so that pi(t) = ci for 0 ≤ t < ti and
pi(t) = 0 for t ≥ ti.) More general power assignments are
dynamic.

Definition 3. The transmission graph Gp

t induced by
a particular power assignment p = (p1, p2, . . . , pn) at time
t ≥ 0 is the subgraph obtained from the power threshold graph
G by including only those arcs (i, j) for which pi(t) ≥ dij .

Note that we use the term “transmission graph” as in [23],
and differently from [1] where this term is used for a sym-
metric power threshold graph.

Definition 4. The lifetime of a node i ∈ V with initial
energy supply ei is ti = sup{ t |wi(t) < ei }, where wi(t) is
the energy consumed at node i up to time t. During the time
interval [0, ti[, the node is alive. A node that is not alive is
dead.

Definition 5. The multicast connection time for a
set of sink nodes U ⊆ V , with respect to source node 1,
in a power threshold graph G subject to a power assignment
p is the supremum over t ≥ 0 such that for each i ∈ U
there is a directed path connecting 1 to i in all graphs Gp

τ

for τ ≤ t.

In other words, the multicast connection time for a set of
sink nodes U is the maximum continuous amount of time
starting from instant t = 0 such that there are connections
in Gp

t from source 1 to all the nodes in U . As a limiting
case, e.g. if U is empty, the multicast connection time can
also be infinite.

Definition 6. A power assignment p = (p1, p2, . . . , pn)
is feasible with respect to a given energy supply e =
(e1, e2, . . . , en), if the energy expenditures determined by p
satisfy wi(t) ≤ ei for all i ∈ V and t ≥ 0.

Definition 7. The multicast time maximization
problem for a given power threshold graph G = (V, A, d),
energy supply e = (e1, . . . , en), and set of sink nodes U ⊆ V
is to determine a feasible power assignment p that maxi-
mizes the multicast connection time for U .



Note that several of the nodes may run out of energy be-
fore the source does so. Ensuring the connectivity from the
source to the sinks with the help of other nodes is analo-
gous to finding so called Steiner trees [11, 22] in undirected
graphs.

Definition 8. A Steiner tree in an undirected graph
G = (V, E) with a set of critical nodes W ⊆ V is a subtree
T of G that includes all the nodes in W .

The rest of the paper is organized as follows. In Section 2,
we study multicast time maximization by static power as-
signments and provide a polynomial time algorithm for this
problem, drawing on the results of [17]. In Section 3, we
turn to general dynamic power assignments and show that
a quantized-time version of the multicast time maximiza-
tion now becomes NP-hard. The lemma showing that (our
version of) the underlying “Steiner tree packing problem”
is NP-complete is of interest in itself. We also study the
approximability of the dynamic case and conclude that no
polynomial time approximation scheme (PTAS) exists for
the quantized-time version of the problem unless P = NP.
In Section 4 we suggest two randomized approximation meth-
ods for finding good dynamic assignments, and in Section 5
we report on simulation experiments. We conclude with a
summary and some ideas for further research in Section 6.

2. STATIC POWER ASSIGNMENTS
The following definition is from [4, 17].

Definition 9. A graph property � is monotone, if add-
ing edges to a graph can never make � change from true to
untrue. In terms of transmission graphs, this means that
increasing power at nodes preserves the property.

The property we consider in this paper is the existence of
directed paths from source node 1 to all sink nodes i ∈ U .
This multicast property is clearly monotone.

The following definition is a generalization of the MaxP
problem given in [17].

Definition 10. Given a power threshold graph G =
(V, A, d), let fi be for each node i ∈ V some quantity that is
monotonically increasing in the power applied at node i. The
problem Max� with respect to property � is to determine
static fi-values for all the nodes i ∈ V in such a way that
the corresponding transition graph has property � , and the
maximum of the fi-values at the nodes is minimized.

The following is a slight generalization of the fundamental
lemma (Lemma 4.1) in [17], in which the fi-values consid-
ered are exactly the transmission powers at the nodes.

Lemma 1. For any instance of the Max� problem with
respect to a monotone � , there is an optimal solution in
which the fi-values at each node are equal.

Proof. As the fi-values are monotonically increasing in
the power values, the monotonicity of property � can equally
well be considered with respect to the fi-values as with re-
spect to the power values.

Consider an optimal solution to the given instance where
the nodes do not necessarily have the same fi-values. Let Q
denote the maximum fi-value assigned to any node i. Since
the property � is monotone, for any node whose fi-value is
less than Q, we can increase it to Q without destroying the
property.

Now we can prove the following straightforward general-
ization of Theorem 4.1 in [17]. For completeness, we include
the proof, even though it includes only small modifications
to the proof given in [17].

Theorem 1. For any monotone graph property � that
can be tested in polynomial time, the Max� problem can
be solved in polynomial time.

Proof. For any instance of the problem, there exists
by the preceding lemma an optimal solution with equal fi-
values at the nodes. The basic idea is that there are only
a polynomial number of possible fi-values and we can ac-
tually search through this set of possible values efficiently
using, e.g. binary search.

Consider any node i ∈ V . The number of different power
values that need to be considered for i is at most n, since at
most one new power value is needed for each node j 6= i to
ensure the communication from i to j, namely dij . There-
fore, for all of the n nodes, the total number of corresponding
candidate fi-values to be considered is at most n2.

Each candidate fi-value corresponds to a power assign-
ment, and the induced directed transmission graph can be
constructed in O(n2) time. Let F�(n) denote the time needed
to test whether property � holds for a directed graph with
n nodes. Thus, the time needed to test whether property
� holds for each candidate solution value is O(n2 + F�(n)).
An optimal solution can be obtained by sorting the O(n2)
candidate solution values and using binary search to deter-
mine the smallest fi-value for which property � holds. Since
the number of candidate solution values is O(n2), the time
taken by the sorting step is O(n2 log n). The binary search
would try O(log n) candidate solution values and the time
spent for testing each candidate is O(n2 +F�(n)). Thus, the
total running time of this algorithm is O((n2 +F�(n)) log n),
i.e. polynomial.

From this proof we learn that we need consider only a
discrete set of possible power values, i.e. those that coincide
with some dij . The same idea will appear in the algorithms
for the dynamic case in Section 4.

Corollary 1. The multicast time maximization problem
constrained to static power assignments can be solved in
polynomial time.

Proof. For a constant power pi, the lifetime of node i
is ti = ei/pi, a decreasing function of pi. Take as the fi-
value at node i the negative of its lifetime. This is clearly
a monotonically increasing function of the power pi. More-
over, maximizing the lifetime ti is equal to minimizing fi.
The situation of Lemma 1 corresponds to all nodes being
alive for exactly the same time and then running out of en-
ergy simultaneously.

3. DYNAMIC POWER ASSIGNMENTS
We now turn our attention to the more difficult task of

multicast time maximization using dynamic power assign-
ments. For simplicity, we assume that the possible control
times (discontinuities) for the power assignment are quan-
tized to occur at intervals of one time unit.1

1While this is a natural assumption, it remains a possibility
that one can achieve more efficient power assignments by
applying arbitrarily fine-grained controls.



We first give a direct combinatorial proof showing that the
multicast time maximization problem under quantized dy-
namic power assignments is NP-hard. For this we need the
following lemma, which is of interest in itself. Note that the
term “Steiner tree packing” as used in the literature, e.g. in
[3], refers to a more general problem that could more appro-
priately be called Steiner forest packing: the set of critical
nodes to be included in the Steiner tree are predetermined,
but may be different for each tree.

Definition 11. [11, p. 221] The 3-dimensional match-
ing problem (3DM) is the following. Given a set T ⊆
X × Y × Z, where |X| = |Y | = |Z| = q, find a matching
M for T , i.e. a subset M ⊆ T such that |M | = q and no
two distinct elements in M agree in any coordinate.

Definition 12. The node-disjoint (edge-disjoint)
Steiner tree packing problem is the following. Given
an undirected graph G = (V, E), a set of critical nodes W ⊆
V , and a positive integer N , decide whether there exist at
least N pairwise node-disjoint (edge-disjoint) Steiner trees
in G. Note that only the noncritical nodes are required to be
node-disjoint; the critical nodes are to be included in all the
Steiner trees.

Lemma 2. The node-disjoint Steiner tree packing prob-
lem is NP-complete.

Proof. Suppose an instance of the node-disjoint Steiner
tree packing problem is given, where G = (V, E) is the in-
put graph, W ⊆ V is the set of critical nodes, and N is
the required number of node-disjoint Steiner trees. A trivial
upper bound for the number of node-disjoint subgraphs in
G is |V |+1. Hence, the problem is in NP because a nonde-
terministic algorithm can guess N subgraphs of G and check
in deterministic polynomial time that these subgraphs form
a collection of node-disjoint Steiner trees for W .

We show completeness by transformation from 3DM. Let
T ⊆ X × Y × Z be an instance of 3DM with |X| = |Y | =
|Z| = q and |T | = m. Without loss of generality we may
assume that m ≥ q and that the sets X, Y, Z, T are pair-
wise disjoint. Denote the elements of X by x1, . . . , xq and
similarly for the other sets Y , Z, T .

To make the proof more readable, we shall consider an
example alongside the formal treatment. In the example,
let X = {x1, x2}, Y = {y1, y2}, Z = {z1, z2} and T =
{t1, t2, t3, t4}, where

t1 = (x1, y1, z1), t2 = (x1, y2, z2),

t3 = (x2, y1, z2), t4 = (x2, y2, z1).

We construct the input graph G = (V, E) and the set of
critical nodes for the Steiner tree packing instance from the
3DM instance in three steps. In the first step, let the node
set of the input graph be V = X ∪ Y ∪ Z ∪ T . All of these
nodes are noncritical. Now, for every ` = 1, . . . , m, we add
the three edges {xi, t`}, {yj , t`}, {zk, t`} to the graph, where
xi, yj , zk are determined from t` = (xi, yj , zk). The graph
resulting from the example instance after the first step is
depicted below.

x1 x2 y1 y2 z1 z2

t1 t3 t4t2

In the second step, we insert four critical nodes x′, y′, z′, t′

into the graph, and join these by an edge to all of the nodes
in the respective sets X, Y, Z, T ; that is, x′ is adjacent to all
the nodes in X, y′ is adjacent to all the nodes in Y , and so
on.

x1 x2 y1 y2 z1 z2

t1 t3 t4t2

t’

z’y’x’

In the third step, we insert m − q noncritical nodes P =
{p1, . . . , pm−q} into the graph, and join each of these by an
edge to the critical nodes x′, y′, z′ and to all of the nodes in
T .

x1 x2 y1 y2 z1 z2

t1 t3 t4t2

p1 p2

t’

z’y’x’

This completes the description of G. The transformation is
clearly computable in polynomial time. We now show that
G contains m pairwise node-disjoint Steiner trees if and only
if there exists a matching M for T .

We start with the “if” direction. Suppose M = {t`1 , . . . ,
t`q} ⊆ T is a matching for T . We can construct q pair-
wise node-disjoint Steiner trees in G by taking for each
s = 1, . . . , q the subgraph induced by the nodes x′, y′, z′,
t′, t`s , xis , yjs , zks , where xis , yjs , zks are determined from
t`s = (xis , yjs , zks). The remaining m − q trees can be con-
structed by taking the subgraph induced by x′, y′, z′, t′, and
any two nodes pi and t` not used so far.

It remains to prove the “only if” direction. Suppose we
are given m node-disjoint Steiner trees in G. Because each of
the critical nodes x′, y′, z′, t′ is adjacent to exactly m nodes,
which are noncritical nodes, we must have that each of the
Steiner trees contains exactly one node from T and either
(i) exactly one node from P or (ii) exactly one node from
each of the sets X, Y, Z. We can construct a matching for
T from the nodes t` ∈ T in the q trees in which case (ii)
occurs.

Theorem 2. The multicast time maximization problem
under quantized dynamic power assignments is NP-hard.

Proof. We transform an instance G, W, N of the node-
disjoint Steiner tree packing problem into an instance of
the multicast time maximization problem. Without loss of
generality we may assume that the critical nodes W are
pairwise nonadjacent in G. First, replace every undirected
edge {i, j} in G with two directed edges (i, j), (j, i) to obtain
a directed graph. Then, put dij = 1 if (i, j) is an edge;
otherwise dij = ∞. Select (arbitrarily) one of the critical



nodes W as the source node; the other critical nodes in W
become the sink nodes. To complete the transformation,
put ei = N for the source/sink nodes and ei = 1 for all the
other nodes. It is easy to see that the transformed instance
has a feasible quantized-time power assignment achieving
multicast time N if and only if the original instance has N
node-disjoint Steiner trees.

Clearly, the above proof of Theorem 2 does not apply to the
general case where the discontinuities in the power assign-
ments are not quantized to occur at intervals of one time
unit.

We now turn to study the approximability of the multi-
cast time maximization problem. We show that the multi-
cast time maximization problem is hard for the complexity
class APX, which consists of all NP optimization problems
that admit a polynomial time approximation algorithm that
achieves a constant performance ratio (see [2]). In particu-
lar, this implies that the multicast time maximization prob-
lem under quantized dynamic power assignments does not
admit a polynomial time approximation scheme (PTAS) un-
less P = NP.

We base our APX-hardness proof on the following result.2

Theorem 3. [13, Corollary 4.3] The edge-disjoint Steiner
tree packing problem is APX-hard.

Lemma 3. There exists an approximation preserving poly-
nomial time reduction from the edge-disjoint Steiner tree
packing problem to the node-disjoint Steiner tree packing
problem.

Proof. Let G = (V, E) be an instance of the edge-disjoint
Steiner tree packing problem, where W ⊆ V is the set of crit-
ical nodes. We transform this instance into an instance of
the node-disjoint Steiner tree packing problem in two steps.

In the first step, we perform the following local transfor-
mation for each noncritical node v ∈ V \W . Let v be incident
with k edges e1, . . . , ek. We remove v from the graph and
replace it with k new noncritical nodes v1, . . . , vk so that,
for every i = 1, . . . , k, the edge ei becomes incident with
the node vi. We then connect the nodes vi pairwise so that
they form a k-clique. For purposes of analysing the reduc-
tion later, we color all the edges ei blue and the edges in the
k-clique green.

In the second step, we subdivide each edge joining two
critical nodes into two edges by inserting a new noncritical
node in the middle; these two edges are colored red. This
completes the description of the transformation, which is
clearly computable in polynomial time. We claim that the
input instance contains N edge-disjoint Steiner trees if and
only if the transformed instance contains N node-disjoint
Steiner trees.

We can transform a Steiner tree T in the edge-disjoint
instance into a Steiner tree T ′ in the node-disjoint instance
as follows. First, for each edge in T , we include the corre-
sponding blue edge (or both of the corresponding red edges)
into T ′. We then connect the blue edges into each other
by a minimal number of green edges. This transformation
maps edge-disjoint trees to node-disjoint trees because dis-
tinct blue edges cannot have a common noncritical endpoint.

Conversely, we can transform a Steiner tree T ′ in the node-
disjoint instance into a Steiner tree T in the edge-disjoint
2We remark that only a proof sketch for the result is given
in [13].

instance by taking all the blue and red edges in T ′ and in-
serting the corresponding edges into T . There is one excep-
tion: if only one red edge from a pair of red edges occurs in
T ′, then we do not insert the corresponding edge into T be-
cause this would create a cycle. This transformation maps
node-disjoint trees map to edge-disjoint trees because each
blue edge occurs in at most one tree in a collection of node-
disjoint trees. Furthermore, the red edges from a pair of red
edges cannot occur in different trees of a node-disjoint col-
lection because the edges share a noncritical endpoint.

Combining Theorem 3 and the reduction in Lemma 3, we
obtain:

Corollary 2. The node-disjoint Steiner tree packing
problem is APX-hard.

Corollary 3. The multicast time maximization problem
under quantized dynamic power assignments is APX-hard.

Proof. The transformation from node-disjoint Steiner
tree packing into multicast time maximization in the proof
of Theorem 2 is approximation preserving.

It remains an open problem whether the node-disjoint
Steiner tree packing problem or the multicast time max-
imization problem belong to the class APX, i.e. possess
polynomial time approximation algorithms with a constant
performance ratio.

4. ALGORITHMS FOR THE DYNAMIC
POWER ASSIGNMENT PROBLEM

We present two randomized algorithms for the multicast
time maximization problem under dynamic power assign-
ments, and a method for bounding the multicast connection
time from above.

The first algorithm is based on the static algorithm pre-
sented in Section 2. In the static solution, all nodes will
run out of energy simultaneously. Our algorithm RND-
GREEDY (see box) reduces node powers in a random or-
der to save energy for further multicast trees. As a random-
ized algorithm, it produces varying results, so it is useful to
iterate it several times and choose the best solution found.

Although this relatively simple algorithm routinely gives
dynamic solutions with multicast times that are 2 to 4 times
the static one, even better performance can be obtained.
For this, the dynamic power assignment problem is split
into two essentially separate subproblems: sampling a good
collection from the set of all viable static power assignments,
and scheduling, i.e. deciding for how long each assignment
in the collection should be used. By a viable static power
assignment we mean one that fulfills the multicast property.
We shall tackle the scheduling problem first.

A collection of m viable static power assignments can be
concisely represented as columns of an n × m matrix P,
where Pij indicates the power of node i in the jth assign-
ment. Now scheduling is a linear programming (LP) prob-
lem: Given P and an energy supply vector e = (e1, . . . , en),
find a schedule vector x = (x1, . . . , xm) that maximizes�

xj (total multicast time), subject to Px ≤ e (energy con-
straints at all nodes), and xj ≥ 0 for all j. The dynamic
power assignment is then as follows: for each j = 1, . . . , m,
run the jth power assignment for xj time units. Note that



Algorithm RNDGREEDY

1. Choose powers p = (p1, . . . , pn) with the polynomial time algorithm given by Corollary 1.

2. Repeat until the source has zero energy:

2.1. For all nodes i in random order: Turn the power pi as low as possible without breaking the multicast connectivity from
the source to all sinks. (Perform a binary search over the values dij that lie between 0 and the pi given by Step 1; for each
value, check connectivity with depth-first search.)

2.2. Run the network with this power assignment until some node runs out of energy. Update the energy supplies of all nodes
according to the consumption.

Algorithm LPSCHEDULE

1. Initialize: P← [ ], ered ← e (the true energy supply of each node).

2. Repeat for a number of iterations:

2.1. Sampling: Generate a set of power assignments with RNDGREEDY, using reduced energy supply ered. Append all of
them as new columns to P.

2.2. Scheduling: x← optimum schedule for P with full energy supply e (solve as LP).

2.3. Consumption: w ← Px.

2.4. Energy for next iteration: r ← uniform random number in [0, 1], ered ← e− r ·w.

3. Return the dynamic assignment given by P and x.

here we treat time as a continuous quantity and not quan-
tized to unit-length intervals as in Section 3.

This is a natural formulation of the dynamic power assign-
ment problem in the following sense: If P contains all the
viable static power assignments for a given network, schedul-
ing will give the optimal dynamic assignment. However, for
networks of nontrivial size, this is out of question, as the
number of viable assignments is exponential in n. But for
relatively large collections (e.g. m ≈ 1000), the LP schedul-
ing problem can be efficiently solved.

For sampling, simply generating a collection of individ-
ually good static power assignments is not enough. As
pointed out in [18], such a collection is not necessarily very
good for the dynamic power assignment. Instead, we would
like to find static power assignments that exploit the en-
ergy supplies of different subsets of all nodes. This is the
underlying idea in our second algorithm.

The algorithm LPSCHEDULE (see box) generates a
collection P iteratively. New power assignments are ob-
tained using RNDGREEDY and accumulated. Power as-
signments are never discarded from the collection; we rely on
the scheduler to allocate zero time for inferior assignments.
Scheduling is computationally cheap, as long as P remains
reasonable in size. In our experiments, most of the running
time of LPSCHEDULE is spent in generating new viable
assignments using RNDGREEDY.

The trick is that the new assignments are encouraged to
exploit other nodes than those heavily used by the current
P, by telling RNDGREEDY that only a part of the true
energy supply is available. The strength of this encourage-
ment varies according to a random factor r ∈ [0, 1]. Note
that for r = 0, Step 2.1 of LPSCHEDULE reduces into
another independent iteration of RNDGREEDY for the
original problem. On the other hand, for r = 1, the new
assignments are restricted to “leftover” nodes. Intermedi-
ate values of r provide a “soft” penalty for competing over
energy with the current solution.3

Finally, we attack the problem from the opposite direc-

3In fact, the randomization of r is not crucial, and a fixed
value of e.g. 0.25 or 0.5 works quite well.

tion and formulate upper bounds for the dynamic multicast
time in a given network. Such an upper bound can be used
e.g. for assessing the quality of the solutions found by the
algorithms.

Let the source node be 1, and its nearest neighbor 2. A
trivial upper bound follows from the fact that the source
has to reach at least its nearest neighbour, so p1 ≥ d12.
No matter how we choose the powers of other nodes, the
multicast time cannot exceed e1

d12

.
This idea can be extended to an arbitrary cut C ⊂ V that

contains the source, but not all the sinks. At all times, the
power levels inside C must be large enough so that the trans-
mission graph contains at least one path from the source to
some node outside C. For small C, we can enumerate all
such paths and find a time-maximizing schedule between
them by solving an LP similar to that described above.

Experiments suggest that quite small cuts can give tight
bounds on the dynamic multicast time. Indeed, for multi-
cast trees in a large network, the bottleneck is in escaping a
small neighbourhood of the source, constrained by its lim-
ited energy supply. After that, the large number of nodes in
the rest of the network provides an abundance of alternative
routes to the sinks.

5. EXPERIMENTS
The algorithms were implemented in MATLAB 6.5, using

the Optimization Toolbox 2.2 for LP solving. Experiments
were run on a workstation with a 1333 MHz AMD Athlon
processor.

In the experiments, we place 100 nodes (1 source, 4 sinks)
at random, uniformly distributed in the unit square. Power
thresholds are computed as dij = rij

2. All nodes are given
1 unit of energy. An upper bound for the multicast time
is computed using a cut consisting of the source and its six
nearest neighbours.

An example network is shown in Fig. 1. The maximum
static multicast time for this network is 59.7 units. Both dy-
namic algorithms were run for 100 iterations. Performance
of the algorithms is compared in Fig. 2. The multicast time
given by RNDGREEDY quickly reached about 3.3 times
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Figure 1: A randomly generated network, and multicast trees in two of the 695 power assignments generated by

LPSCHEDULE for this network. Although the assignment on the left is also an optimal static solution and could be

used for 59.7 units of time, the dynamic solution uses it for only 17.9 units. The assignment on the right is given the

most time, 26.5 units. The full solution allocates nonzero time to 92 of the assignments, giving a dynamic multicast

time of 236.8 units. Source (1) and sink nodes (2, 3, 4 and 5) are shown as squares. Filled nodes are transmitting at

ranges indicated by the dotted circles, and hollow ones are idle.

the static solution, but remained constant after the first 39
iterations. Algorithm LPSCHEDULE generated 695 dif-
ferent power assignments, two of which are shown in detail
in Fig. 1. The solution gives an improvement ratio of 3.96
over the static multicast time and reaches 92.6 % of the
upper bound.
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Figure 2: Progress of RNDGREEDY and LPSCHED-

ULE for the Fig. 1 network. (Total computation time

126 and 199 CPU seconds, respectively.)

To gain some idea of the performance of the algorithms in
general, we next generated 50 random networks. For each
network, we ran the static algorithm and the two dynamic
ones, for 50 iterations each. The results are shown in Fig. 3.
It can be seen that the dynamic power assignments gave
multicast times which in general were about three times the
static ones. Also, LPSCHEDULE often finds near-optimal
solutions; in fact, in more than half of the networks (28 out

of 50) the solution is within 1 % of the upper bound. Note
that in one case the network was extreme in the sense that
even the static solution reaches the upper bound, i.e., gives
an optimal solution.

The results show that dynamic power assignments can
be clearly superior to static ones and that our algorithm
LPSCHEDULE can achieve very good solutions.

6. CONCLUSION
A large amount of current work has been directed towards

energy minimization in wireless ad hoc networks, with the
underlying goal of maximizing the lifetime. Our approach
has been to optimize the multicast time directly. We have
provided an optimal polynomial time algorithm for deter-
mining the maximum multicast time under the constraint
that the transmission powers of all nodes are set to fixed
values at the outset, and two approximation algorithms for
finding good power assignment schedules when the powers
at the nodes can be dynamically adjusted during operation.
In fact, for small networks, the optimal dynamic multicast
time can be determined using linear programming as long
as the total number of all viable static power assignments is
small enough, i.e. less than a few thousand.

We have also proved that finding optimal power assign-
ment schedules in the dynamic case is NP-hard and thus not
likely to be exactly solvable by a polynomial-time algorithm,
when the time is quantized instead of real-valued. Further-
more, this problem is not likely to have a polynomial time
approximation scheme. Whether the problem admits a con-
stant performance ratio approximation algorithm remains
an open problem. Also the computational complexity under
real-valued time remains open.

We have assumed that the nodes are immobile, as in e.g.
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Figure 3: Distribution of multicast times, (a) relative to the static solution and (b) relative to the upper bound,

obtained from 50 random networks of 100 nodes and 4 sinks. Notched boxes indicate median and quartiles; whiskers
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sensor networks. In addition, our power assignment algo-
rithms require some degree of centralized control of the net-
work. Either all the nodes need to be aware of the network’s
complete initial energy state, or they need to communicate
with some central coordinating node. The problems of node
mobility and distributed approximate optimization of the
power assignment schedules remain to be studied.
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